IE1206 Inbyggd Elektronik

Relevanta dokument
IF1330 Ellära KK1 LAB1 KK2 LAB2. tentamen

IE1206 Inbyggd Elektronik

IE1206 Inbyggd Elektronik

IE1206 Inbyggd Elektronik

IE1206 Inbyggd Elektronik

IE1206 Inbyggd Elektronik

IE1206 Inbyggd Elektronik

IE1206 Inbyggd Elektronik

IE1206 Inbyggd Elektronik

IE1206 Inbyggd Elektronik

IE1206 Inbyggd Elektronik

IE1206 Inbyggd Elektronik

IE1206 Inbyggd Elektronik

IE1206 Inbyggd Elektronik

IE1206 Inbyggd Elektronik

Maxwells potentialekvation, s.k. nodekvation går ut på att analysera ett nät utifrån potentialerna i nätets noder.

IE1206 Inbyggd Elektronik

IE1206 Inbyggd Elektronik

Att använda el. Ellära och Elektronik Moment DC-nät Föreläsning 3. Effekt och Anpassning Superposition Nodanalys och Slinganalys.

IE1206 Inbyggd Elektronik

IE1206 Inbyggd Elektronik

IE1206 Inbyggd Elektronik

Tentamen den 20 oktober TEL108 Introduktion till EDI-programmet. TEL118 Inledande elektronik och mätteknik. Del 1

Sammanfattning av kursen ETIA01 Elektronik för D, Del 1 (föreläsning 1-6)

Lektion 1: Automation. 5MT001: Lektion 1 p. 1

1 Grundläggande Ellära

Introduktion till modifierad nodanalys

Ellära. Lars-Erik Cederlöf

Elteknik. Superposition

IF1330 Ellära KK1 LAB1 KK2 LAB2. tentamen

IE1206 Inbyggd Elektronik

IF1330 Ellära KK1 LAB1 KK2 LAB2. tentamen

Föreläsnng Sal alfa

TSTE20 Elektronik 01/31/ :24. Nodanalys metod. Nodanalys, exempel. Dagens föreläsning. 0. Förenkla schemat 1. Eliminera ensamma spänningskällor

Sammanfattning av kursen ETIA01 Elektronik för D, Del 1 (föreläsning 1-10)

ETE115 Ellära och elektronik, tentamen april 2006

Lektion 2: Automation. 5MT042: Automation - Lektion 2 p. 1

TSKS06 Linjära system för kommunikation Kursdel Elektriska kretsar. Föreläsning 3

IF1330 Ellära KK1 LAB1 KK2 LAB2. tentamen

IE1206 Inbyggd Elektronik

IF1330 Ellära KK1 LAB1 KK2 LAB2 KK4 LAB4. tentamen

Svar och Lösningar. 1 Grundläggande Ellära. 1.1 Elektriska begrepp. 1.2 Kretslagar Svar: e) Slinga. f) Maska

Tentamen Elektronik för F (ETE022)

Elektriska komponenter och kretsar. Emma Björk

Viktigt! Glöm inte att skriva Tentamenskod på alla blad du lämnar in.

Spänningsfallet över ett motstånd med resistansen R är lika med R i(t)

Potentialmätningar och Kirchhoffs lagar

Simuleringsprogrammet LTspice

Föreläsning 6: Nätverksoptimering

En ideal op-förstärkare har oändlig inimedans, noll utimpedans och oändlig förstärkning.

TSTE05 Elektronik & mätteknik Föreläsning 3 Likströmsteori: Problemlösning

Bestäm uttrycken för följande spänningar/strömmar i kretsen, i termer av ( ) in a) Utspänningen vut b) Den totala strömmen i ( ) c) Strömmen () 2

Sammanfattning av likströmsläran

Institutionen för Fysik

SM Serien Strömförsörjning

TANA17 Matematiska beräkningar med Matlab

Tentamen i Elektronik för E (del 2), ESS010, 5 april 2013

Tentamen i Elektronik grundkurs ETA007 för E

Tentamen ellära 92FY21 och 27

ETE115 Ellära och elektronik, tentamen oktober 2006

Övningsuppgifter i Elektronik

Tentamen i Elektronik, ESS010, del 2 den 17 dec 2007 klockan 8:00 13:00 för inskrivna på elektroteknik Ht 2007.

Tentamen i Elektronik - ETIA01

Införa begreppen ström, strömtäthet och resistans Ohms lag Tillämpningar på enkla kretsar Energi och effekt i kretsar

Lösningar till BI

LTK010, vt 2017 Elektronik Laboration

Kretselement på grafisk form

Lab 2. Några slides att repetera inför Lab 2. William Sandqvist

Ellära. Laboration 2 Mätning och simulering av likströmsnät (Thevenin-ekvivalent)

IE1206 Inbyggd Elektronik

Lösningsförslag Inlämningsuppgift 3 Kapacitans, ström, resistans

IE1206 Embedded Electronics

Analys av elektriska nät med numeriska metoder i MATLAB

Föreläsning 3/12. Transienter. Hambley avsnitt

Föreläsning 29/11. Transienter. Hambley avsnitt

Tentamen i Elektronik, ESS010, del1 4,5hp den 19 oktober 2007 klockan 8:00 13:00 För de som är inskrivna hösten 2007, E07

Tentamen ETE115 Ellära och elektronik för F och N,

Du behöver inte räkna ut några siffervärden, svara med storheter som V 0 etc.

Tentamen i Grundläggande ellära och digitalteknik ETA 013 för D

Motorprincipen. William Sandqvist

Strömdelning. och spänningsdelning. Strömdelning

Att fjärrstyra fysiska experiment över nätet.

Elektronik grundkurs Laboration 1 Mätteknik

Andra ordningens kretsar

Ellära och Elektronik Moment AC-nät Föreläsning 4

Elektronik 2018 EITA35

IF1330 Ellära KK1 LAB1 KK2 LAB2. tentamen

Matrismetod för analys av stångbärverk

Tentamen i Elektronik för E (del 2), ESS010, 11 januari 2013

Elektricitet och magnetism

Kurs 2D1213, laboration 1: Bli bekväm med MATLAB. Michael Hanke. November 6, 2006

Tentamen i Elektronik för E, 8 januari 2010

Efter avsnittet ska du:

Föreläsning 4, Ht 2. Aktiva filter 1. Hambley avsnitt 14.10, 4.1

TSTE05 ELEKTRONIK OCH MÄTTEKNIK Information om inlämningsuppgifter hösten 2018

Komplettering: 9 poäng på tentamen ger rätt till komplettering (betyg Fx).

Tentamen i Grundläggande ellära och digitalteknik ETA 013 för D

Tentamen i Elektronik, ESS010, del 2 den 16 dec 2008 klockan 8:00 13:00.

TENTAMENSUPPGIFTER I ELEKTROTEKNIK MED SVAR

Sven-Bertil Kronkvist. Elteknik. Tvåpolssatsen. Revma utbildning

Transkript:

E6 nbyggd Elektronik F F F4 F Ö Ö PC-block Dokumentation, Seriecom Pulsgivare,, R, P, serie och parallell KK LB Pulsgivare, Menyprogram Start för programmeringsgruppuppgift Kirchhoffs lagar Nodanalys Tvåpolsatsen RR D F5 Ö KK LB Tvåpol, D, Komparator/Schmitt F6 F8 Ö6 F Ö4 Ö5 F F7 F9 F F Ö7 redovisning tentamen KK LB Transienter PWM Visare jω PWM CCP KP/ND-sensor KK4 LB4 Step-up, RC-oscillator LC-osc, DC-motor, CCP PWM LP-filter Trafo Gästföreläsning Redovisning av programmeringsgruppuppgift Trafo, Ethernetkontakten

Kirchhoff Gustav Robert Kirchhoff År 847 formulerade Kirchhoff två lagar för elektriska nät. Dessa båda lagar, Kirchhoffs strömlag resp. Kirchhoffs spänningslag, utgör tillsammans med Ohms lag grunden för hela den elektriska kretsteorin.

Kirchoffs lagar OHM s lag handlar om en resistor ett spänningsfall och en ström. Ofta har man mer komplicerade kretsar med flera spänningskällor och många resistorer. Spänningskällorna kan vara anslutna så att de samverkar eller motverkar varandra. Resistorerna grenar strömmar mellan spänningskällorna. figurens krets försöker två emker V och V driva ström genom en Ω resistor, men från motsatta riktningar. Vilken vinner? Strömmen från V emken måste passera igenom en Ω resistor och strömmen från V emken igenom en Ω. Vågar Du dig på en gissning

Kirchhoffs strömlag Ohms lag måste kompletteras med en metod som tar hänsyn till hur kretsen är sammansatt. Kirchoffs två lagar gör det möjligt att ställa upp ett ekvationsystem för att lösa hur stora strömmar som flyter i en elektrisk krets och hur de är riktade. Om man gör kretsen mer komplicerad skapar man samtidigt möjligheten att ställa upp fler ekvationer - Kirchoff lovar att kretsen är lösbar! Node 4 5 Kirchoffs strömlag. elektriska kretsar finns knutpunkter, noder. Summan av alla strömmar till och från en nod är noll. Strömmen grenar sig mellan de ledare som är anslutna till noden. Den passerar knutpunkten utan förluster. Man brukar räkna alla strömmar som är på väg in till en nod med plusstecken, och alla strömmar på väg ut ur noden med minustecken.

Kirchhoffs spänningslag BCD B BC CD D Kirchoffs spänningslag. elektriska kretsar finns slingor (eller maskor). En slinga startar och slutar i samma punkt, här punkten. Om man följer en slinga "hela varvet runt" och summerar ihop alla spänningar, vid passagen av emker och av resistorer så ska summan vara noll. Man brukar räkna en positiv spänning om man passerar ut genom en emk vid pluspolen, och en positiv spänning om man passerar ut genom en resistor i den ände där strömmen går in. nnars räknar man negativ spänning. Jämför med Vätternrundan: Motala-Hästholmen-Gränna-Jönköping-Fagerhult-Hjo-Karlsborg-Boviken- Hammarsundet-Medevi-Motala

rbetsgång Man börjar med att rita ut strömmarna och. Man får definiera strömriktningen som man vill (om man har fel kommer beräkningarna slutändan att ge ett minustecken). Här har alla strömmar ritats i riktning in mot noden så kan det ju inte vara, så åtminstone någon ström kommer att få minustecken! När strömmarna definierats markerar man resistorernas spänningsfall. Där strömmen går in i resistorn har spänningsfallet plustecknet.

rbetsgång

Ekvationer Kirchoffs strömlag (summan av alla strömmar i en nod är, strömmar på väg in i noden tas med ""-tecken, strömmar på väg ut ur noden tas med "-"-tecken). Kirchoffs spänningslag (summan av alla spänningar runt en slinga är ). två Slingor: Nod innehåller samma strömmar som nod C så den ger ingen ytterligare ekvation. Slinga CD innehåller inget nytt, vi har redan tre ekvationer den behöver vi således inte använda. Tre ekvationer och tre obekanta lösbart! C BC BCD

OHM s lag på matrisform Tre ekvationer: - - Matrisekvation: R Lösning: - - (Strömmarna och har således motsatt riktning mot den antagna, precis som vi förutspådde måste åtminstone någon av strömmarna ha riktningen ut ur noden) Vi kan se Kirchoffs lagar som en generalisering av OHM s lag till att gälla för hela kretsar!

CowPi Systemsolver

Kirchhoffs lagar pröva själv Definiera strömmar och använd Kirchhoffs strömlag på noder. Node Sätt ut tecken på resistorernas spänningsfall. nvänd Kirchhoffs spänningslag på slingor. Slinga Lös ekvationssystemet. Tips! Vid handräkning uttrycker man en av strömmarna i de övriga för att minska antalet obekanta.

Oberoende ekvationer Metoden med Kirchoffs lagar är mycket flexibel, man väljer helt enkelt själv hur man ställer upp sina ekvationer. Är nätet komplicerat kan det kanske vara svårt att avgöra hur många ekvationer som behövs, och att övertyga sig om att alla uppställda ekvationer är linjärt oberoende. Det finns därför även ett antal systematiska metoder som garanterar att man får rätt antal oberoende ekvationer. Systematiken innebär även att man kan dra nytta av de speciella egenskaper som ekvationssystemen får detta har bland annat lett till några metoder för snabbuppställning av ekvationssystemen. Den som yrkesmässigt gör omfattande kretsberäkningar för hand tjänar på att lära sig dessa. (ndrar om det är så många nu för tiden? )

Potential Basläger - Spänningen i förhållande till en referenspunkt. (Jämför höjden i förhållande till baslägret vid bergsbestigningsexpeditioner.)

Elektrisk störning Vad är jord? Matningsspänningens jord Skyddsjord Jordplan Skärmbox Jordlinenät i marken

Vad är jord på ett flygplan?

Vad är jord på ett flygplan? Planets hölje är av aluminium det fungerar som jord för all elektrisk utrustning. Någon direkt anslutning till jordklotet är inte möjlig under en flygning. Statisk elektricitet leds bort från flygplanskroppen till omgivningen med static wicks, spetsar på vingarna.

Nodanalys Vid mer komplicerade kretsar behöver man systematiska metoder som garanterar att man ställer upp ekvationerna på rätt sätt. Nodanalysen är fördelaktig att använda när det finns få noder med okända potentialer. Man kan alltid bestämma att en godtyckligt vald nod är referens och tilldelas potentialen V, jord. detta exempel finns det då bara en nod kvar med okänd potential och det är. Det tidigare exemplet omritat för nodanalys. Vi har behållit beteckningar och strömriktningar, men har ritat strömmarna till nod i stället. Många gånger, tex inom elektroniken, har våra elektriska kretsar en naturlig jordpunkt som de flesta komponenter är anslutna till, och då kan det vara speciellt lämpligt att använda nodanalys-metoden.

Nodanalys Kirchoffs strömlag: OHM s lag: ) ( D B eller

Nodanalys ttrycken för grenströmmarna kan nu införas i strömekvationen: Lös den obekanta : Till sist, beräkna strömmarna : ( 6 ) ( ) 6 6 6 V

Nodanalys, steg för steg ) nför variabler för alla nodpotentialer. En valfri nod väljs som referens (), jord. GND. Eventuellt har kretsen redan en sådan jord-nod. ) Bestäm med OHM s lag alla grenströmmar. ) Tillämpa Kirchoffs strömlag på alla noder utom en. Detta ger lika många ekvationer som antalet obekanta nodpotentialer. 4) Lös ekvationssystemet.

Nodanalys pröva själv ) nför variabler för alla nodpotentialer. En valfri nod väljs som referens (), jord. GND. Eventuellt har kretsen redan en sådan jord-nod. ) Bestäm med OHM s lag alla grenströmmar. ) Tillämpa Kirchoffs strömlag på alla noder utom en. Detta ger lika många ekvationer som antalet obekanta nodpotentialer. 4) Lös ekvationssystemet.

( Maskanalys ) Den troligast populäraste metoden är Maskanalysen. Den kan användas för alla plana nät. (Ett plant nät kan ritas på ett papper utan att några ledningar eller komponenter korsar varandra). figuren är det BC och CD som är maskor medan den yttre BCD är en slinga. alla maskor inför vi fiktiva cirkulerande maskströmmar, P och Q. De verkliga strömmarna är: P - Q Q - P grenen mellan maskorna blir den resulterande strömmen skillnaden mellan P och Q eftersom strömmarna där kommer från olika håll. Nu inför vi alla resistorers spänningsfall med den riktning som maskströmmarna ger dem.

( Maskanalys ) De verkliga strömmarna blir P - - Q -(-) Q - P (-) - (-) - ) ( Q P Q P P BC P: Kirchoffs spänningslag ställs upp för maskorna P och Q: 4 ) ( Q P Q P Q CD Q: 4 Q P Q P Gemensam gren Gemensam gren

CowPi Systemsolver

( Maskanalys, steg för steg ) ) nför variabler för cirkulerande maskströmmar i alla maskor. Ekvationssystemet blir enklare att lösa om cirkulationsriktningen är densamma för alla maskströmmar (tex medurs). ) Ställ upp Kirchoffs spänningslag för alla maskor. Detta ger lika många ekvationer som antalet obekanta maskströmmar. ) Lös ekvationssystemet.

Vilken metod är viktigast att kunna? Viktigast. tt ställa upp ekvationssystemet med Kirchhoffs lagar är den principnära metoden. lla strömmar och spänningar man definierar går direkt att mäta upp, och kontrollera, i en verklig krets. Viktigt för elektroniken. Nodanalysen som arbetar med potentialer i förhållande till kretsens jord, passar som hand i handske på elektronikkretsarna. Ofta tittar man på enskilda noder, och undviker att ställa upp ekvationssystem. Viktig allmänbildning. Maskanalysen är den klassiska, mest använda metoden. Du måste känna till metoden för att inte riskera att sakna Ellära-allmänbildning. Tillkomsten av matematikprogram som Matematica och simuleringsprogram som Spice har i grunden förändrat vilken typ av beräkningar man gör för hand!

Ekvationssystem med Matematica nvänd bokstaven J för -vektorn eftersom är protected i Matematica. R {{,,},{-,,},{-,,}} {{},{},{}} J nverse [R]. ( Shift Enter startar beräkningen ) Matematica svarar: {{-},{},{-}}

Wolfram lpha online Online på webben: inverse[{{,, }, {-,, }, {-,, }}]. {{}, {}, {}}

Simulering med LTSpice Redan ganska små nät med elektriska kretsar ger omfattande ekvationssystem som är svåra att lösa för hand. Det är därför vanligt att man simulerar elektriska kretsar med datorprogram. SPCE utvecklat vid Berkeley i mitten av 97-talet (i programspråket FORTRN) har lagt grunden till de simuleringsprogram som används idag. Du kan ladda hem och installera på egen dator: LTspiceV

Simulering med LTSpice Se Tutorial på kurswebben som visar hur man gör!

Web-uppgiften lla har fått var sin egen unik web-uppgift att lösa! Mycket nöje! Lycka till!