Uppgift Beräkna kurvintegralen + d där är kurvan = från (, ) till (4, ). Lösning Här har vi ett fält F =(P, Q), där d, () så integralen är på formen P = +, Q = d, P d + Qd. Innan vi kan använda t.e. Greens formel så måste vi beräkna de vanliga partiella derivatorna. P = + ( ) = = ( )+ =, ( ) 3 ( ) 3 Q = 4( ) = ( ) 4( ) = ( ) 3 = Q = 4( ) =. ( ) 3 Det visar sig att P, och fältet har kanske en potential. Innan vi kan vara säkra så måste vi även kolla att F:s definitionsmängd Ω är enkelt sammanhängande. F är definierad överallt där >0 <,ochω har alltså inga hål. Området är enkelt sammanhängande, och vi har då en potential. Det innebär både att den ursprungliga kurvintegralen är oberoende av vägen, och att vi kan beräkna den genom att beräkna skillnaden i potential U mellan kurvans begnnelse- och slutpunkter. Vi vet att U är en C -funktion i Ω sådan att = U = F,
vilket ger oss ekvationssstemet = P = +, = Q =. () Om vi integrerar den nedre ekvationen i med avseende på så får vi: U = d = ( ) d = + Ψ() = + Ψ(), (3) : där Ψ() är en funktion av enbart. Vi sätter in 3 i den övre ekvationen i + ψ() = + Ψ () =0. Om vi integrerar Ψ () så får vi: + + Ψ () = + Vi har nu potentialfunktionen: Ψ() =C. U(, ) = + C. Eftersom F är ett potentialfält så gäller: + d d = U(b) U(a), där a = (, ) och b = (4, ) är kurvstckets begnnelse- respektive ändpunkt. Det ger: U(b) U(a) =U(4, ) U(, ) = 4 4 ++C ( ++C) = Svar: Kurvintegralens värde är. =4 8 =4 3 = =. 3
Uppgift Vill beräkna kurvintegralen från (, ) till (4, ). d d där är kurvan Vi har att F P(, ), Q(, ), är definierad och differentierbar för alla (, ) sådana att. Vi kallar denna öppna, enkelt sammanhängande mängd ( för, ). Vi har Q ( ) ( ) ( ) 4( ) 4( ) 3/ 3/ och ( ) ( ) ( ) ( P ) ( ) ( ) 3/ 3/ Q De partiella derivatorna och P är definierade och kontinuerliga i. Vi ser också att Q P i den enkelt sammanhängande öppna mängden. Enligt sats 3, s. 353, har därför F har en potential i. Vi söker nu denna potential U(, ). Q U U g (, ) (, ) ( ) U(, ) g( ) ger U g g '( ) '( )
Jämför vi detta uttrck med P (, ) någon konstant C. ser vi att g'( ) 0 g( ) C för Vektorfältet F har alltså potentialerna U(, ) C. Med hjälp av detta kan vi bestämma värdet av den sökta kurvintegralen: Fdr U(4, ) U(, ) 4 6
!"#$%&'() *+",&,--./0' 89'*:5;<"#'<,5=/":.5#$:" >;5'! ;5'<,5=#"'?'@'% A '05B"'C8DE8F'/$$'CGDEAF9'!"#$%$&'()/'#"=;">:5'-#5#7:5/&:5/".:"' "!""# # $""##$"" A # "# # "%&'8D'A( >;5''@'E8';5' -,"<9')/'&<#'#$$&B'H:5;<"# )/'0B5'# )/',"%I#5'#'<,5=#"' "!""# # $ ""##$"" A # "# 4#5'#".:"=:<+5' "!% ""# # $ % "" ##$"A D8# 9' )/'0B5 C>;5'=/'-B'5#>'A'7,$/-$/J:5#5'7:>' KB'4#5'=/'/$$'&$,'0B'/":.5#$:" )" G '" )" G '" +J4'7:>' A A -B'5#>'F9' 8 )/'=:'#'-5/7//='0,"</+"'/$$' ;5' )" G '" 7:"'>:';5'/":'5/</.'=B5'/":.5#$9')/'=/$$' A)" G '".;5"#'4#':"' " L :57'+J4':"' " M :57'C0N5'#'0B'L'+J4'M'&+7'<+:00/J/:":5F9')/'-5+=#5' )" L '" M >B' )" L '" M $)" G "" G '"#$" A )" G '" =/$<:'=:5<#5'$+=#">:9'K:5/=##"'H$/5' O:"'=/'=:'#'=/'<#"'&<5/=#'+7'";7"#5:"'+J4'0B5
!"#$%&'() *+",&,--./0' 8/$9:';5'-5:</&'8#='8/'8/$$:'4#>'?:'.:5'+&&'/":.5#$:"&'8;5=:':"$/.!"#$%&6,58/":.5#$:"&'8;5=:';5' @@!A B
Uppgift Visa att 4 3 + + 43 3 d +( + ) d (4) efter multiplikation med en lämplig funktion g() blir differentialen av en funktion U(, ). Ange g och U. Lösning Differentialformen 4 kan även skrivas som 4 3 + + 43 3 d +( + ) d = P d + Qd, som ges av fältet F =(P, Q). Vi ska alltså hitta funktioner U och g så att: du = g() P d + g() Qd = = g() 4 3 + + 43 3 d + g()( + ) d. (5) Om funktionen U finns så är uttrcket 5 en eakt differentialform, vilket är ekvivalent med att ett fält G =(g() P, g() Q) är ett potentialfält. Här bör g() vara definierad hela i F:s definitionsmängd. F är definierad i hela R, som är ett enkelt sammanhängande område, och då borde även G vara det. Förutom det så måste den vanliga likheten för G:s derivator gälla: (g() P )= (g() Q). Vi beräknar de partiella derivatorna: (g() P )= g() 4 3 + + 43 3 = = g() 4 3 + +4, (g() Q) = g()( + ) = g () ( + )+g(). Vi sätter dem lika med varandra: g() 4 3 + +4 = g () ( + )+g() g() (4 3 +4 )=g () ( + ) + g() 4 + = g () 4 g() =g (). 4
Här har vi en differentialekvation att lösa. Med integrerande faktor ges: 4 g() =g () g () 4 g() =0 e g () e 4 g() =0 (e g()) =0 e g() =C g() =Ce, där C är en konstant. Efter insättning av g() i differentialformen 5 får vi: Ce 4 3 + + 4 3 3 d +( + ) d. Nästa steg är att bestämma U med ekvationssstemet: = Ce 4 3 + + 4 3 3, = Ce +. (6) Integration av den undre ekvationen i 6 med avseende på ger: U = Ce + d = Ce + d = Ce + 3 + Ψ(). 3 Insättning i den övre ekvationen i 6 ger: Ce + 3 3 + Ψ() = Ce 4 3 + + 43 3 + Ψ () = = Ce 4 3 + + 43 3 eller alltså att Ψ () =0 Ψ() =D, där D är en konstant. Svar: U(, ) =Ce + 3 + D. 3 5
Uppgift 3 Visa att d +( e )d efter multiplikation med en lämplig funktion g() blir differentialen av en funktion U(, ). Ange g och U. Lösning: Ett villkor för att P d + Qd ska vara en differential av U är att Q = P,dvs: g()( e ) = (g() ) g() =0 Vi får: g() = g () + g() g ()+ Differentialekvationen löses med integrerande faktor som: g() =Ce (ln ) = C e Vi söker U som uppfller att: = C e = Ce = C e e =Ce Ce 3 Vi integrerar första ekvationen: U(, ) =Ce + ϕ() Insatt i andra ekvationen fås: Ce + ϕ() =Ce + ϕ () =Ce Ce 3 ϕ () = Ce 3 Alltså är ϕ() = e Ce 3 3 d = C 3 e3 + D 9 Svar : g() = C e e U(, ) =Ce 3 C 3 e3 + D 9
U(, ) U(, ) g() +( e ) g() g() U(, ) g()( e ) = g(). g() g() = g () + g() g ()+g(), = 0 =0 g(0) = 0 g() = 0 g ()+g() =0 e = ln + c, e g ()+g()e ( ) =0 e g() =0 e g() =C g() = C e, C C (e +(e e 3 ) ) U(, ) g()
= g() = Ce = g()( e )=Ce Ce 3 U(, ) = Ce = Ce + h(), h() C h() h() = D Ce 3 = C = Ce + h (), e3 = C e3 3 h () = Ce 3 e 3 3 3 3 + D, U(, ) =Ce + C e3 3 +D = C e3 3 e3 +D = 9 3 + D. U = C e +(e e 3 ) g() = 0 0 lim 0 + U = C + C = lim U, 0 Ce + C e3 3 3 + D C D U(, ) = g() = C e
u =(, 3 + ) =8 (, ) (, 4) t ( (t)) (t) t = s, s = (t) t ds s, s =(, ) s =(, ) s = ( 3 ) +. = t,=t, = t, =, ( 3 ) + = = t 3 t t + t 4t t = t 7 t 8 t +t 3 8 t = 64 t3 3 + t4 ( 8 64 + 4 3 + 4 ) ( 64 3 + )=9 64. 9 64 =
Uppgift 4 Beränka flödet av u =(, 3 + ) längsparabeln = 8 från punkten, till (, 4). Flödet genom ett litet kurvsegment ds kommer att vara den del av flödesfältet u =(, 3 +) som är vinkelrätt mot kurvans normal, det vill säga N u. Normalvektorn kan så klart ha två riktningar, och då det inte framgår från uppgiften i vilken riktning flödet ska beräknas antar jag att det som åsftas är beloppet av flödet. Då kan jag välja vilken som av de två normalerna, och sedan ta absolutbeloppet av resultatet. Integralen över alla infintesemala kurvelement ds blir N uds där är parabeln som beskrivs i uppgiften. För enhetstangenten T gäller det att Tds =(d, d). För att hitta en enhetsnormal krävs det alltså att hitta något med samma längd, vars skalärprodukt med tangenten blir noll. En sådan skulle kunna vara det N som uppfller Nds =(d, d). Integralen kan då skrivas om till (, 3 + ) (d, d) = 3 d + d. Jag parametriserar integralen enligt =t, = t,där det gäller att d =dt och d = tdt och t går från till. Insatt i integralen blir detta 3 t 7 d + d = 8 t +t 3 dt där normalen antas ha enhetslängd 5
t Integralen beräknas till 8 64 t3 3 + t4 = 9 64 Jag får alltså flödet genom kurvan till 9 64. 6
!"#$%$&&'()*+,+ -.*/0.*(%+#.34%+56+ + 5. Bestäm värdet av där är den sluten kurva som börjar i punkten och sen går längs: "!"
!"#$%$&&'()*+,+ -.*/0.*(%+#.34%+56+ (a) nedre halvan av cirkeln (b) övre halvan av (c) delen under -aeln av parabeln (d) övre delen av Skissa kurvan. Lösning: Grafen ser ut såhär. Funktionen är inte definerad när dvs i punkten. Men vi kan dela kurvintegralen i två delkurvintegraler och betraktar om deras fält har någon speciell egenskap. Betraktar vi delkurvintegralen ser vi att är magnetfältet. Från föreläsning eller kursboken visade vi att magnetfälet inte är konservativt. Och från grafen ser vi att går två varv runt origo (0,0) på negativt led. Så vi får att "!"
!"#$%$&&'()*+,+ -.*/0.*(%+#.34%+56+ + Delkurvintegralen En eventuell potential skall här uppflla liknar det elektrostatiska fälet. Det är lätt att se att Satisfierar dessa ekvationer. Fältet är konservativt. Ett konservativt fält har en följd av sats i kursboken egenskapen att för varje sluten kurva har vi "!"