Gör Din egen kurvkatalog
|
|
- Ellinor Andreasson
- för 9 år sedan
- Visningar:
Transkript
1 86 Gör Din egen kurvkatalog Hans Riesel KTH Krav på utrustning. För denna uppgift måste du ha tillgång till en grafisk dataterminal, så att Du kan rita kurvor på dataskärmen. Du behöver inte ha tillgång till färggrafik. Dessutom måste Du kunna rita ut kurvorna på papper, antingen med en särskilt kurvskrivare, eller med en laserskrivare eller en mekanisk punktmatrisskrivare med hygglig upplösning. Dessutom bör Du ha tillgång till programvara, som underlättar att rita kurvor på skärmen och sedan matar ut dem på papper (såvida Du inte vill göra sådana program själv). Allmänt om kurvritning. När man har en kurva definierad genom någon geometrisk egenskap, måste denna först kläs i lämpliga formler, d.v.s. samband mellan koordinaterna för punkterna på kurvan. Antingen arbetar man i rätvinkliga koordinater (x, y) eller i polära koordinater (r, v). Man kan också arbeta i s.k. parameterform, där x och y (eller r och v) båda är givna som funktioner av en hjälpvariabel t: x = x(t), y = y(t) respektive r = r(t), v = v(t). I samtliga fall måste man begränsa området i vilket man önskar få kurvan ritad. Vilken begränsning man väljer beror på hur kurvan ser ut. Ritar man t.ex. olika avsnitt av parabeln y = x, ser figurerna mycket olika ut, om man väljer 1 x 1, 0 y 1 eller om man väljer 10 6 x 10 6, 0 y (Observera, att man bör välja intervall av jämförbar storlek för x och y, annars blir skalan konstig. Ganska vanligt hos program för kurvritning är, att programmet undersöker x max x min och y max y min och självt väljer skalan på x- och y-axlarna, så att kurvan fyller ut hela papperet. Denna teknik
2 Gör Din egen kurvkatalog 87 har emellertid den nackdelen, att t.ex. alla ellipser ritas ut som cirklar, oavsett hur runda eller avlånga de är. Det är därför, som man i nyss nämnda parabel låter x ligga mellan 10 6 och 10 6, trots att alla x-värden som används, bara kommer att ligga mellan 10 3 och 10 3.) Ritning av en kurva. För varje kurva skall Du göra följande: Programmera in formlerna som ger kurvan. Hur detta skall göras beror på, hur det allmänna program för kurvritning, som Du har tillgång till är uppbyggt. Antagligen får Du skriva ett par funktioner i Pascal, som beräknar x- och y-koordinaterna för parametervärdet t, och sedan lägga in dessa i kurvritningsprogrammet. Sedan skall Du köra programmet med utmatning på dataskärmen, och kontrollera att allting ser bra ut, d.v.s. att formlerna är rätt inprogrammerade och verkar ge riktiga värden. När detta är klart kör Du ut kurvan på papper med lämplig text, nämligen kurvans namn (om den har något) och dess ekvation (om Du har möjlighet att mata ut formler). Kurvorna. Följande kurvor är lämpliga att låta ingå i kurvkatalogen. Har Du andra kurvor, som Du vill ta med, går det naturligtvis bra. Polynom y = (x 1)(x 4)(x 9), 3. x Ellips x 16 + y 4 = 1, eller x = 4 cos t y = sin t,
3 88 Hans Riesel Hyperbel Superellips x 4 y = 1, eller x = ± cosh t y = sinh t, 1 t 1. ( ).5 x + 3 ( ).5 y = 1, eller Tredjegradskurva x = 3 sign(cos t) cos t 0.8 y = sign(sin t) sin t 0.8, y = x 3 + x, eller Cartesii blad x = t 1 y = t(t 1), x 3 + y 3 = 3xy, eller 1.6 t 1.6. Konkoid x = 3t (1 t) t 3 + (1 t) 3 r = 1 sin v +, 3t(1 t) t 3 + (1 t) 3, t v v 6.18.
4 Gör Din egen kurvkatalog 89 Kissoid x(x + y ) = y, eller Pascals snäcka x = t 1 + t t3 1 + t. 3 t 3. (x + y x) = x + y, eller x = cos t( cos t + 1) y = sin t( cos t + 1), Kedjelinje y = 0.4 cosh x, 3 x 3. Släpkurva x = 3 ln y y 9 y, 0.1 y 3. Astroid x 3 + y 3 = 1, eller x = cos 3 t y = sin 3 t, Booths lemniskata (x + y ) = 4x + y, eller
5 90 Hans Riesel x = Bernoullis lemniskata cos t cos t + 4 sin t 4 sin t cos t + 4 sin t, (x + y ) = x y, eller x = Hypocykloid med 5 spetsar x = 4 cos t + cos 4t sin t 1 + cos t 0.5 sin t 1 + cos t, y = 4 sin t sin 4t, Epicykloid med 5 spetsar x = 6 cos t cos 6t y = 6 sin t sin 6t, Cykloid x = t sin t π t π. y = 1 cos t, Rullkurva x = 6 cos t 1.6 cos 6t y = 6 sin t 1.6 sin 6t, Cirkel i polära koordinater r = cos v, π v π.
6 Gör Din egen kurvkatalog 91 Ellips i polära koordinater r = cos v, 0 v π. Hyperbel i polära koordinater r =, 1.3 v 5. 1 cos v Kardioid r = 1 cos v, 0 v π. Epicykloid med 15 spetsar x = 16 cos t cos 16t Rosenkurva Arkimedes spiral Logaritmisk spiral Cirkelevolvent Cirkelevolvent Periodisk funktion y = 16 sin t sin 16t, r = sin 5v, 0 v π. r = 0.v, 0 v 0. r = e 0.1v, 0 v 0. x = cos t + t sin t y = sin t t cos t, x = cos t + t sin t Nästan periodisk funktion y = sin t t cos t, 0 t t 500. y = 10 sin x + 5 sin x 3, 0 x 300. y = 10 sin x + 5 sin x 8, 0 x 300.
Det är lätt att hitta datorprogram som ritar kurvor av enkla funktionsuttryck,
Güner Ahmet & Thomas Lingefjärd Parametriska kurvor Geogebra är ett så kallad dynamiskt geometriprogram och uppfattas kanske som ett program för främst geometri. Men Geogebra kan användas för alla delområden
SF1626 Flervariabelanalys
1 / 28 SF1626 Flervariabelanalys Föreläsning 2 Hans Thunberg Institutionen för matematik, KTH VT 2018, Period 4 2 / 28 SF1626 Flervariabelanalys Dagens lektion: avsnitt 11.1 11.3 Funktioner från R till
Om ellipsen och hyperbelns optiska egenskaper
Om ellipsen och hyperbelns optiska egenskaper Anders Källén MatematikCentrum LTH anderskallen@gmail.com Sammanfattning Ellipser och hyperbler är, liksom parabeln, s.k. kägelsnitt, dvs kurvor som uppkommer
SF1626 Flervariabelanalys
Föreläsning 3 Institutionen för matematik KTH VT 2018 Previously on Flervariabel 1 Analytisk geometri i R n, kap 10 1. Topologiska begrepp a. Omgivning b. Randpunkter, Inre punkter c. Öppen mängd, Sluten
+ 5a 16b b 5 då a = 1 2 och b = 1 3. n = 0 där n = 1, 2, 3,. 2 + ( 1)n n
Repetition, Matematik I.. Bestäm koefficienten vid 2 i utvecklingen av ( + 2 2 ) 5. 2. Bestäm koefficienten vid 2 i utvecklingen av ( + ) n för n =, 2,,.. Beräkna a 5 5a 2b + 5a 2b 2 5a 2 b + 5a 6b 2b
Andragradskurvor. ax 2 + 2bxy + cy 2 + dx + ey + f = 0. Trots att ekvationen nu är betydligt mer komplicerad
Andragradskurvor Den allmänna förstagradsekvationen i två variabler kan skrivas: ax + by + c = 0. Lösningsmängden till en given förstagradsekvation ges av en rät linje. Vi ska nu fortsätta och undersöka
Uppföljning av diagnostiskt prov Repetition av kursmoment i TNA001-Matematisk grundkurs.
Uppföljning av diagnostiskt prov 06-0- Repetition av kursmoment i TNA00-Matematisk grundkurs. Reella tal, intervall, räta linjer, cirklar Faktorsatsen, faktoriseringar, polynomekvationer Olikheter Ekvationer
BERÄKNING AV KURVINTEGRALER (LINJEINTEGRALER)
BERÄKNING AV KURVINTEGRALER (LINJEINTEGRALER) Låt FF = (PP(xx, yy, z, QQ(xx, yy, z, RR(xx, yy, z) vara ett kontinuerligt vektorfält ( d v s en vektorfunktion) definierat i en öppen mängd Ω. Låt γ vara
Förberedelser inför lektion 1 (första övningen läsvecka 1) Lektion 1 (första övningen läsvecka 1)
Förberedelser inför lektion 1 (första övningen läsvecka 1) Läs kapitel 0.10.3. Mycket av detta är nog känt sedan tidigare. Om du känner dig osäker på något, läs detta nogrannare. Kapitel 0.6 behöver inte
Kapitel Grafer för koniska sektioner
Kapitel 14 Grafer för koniska sektioner Det går att rita en graf över följande koniska sektioner med hjälp av räknarens inbyggda funktioner. Parabelgraf Cirkelgraf Elliptisk graf Hyperbelgraf 14-1 Före
Dagens tema är exponentialfunktioner. Egentligen inga nyheter, snarare repetition. Vi vet att alla exponentialfunktioner.
Dagens tema är exponentialfunktioner. Egentligen inga nyheter, snarare repetition. Vi vet att alla exponentialfunktioner f(x) = C a x kan, om man så vill, skrivas om, med basen e, till Vi vet också att
Ellipsen. 1. Apollonius och ellipsen som kägelsnitt.
Ellipsen 1. Apollonius och ellipsen som kägelsnitt. Vi skall stifta bekantskap med, och ganska noga undersöka, den plana kurva som kallas ellips. Man kan närma sig kurvan på olika sätt men vi väljer som
SF1626 Flervariabelanalys
1 / 21 SF1626 Flervariabelanalys Föreläsning 1 Henrik Shahgholian Vid Institutionen för matematik, KTH VT 2018, Period 3 2 / 21 SF1626 Flervariabelanalys Välkomna till kursen! Föreläsare: Henrik Shahgholian,
Parametriserade kurvor
CTH/GU LABORATION 4 TMV37-4/5 Matematiska vetenskaper Inledning Parametriserade kurvor Vi skall se hur man ritar parametriserade kurvor i planet samt hur man ritar tangenter och normaler i punkter längs
Sidor i boken f(x) = a x 2 +b x+c
Sidor i boken 18-151 Andragradsfunktioner Här ska vi studera andragradsfunktionen som skrivs f(x) = ax +bx+c där a, b, c är konstanter (reella tal) och där a 0. Grafen (kurvan) till f(x), y = ax + bx +
Modul 1: Komplexa tal och Polynomekvationer
Modul : Komplexa tal och Polynomekvationer. Skriv på formen a + bi, där a och b är reella, a. (2 + i)( 2i) 2. b. + 2i + 3i 3 4i + 2i 2. Lös ekvationerna a. (2 i)z = 3 + i. b. (2 + i) z = + 3i c. ( 2 +
i utvecklingen av (( x + x ) n för n =1,2,3º. = 0 där n = 1,2,3,
Repetition Matematik. Bestäm koefficienten vid x i utvecklingen av ((+ x - x ) 5.. Bestäm koefficienten vid x 3 i utvecklingen av (( x + x ) n för n =,,3º. 3. a 5-5a b + 5a3 b - 5a 8b 3 + 5a 6b - 3b 5
Instuderingsfrågor för Endimensionell analys kurs B1
Instuderingsfrågor för Endimensionell analys kurs B1 Anvisningar Avsikten med följande frågor är att hjälpa dig med självkontroll av dina kunskaper. Om du känner dig osäker på svaren bör du slå upp motsvarande
Parabeln och vad man kan ha den till
Parabeln och vad man kan ha den till Anders Källén MatematikCentrum LTH anderskallen@gmail.com Sammanfattning I den här artikeln diskuterar vi vad parabeln är för geometrisk konstruktion och varför den
Lektion 1. Kurvor i planet och i rummet
Lektion 1 Kurvor i planet och i rummet Innehål Plankurvor Rymdkurvor Innehål Plankurvor Rymdkurvor Tangentvektorn och tangentens ekvation Innehål Plankurvor Rymdkurvor Tangentvektorn och tangentens ekvation
Läsanvisningar till kapitel 4 i Naturlig matematik
Läsanvisningar till kapitel 4 i Naturlig matematik Avsnitt 4.1 I kapitel 4 kommer du att möta de elementära funktionerna. Dessa är helt enkelt de vanligaste funktionerna som vi normalt arbetar med. Här
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF1626 Flervariabelanalys Lösningsförslag till tentamen 215-3-16 DEL A 1. Låt f(x, y) = 1 x 2 y 2. (a) Skissa nivåkurvorna f(x, y) = c till f för c =, c = 1 och c = 2. (1 p) (b) Beräkna gradf(x, y) i de
) 2 = 1, där a 1. x + b 2. y + c 2
ap 7 Användningar av multipelintegraler Arean av ett plant område 0 Beräkna arean av det område som begränsas av följande kurvor: A a (x y) 2 + x 2 = a 2 A b xy =, xy = 8, y = x och y = 2x (x > ) A c y
Parabeln och vad man kan ha den till
Parabeln och vad man kan ha den till Anders Källén MatematikCentrum LTH anderskallen@gmail.com Sammanfattning I det här dokumentet diskuterar vi vad parabeln är för geometrisk konstruktion och varför den
Instuderingsfrågor för Endimensionell analys kurs B1 2011
Instuderingsfrågor för Endimensionell analys kurs B1 2011 Anvisningar Avsikten med följande frågor är att hjälpa dig med självkontroll av dina kunskaper. Om du känner dig osäker på svaren bör du slå upp
Matematik D (MA1204)
Matematik D (MA104) 100 p Betygskriterier med eempeluppgifter Värmdö Gymnasium Betygskriterier enligt Skolverket Kriterier för betyget Godkänd Eleven använder lämpliga matematiska begrepp, metoder och
Arkitektur och teknik, Teknisk fysik, Teknisk matematik Antagningsprov MATEMATIK
Chalmers tekniska högskola Matematik- och fysikprovet Arkitektur och teknik, Teknisk fysik, Teknisk matematik Antagningsprov 008 - MATEMATIK 008-05-17, kl. 9.00-1.00 Skrivtid: 180 min Inga hjälpmedel tillåtna.
6 Derivata och grafer
6 Derivata och grafer 6.1 Dagens Teori När vi plottar funktionen f(x) = x + 1x 99x 8 med hjälp av dosan kan man få olika resultat beroende på vilka intervall man valt. 00000 100000-00 -100 100 00-100000
Tentamen i Matematisk analys, HF1905 exempel 1 Datum: xxxxxx Skrivtid: 4 timmar Examinator: Armin Halilovic
Tentamen i Matematisk analys, HF95 exempel atum: xxxxxx Skrivtid: timmar Examinator: Armin Halilovic För godkänt betyg krävs av max poäng Betygsgränser: För betyg A, B, C,, E krävs, 9, 6, respektive poäng
Enklare matematiska uppgifter
Årgång 27, 1944 Första häftet 1316. I vilka serier äro t1 3 +t3 2 +t3 3 + +t3 n = (t 1 +t 2 +t 3 + +t n ) 2 för alla positiva heltalsvärden på n? 1317. Huru stora äro toppvinklarna i en regelbunden n-sidig
TNA001- Matematisk grundkurs Tentamen Lösningsskiss
TNA00- Matematisk grundkurs Tentamen 05-0-0 - Lösningsskiss. a) Vi löser ekvationen x + x = x + 4 genom att studera tre fall. Fall : x 0. Vi får ekvationen: x + x = x + 4 x =, som duger ty x = tillhör
Tentamen del 1 SF1546, , , Numeriska metoder, grundkurs
KTH Matematik Tentamen del 1 SF154, 1-3-3, 8.-11., Numeriska metoder, grundkurs Namn:... Bonuspoäng. Ange dina bonuspoäng från kursomgången läsåret HT15/VT1 här: Max antal poäng är. Gränsen för godkänt/betyg
ANDRAGRADSKURVOR Vi betraktar ekvationen
ANDRAGRADSKURVOR Vi betraktar ekvationen Ax + Bxy + Cy + Dx + Fy + G 0 (ekv) där minst en av A,B, eller C är skild från 0 En andragradskurva är mängden av alla punkter vilkas koordinater satisfierar en
Svar till S-uppgifter Endimensionell Analys för I och L
Svar till S-uppgifter Endimensionell Anals för I och L S a) ja, ja, ja, nej, ja S4 N = A(I σ MZ), Z = I (σ A N), A = I MA S5 Du har väl inte verkligen multiplicerat ut alla termer? a) resp. b) 4 resp.
Övningar till kapitel 1
Övningar till kapitel. Skissera för hand och/eller med Maple de delmängder av R som beskrivs av följande ekvationer och olikheter. a) > 0, >0 b) = +, 0, 0 c) = d) e) = f) >3 g)
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A. 1. En svängningsrörelse beskrivs av
SF166 Flervariabelanalys Lösningsförslag till tentamen 13-3-1 DEL A 1. En svängningsrörelse beskrivs av ( πx ) u(x, t) = A cos λ πft där amplituden A, våglängden λ och frekvensen f är givna konstanter.
Några klassiska plana kurvor
Några klassiska plana kurvor Anders Källén MatematikCentrum LTH anderskallen@gmail.com Sammanfattning I den här artikeln ska vi presentera och kort diskutera några klassiska, plana, kurvor. Dessutom ska
b) Vi använder cylindriska skal och snittar därför upp området i horisontella snitt.
Viktiga tillämpningar av integraler b) Vi använder clindriska skal och snittar därför upp området i horisontella snitt. 7.. Finn volmen av kroppen S som genereras av rotation kring -aeln av området Ω som
LAB 3. INTERPOLATION. 1 Inledning. 2 Interpolation med polynom. 3 Splineinterpolation. 1.1 Innehåll. 3.1 Problembeskrivning
TANA18/20 mars 2015 LAB 3. INTERPOLATION 1 Inledning Vi ska studera problemet att interpolera givna data med ett polynom och att interpolera med kubiska splinefunktioner, s(x), som är styckvisa polynom.
Typexempel med utförliga lösningar TMV130. Matem. Analys i En Var.. V, AT.
Typexempel med utförliga lösningar TMV3. Matem. Analys i En Var.. V, AT. Försök alltid att lösa exemplen själv först. Integration. ([AE, Adams&Essex] Ex. 5.6. ) Beräkna integralen x + 6x + 3 dx LSN (Lösning).
e x x + lnx 5x 3 4e x (0.4) x 0 e 2x 1 a) lim (0.3) b) lim ( 1 ) k. (0.3) c) lim 2. a) Lös ekvationen e x = 0.
LUNDS TEKNISKA HÖGSKOLA MATEMATIK TENTAMENSSKRIVNING ENDIMENSIONELL ANALYS DELKURS B 00 0 kl 8 3 INGA HJÄLPMEDEL. Lösningarna ska vara försedda med ordentliga motiveringar. Lämna tydliga svar om så är
Kap 5.7, Beräkning av plana areor, rotationsvolymer, rotationsareor, båglängder.
Kap 5.7, 7. 7.. Beräkning av plana areor, rotationsvolymer, rotationsareor, båglängder. 8. (A) Beräkna arean av det ändliga område som begränsas av kurvorna x a. y = + x och y = b. y = x e x och y = x
Om ellipsen och hyperbelns optiska egenskaper. Och lite biljard
Om ellipsen och hyperbelns optiska egenskaper. Och lite biljard Sammanfattning Anders Källén MatematikCentrum LTH anderskallen@gmail.com Ellipser och hyperbler är, liksom parabeln, s.k. kägelsnitt, dvs
Uppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna
Uppsala Universitet Matematiska Institutionen Bo Styf Envariabelanalys, 10 hp STS, X 010-10-7 Genomgånget på föreläsningarna 11-15. Föreläsning 11, 4/11 010: Här kommer vi in i kapitel 4, som handlar om
Föreläsning 1. Kursinformation All viktig information om kursen ska kunna läsas på kursens hemsida
Föreläsning 1 Kursinformation All viktig information om kursen ska kunna läsas på kursens hemsida http://www2.math.uu.se/ rikardo/ baskursen/index.html Mängdlära * En "samling" av tal kallas för en mängd.
SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 2015
Institutionen för matematik SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 215 Skrivtid: 8:-13: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger
Institutionen för Matematik, KTH Torbjörn Kolsrud
Institutionen för Matematik, KTH Torbjörn Kolsrud 5B 7, ifferential- och integralkalkyl II, del 2, flervariabel, för F. Tentamen fredag 25 maj 27, 8.-3. Förslag till lösningar (ändrat 28/5-7, 29/5-7).
Institutionen för Matematik. SF1625 Envariabelanalys. Lars Filipsson. Modul 1
Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2017-2018 Lars Filipsson Modul 1 1. MÅL FÖR MODUL 1 1. Reella tal. Känna till talsystememet och kunna använda notation för mängder och intervall
(x + 1) dxdy där D är det ändliga område som begränsas av kurvorna
UPPSALA UNIVERSITET Matematiska institutionen Anders Källström Prov i matematik ES, W Flervariabelanalys 8 1 1 Skrivtid: 9-1. Inga hjälpmedel. Lösningarna skall åtföljas av förklarande text/figurer. Varje
A1:an Repetition. Philip Larsson. 6 april Kapitel 1. Grundläggande begrepp och terminologi
A1:an Repetition Philip Larsson 6 april 013 1 Kapitel 1. Grundläggande begrepp och terminologi 1.1 Delmängd Om ändpunkterna ska räknas med används symbolerna [ ] och raka sträck. Om ändpunkterna inte skall
Enklare matematiska uppgifter
Årgång 43, 1960 Första häftet 2244. Vilka värden kan a) tan A tanb + tan A tanc + tanb tanc, b) cos A cosb cosc anta i en triangel ABC? 2245. På en cirkel med centrum O väljes en båge AB, som är större
Tentamen i Linjär algebra (TATA31/TEN1) ,
Linköpings universitet Matematiska institutionen Ulf Janfalk Kurskod: TATA Provkod: TEN Tentamen i Linjär algebra (TATA/TEN) 7 9, 9. Inga hjälpmedel. Ej räknedosa. För godkänt räcker 9 poäng och minst
Prov 1 c) 1 a) x x x. x cos = + 2π 0 = 2 cos cos = + + = 27 36 + 3 1+ 4 1 = = = 7 7 2,3. Svar a) 4 b) 7 c) 4 d) 9
Ellips Integralkalkyl lösningar till övningsproven uppdaterad 9.5. Prov c a b 8+ d / 8 + / + 7 6 + + + + 5 d / 5 5 ( 5 5 8 8 + 5 5 5 6 6 5 9 8 5 5 5 5 7 7 5 5 d π sin d π sin d u( s s' π / cos U( s π cos
Lennart Carleson. KTH och Uppsala universitet
46 Om +x Lennart Carleson KTH och Uppsala universitet Vi börjar med att försöka uppskatta ovanstående integral, som vi kallar I, numeriskt. Vi delar in intervallet (, ) i n lika delar med delningspunkterna
2 + i 2 z = 1 + i, 2. I xy-planet är Ω det begränsade område som precis innesluts av kurvorna. och sin(x) = 6 3
MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MMA Matematisk grundkurs TEN Datum: 05-0-5
1. Beräkna hastigheten, farten och accelerationen vid tiden t för en partikel vars rörelse beskrivs av r(t) = (2 sin t + cos t, 2 cos t sin t, 2t).
Repetition, analys.. Beräkna hastigheten, farten och accelerationen vid tiden t för en partikel vars rörelse beskrivs av r(t) = (2 sin t + cos t, 2 cos t sin t, 2t). 2. Beräkna längden av kurvan r(t) =
Tentamen Matematisk grundkurs, MAGA60
MATEMATIK Karlstads universitet 2010-11-02, kl 8.15-13.15 Hjälpmedel: Inga Ansvarig lärare: Håkan Granath Tel: 2181, alt. 0735-37 37 34 Tentamen Matematisk grundkurs, MAGA60 För uppgift 1 skall endast
9-1 Koordinatsystem och funktioner. Namn:
9- Koordinatsystem och funktioner. Namn: Inledning I det här kapitlet skall du lära dig vad ett koordinatsystem är och vilka egenskaper det har. I ett koordinatsystem kan man representera matematiska funktioner
Fall 1. En kurva definierad för positiva x roterar kring z-axeln.
Rotationstor ROTATIONSYTOR Rotationsta är en ta som uppstår genom att en plan kurva roterar ett varv runt en given ael i det tredimensionella rummet. Här betraktar vi rotationer runt aeln. Fall 1. En kurva
5 Om f (r) = 0 kan andraderivatan inte avgöra vilken typ av extrempunkt det handlar om. Återstår att avgöra punktens typ med teckenstudium.
Så här hittar man extrempunkter, max-, min eller terrasspunkter, till en kurva y = f(x) med hjälp av i första hand f (x) 1 Bestäm f (x) och f (x) 2 Lös ekvationen f (x) = 0. Om ekvationen saknar rötter
TENTAMEN. Ten2, Matematik 1 Kurskod HF1903 Skrivtid 13:15-17:15 Fredagen 25 oktober 2013 Tentamen består av 4 sidor
TENTAMEN Ten, Matematik Kurskod HF93 Skrivtid 3:5-7:5 Fredagen 5 oktober 3 Tentamen består av sidor Hjälpmedel: Utdelat formelblad. Räknedosa ej tillåten. Tentamen består av uppgifter som totalt kan ge
Institutionen för matematik KTH. Tentamensskrivning, , kl B1210 och 5B1230 Matematik IV, för B, M, och I.
Institutionen för matematik KTH Tentamensskrivning, 23--9, kl 4 9 5B2 och 5B23 Matematik IV, för B, M, och I Hjälpmedel: BETA, Mathematics Handbook För godkänt betyg 3 krävs 7 poäng, medan för betyg 4
Enklare matematiska uppgifter
Elementa Årgång 46, 1963 Årgång 46, 1963 Första häftet 2405. På fokalaxeln till en hyperbel, vars ena brännpunkt är F, finns en punkt K så belägen, att PK 2 : PF PF har ett konstant värde, när P genomlöper
Enklare uppgifter, avsedda för skolstadiet.
Årgång 11, 1927 Första häftet 265. Lös ekvationssystemet { x 3 5x + 2y = 0 y 3 + 2x 5y = 0 266. Visa att uttrycket na n+1 (n + 1)a n + 1 där a och n äro positiva hela tal och a > 2, alltid innehåller en
5. Förklara varför sannolikheten att en slumpvis vald lottorad har 7 rätt är x + x 2 innehåller termen 14x. Bestäm
VECKANS UPPGIFTER MENY FÖR HELA MOMENT 3 5B3 Amelia fr P och T ht 004 Uppgifter till Vecka 4. Förklara hur ett induktionsbevis fungerar.. Bevisa att 4 n är jämnt delbart med 3 för n =,, 3,... 3. Bevisa
1.1 Skriv följande vektorsummor som en vektor (a) AB + BC (b) BC + CD + DA.
Övningsuppgifter i anslutning till Kapitel. Skriv följande vektorsummor som en vektor a AB + BC b BC + CD + DA..2 Sök i nedanstående figur de vektorer som har samma längd och samma riktning som vektorn
f(x, y) = ln(x 2 + y 2 ) f(x, y, z) = (x 2 + yz, y 2 x ln x) 3. Beräkna en vektor som är tangent med skärningskurvan till de två cylindrarna
ATM-Matematik Mikael Forsberg 734-41 3 31 För studenter i Flervariabelanalys Flervariabelanalys mk1b 13 8 Skrivtid: 9:-14:. Hjälpmedel är formelbladen från insidan av Pärmen i Adams Calculus, dessa formler
Uppsala Universitet Matematiska Institutionen Bo Styf
Uppsala Universitet Matematiska Institutionen Bo Styf Flervariabelanalys 5 hp, för STS 2010-03-19 Genomgånget på föreläsningarna 1-5. Här sammanfattar vi det som genomgåtts på de olika föreläsningarna.
Enklare matematiska uppgifter
Elementa Årgång 39, 1956 Årgång 39, 1956 Första häftet 2028. En regelbunden dodekaeder och en regelbunden ikosaeder äro omskrivna kring samma klot (eller inskrivna i samma klot). Bestäm förhållandet mellan
Institutionen för Matematik, KTH Torbjörn Kolsrud
Institutionen för Matematik, KTH Torbjörn Kolsrud 5B 6, Differential- och integralkalkyl II, del, envariabel, för F. Tentamen torsdag 3 maj 7, 8.-3. Förslag till lösningar.. Ange definitions- och värdemängderna
SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A
SF165 Envariabelanalys Lösningsförslag till tentamen 15-4-7 DEL A 1. Låt f(x) = arcsin x + 1 x. A. Bestäm definitionsmängden till funktionen f. B. Bestäm funktionens största och minsta värde. (Om du har
! &'! # %&'$# ! # '! &!! #
56 6 MATRISER 6.6. Tillämpningar I exemplen nedan antar vi att {e, e 2 } är en ON-bas i planet och Oe e 2 ett högerorienterat system i detta plan. Exempel 6.39. Antag att u e + e 2 e är en vektor i planet
UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard. Prov i matematik Prog: Datakand., Frist. kurser Derivator o integraler 1MA014
UPPSALA UNIVERSITET Matematiska institutionen Michael Melgaard Jörgen Östensson Prov i matematik Prog: Datakand., Frist. kurser Derivator o integraler 1MA1 8 3 31 Skrivtid: 8: 13:. Tillåtna hjälpmedel:
Lösningsförslag till problem 1
Lösningsförslag till problem Lisa Nicklasson november 0 Att beskriva trianglar Vi ska börja med att beskriva hur trianglar kan representeras i x, y)-planet Notera att varje triangel har minst två spetsiga
Frågorna 1 till 6 ska svaras med sant eller falskt och ger vardera 1
ATM-Matematik Mikael Forsberg OvnTenta Matematik Skrivtid. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift på ny sida. Använd ej baksidor. Skriv namn på
Tentamensuppgifter, Matematik 1 α
Matematikcentrum Matematik NF Tentamensuppgifter, Matematik 1 α Utvalda och utskrivna av Tomas Claesson och Per-Anders Ivert Aritmetik 1. Bestäm en största gemensam delare till heltalen a) 5431 och 1345,
( ) = 2x + y + 2 cos( x + 2y) omkring punkten ( 0, 0), och använd sedan detta ( ).
KTH matematik Tentamen i SF66 Flervariabelanalys den 7 juni kl 8.3. Tillåtet hjälpmedel: Endast Beta Mathematics Handbook. Tydliga lösningar med fullständiga meningar och utförliga motiveringar krävs för
= 1 h) y 3 = 4(x 1) i) y = 17 j) x = 5. = 1 en ekvation för linjen genom a) (6, 0) och (0, 5) b) (9, 0) och (0, 5)
Matematikcentrum Matematik NF Räta linjen. Ange riktningskoefficient och skärningspunkter me alarna för följane linjer. a) y = 5 b) = y + 5 c) y = 5 + ) + y + = 0 e) y 4 = 0 f) + y = g) y 5 = h) y = 4
Enklare matematiska uppgifter
Elementa Årgång 45, 1962 Årgång 45, 1962 Första häftet 2353. Triangeln ABC och punkterna P 1 och P 2 ligger i samma plan. Om triangeln ABC symmetriseras med avseende på P 1 och P 2, uppstår trianglarna
Enklare matematiska uppgifter
Elementa Årgång 44, 1961 Årgång 44, 1961 Första häftet 2298. Beräkna för en triangel (med vanliga beteckningar) ( (b 2 + c 2 )sin2a) : T (V. Thébault.) 2299. I den vid A rätvinkliga triangeln OAB är OA
i=1 β i a i. (Rudolf Tabbe.) i=1 b i a i n
Årgång 48, 1965 Första häftet 2505. Låt M = {p 1, p 2,..., p k } vara en mängd med k element. Vidare betecknar M 1, M 2,..., M n olika delmängder till M, alla bestående av tre element. Det gäller alltså
Enklare matematiska uppgifter
Årgång 6, 9 Första häftet 575. En normalkorda i en parabel är given till längd och läge. Bestäm enveloppen för parabelns styrlinje. 576. Att genom en given punkt draga en sekant till två givna cirklar
Partiella differentialekvationer av första ordningen
Partiella differentialekvationer av första ordningen Kjell Holmåker 23 februari 2005 En kvasilinjär partiell differentialekvation av första ordningen är av formen P (x, y, u)u x + Q(x, y, u)u y = R(x,
Chalmers tekniska högskola Datum: kl Telefonvakt: Milo Viviani MVE500, TKSAM-2
Chalmers tekniska högskola Datum: 7--8 kl. 8.. Tentamen Telefonvakt: Milo Viviani MVE5, TKSAM- Tentan rättas och bedöms anonymt. Skriv tentamenskoden tydligt på placeringlista och samtliga inlämnade papper.
Lösningar och kommentarer till uppgifter i 3.1
Lösningar och kommentarer till uppgifter i.1 102 b) TB: Kör de med dessa uppgifter i det här kapitlet också? Det gör inget, jag börjar bli ganska bra på det. Vi har funktionen fx) = x x 2 24x + 1 och man
Chalmers tekniska högskola Datum: kl Telefonvakt: Christoffer Standar LMA033a Matematik BI
MATEMATIK Hjälpmedel: inga Chalmers tekniska högskola Datum: 443 kl. 8.3.3 Tentamen Telefonvakt: Christoffer Standar 73 88 34 LMA33a Matematik BI Tentan rättas och bedöms anonymt. Skriv tentamenskoden
Lösningsförslag TATM
Lösningsförslag TATM9 0-0-0. a) Summan är geometrisk med kvoten q = / och termer. Alltså, 50 k = 50 k+ = k ) ) ) ) =. k= k= b) Från definitionen av binomialkoefficienter ser vi att ) ) n n nn ) 6 = = =
Enklare matematiska uppgifter
Årgång 31, 1948 Första häftet 1559. Varje lösning till systemet (x a) 2 + (y b) 2 x 2 + y 2 = (x c)2 + (y d) 2 (x 1) 2 + y 2 = (a c) 2 + (b d) 2 är rationell i a, b, c, d. 1560. Om kurvan y = a 0 x 5 +
Institutionen för Matematik, KTH Torbjörn Kolsrud
Institutionen för Matematik, KTH Torbjörn Kolsrud B 7, ifferential- och integralkalkyl II, del, flervariabel, för F. Tentamen tisdag 8 augusti 7, 4.-9. Förslag till lösningar.. Om F (x, y, z) x y + y z
Institutionen för matematik SF1626 Flervariabelanalys. Lösningsförslag till tentamen Måndagen den 5 juni 2017 DEL A
Institutionen för matematik SF66 Flervariabelanalys Lösningsförslag till tentamen Måndagen den 5 juni 7 DEL A. En kulles höjd ges av z 6,x,y där enheten är meter på alla tre koordinataxlar. (a) I vilken
Komplexa tal. Sid 1: Visa att ekvationerna på sid 1 saknar reella lösningar genom att plotta funktionerna.
Komplexa tal Komplexa tal stötte vi på redan i kurs 2 i samband med lösningar till andragradsekvationer. Detta är startpunkten för denna ganska omfattande aktivitet om komplexa tal, som behandlas i kurs
Några saker att tänka på inför dugga 2
LINKÖPINGS UNIVERSITET 17 oktober 017 Matematiska institutionen TATA68 Matematik och tillämpad matematik Några saker att tänka på inför dugga Dugga omfattar HELA kursen, så titta även på de tips som lämnades
Datorövning 1 med Maple, vt
Flerdimensionell analys, vt 1 2010 Datorövning 1 med Maple, vt 1 2010 Under denna datorövning skall vi lösa uppgifter från övningshäftet med hjälp av Maple. Vi skall rita kurvor och ytor. Syftet är att
Lösning till kontrollskrivning 1A
KTH Matematik Olle Stormark Lösning till kontrollskrivning 1A i SF1626 Flervariabelanalys för E, vt 28. Varje uppgift ger maximalt 3 poäng. För godkänt krävs minst 5 poäng sammanlagt. 1. Funktionen f(x,
Kurvlängd och geometri på en sfärisk yta
325 Kurvlängd och geometri på en sfärisk yta Peter Sjögren Göteborgs Universitet 1. Inledning. Geometrin på en sfärisk yta liknar planets geometri, med flera intressanta skillnader. Som vi skall se nedan,
Tentamen: Lösningsförslag
Tentamen: Lösningsförslag Fredag 9 juni 7 8:-: SF67 Flervariabelanalys Inga hjälpmedel är tillåtna. Ma: poäng. poäng Bestäm samtliga horisontella tangentplan till ytan z y y + y +. Lösning: Tangentplanet
Undervisning och studier i matematik med hjälp av datorprogrammet Graphmatica
Undervisning och studier i matematik med hjälp av datorprogrammet Graphmatica Thomas Lingefjärd Göteborg 9 Thomas Lingefjärd Introduktion till Graphmatica 1 Kort om Graphmatica Graphmatica har funnits
Teresia Månsson, VFU, Matematik 5, 2014-12-10
Temauppgifter Syfte Det är tänkt att det ska finnas möjlighet med uppgiften att öva på följande förmågor: begrepps-, procedur-, problemlösning, kommunikations-, resonemang, modelleringsförmåga och relevansförmåga
AB2.4: Kurvintegraler. Greens formel i planet
AB2.4: Kurvintegraler. Greens formel i planet Kurvintegralener Kurvor på parameterform Låt xyz vara ett cartesiskt koordinatsystem i rummet. En rymdkurva på parameterform ges av tre ekvationer x = x(t),
SF1625 Envariabelanalys Lösningsförslag till tentamen
SF1625 Envariabelanalys Lösningsförslag till tentamen 216-6-1 1. Derivera nedanstående funktioner med avseende på x och ange för vilka x derivatan existerar. Endast svar krävs. A. f(x) = arctan 1 x B.