LINJÄR ALGEBRA TOMAS SJÖDIN
|
|
- Ellen Pålsson
- för 7 år sedan
- Visningar:
Transkript
1 LINJÄR ALGEBRA TOMAS SJÖDIN Innehåll 0 Notation 2 1 Linjära Ekvationssystem 2 2 Geometriska vektorer, rummen R n och M n Rummen R n och M n Skalärprodukt 8 3 Linjer Linjer på parameterform i R n Linjer i planet 11 4 Kryssprodukt, trippelprodukt och plan Kryssprodukt (vektorprodukt Trippelprodukt (volymprodukt Plan på parameterform i R n Plan på normalform i R Matriser Matriser och ekvationssystem 17 6 Vektorrum, linjärt oberoende Linjärkombinationer 18 7 Bas och Dimension 18 8 Euklidiska rum ON-mängder/baser Ortogonal projektion på delrum Gram-Schmidts metod 21 9 Mer om ortogonal projektion Minstakvadratmetoden Minstakvadratmetoden Determinanter Linjära avbildningar Matriser för linjära avbildningar: Nollrum, Värderum och Dimensionssatsen Sammansatta avbildningar Inversa Avbildningar Isometriska avbildningar Symmetriska avbildningar Basbyte Egenvärden, Egenvektorer, Spektralsatsen Egenvärden, egenvektorer och diagonalisering ON-diagonalisering Något om lösningsmetoder för ovanstående problem Kvadratiska former Teckenkaraktär Andragradskurvor, Andragradsytor och System av Dierentialekvationer Andragradskurvor och Andragradsytor Dierentialekvationer 31 1
2 2 TOMAS SJÖDIN Detta är teoridelen av föreläsningarna i Linjär Algebra för C,D,IT Varje kapitel svarar mot en föreläsning (de föreläsningsnummer som inte nns med, dvs 9, 15 och 20 är repetitionsföreläsningar Detta material kommer behandlas ganska fort på föreläsningarna för att ge tid åt exempel Det förväntas att ni läser på materialet inför varje föreläsning i detta häfte i förväg 0 Notation En mängd M är en väldenierad samling element Om M 1, M 2 är mängder så denierar vi: M 1 M 2 : M 1 är en delmängd till M 2, om varje punkt i M 1 också ligger i M 2, M 1 M 2 : M 1 snitt M 2, mängden av punkter som ligger i både M 1 och M 2, M 1 M 2 : M 1 union M 2, mängden av punkter som ligger i minst ett av M 1 eller M 2, M 1 \ M 2 : M 1 minus M 2, mängden av punkter som ligger i M 1 men inte i M 2 Vi skriver också y M : y tillhör M, eller y är en punkt i M Kanske rätt självklart, men två mängder sägs vara lika om de innehåller samma element Den tomma mängden är mängden som inte har några element alls, och betecknas Ibland har man era mängder M 1, M 2,, M k, och då skriver vi också: k M j = M 1 M 2 M k, j=1 Ofta betecknas mängder på följande sätt: k M j = M 1 M 2 M k j=1 {x M : P (x} = {x : P (x}, som står för den delmängd till M som består av de x i M som uppfyller villkoret P (x (det senare skrivsättet används då M är underförstådd Tex [a, b] = {x R : a x b} Om en mängd är ändlig skriver man ofta också {x 1, x 2,, x k }, där x i :a är elementen i mängden Funktioner/Avbildningar: En funktion/avbildning f från en mängd M till en mängd N är en regel som för varje x M ger exakt ett värde f(x N, vi skriver f : M N M kallas för denitionsmängden till f Följande begrepp är också användbara ibland En funktion f : M N som ovan sägs vara: injektiv om det för varje par a, b M, a b gäller att f(a f(b surjektiv om det för varje y N nns (minst ett x M med y = f(x bijektiv om den är både injektiv och surjektiv Värdemängden V (f till f är mängden av alla punkter y N sådana att det nns x M med y = f(x Ett system av ekvationer på formen 1 Linjära Ekvationssystem a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2 a m1 x 1 + a m2 x a mn x n = b m, där a ij :a och b i :a är xa reella tal, och x i :a de obekanta kallas för ett linjärt ekvationssystem med m ekvationer och n obekanta För ett sådant system inför man av platsbesparande skäl systemets
3 totalmatris LINJÄR ALGEBRA 3 a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 A = a m1 a m2 a mn b m Vi kommer kalla det som står till höger om för högersidan i matrisen, och det som står till vänster om för vänstersidan Alla sådana ekvationssystem kan lösas med hjälp av tre elementära radoperationer: Radoperation 1: Byta plats på två rader, Radoperation 2: Multiplicera en rad med en konstant c 0, Radoperation 3: Addera en konstant multipel av en rad till en annan rad Normalt kommer vi överföra ekvationssystemet till dess totalmatris och utföra dessa operationer där, men det är viktigt att komma ihåg att detta representerar motsvarande operationer på ekvationssystemet Jag rekommenderar att man i alla fall i början prövar ett par exempel där man löser systemet både med ekvationerna direkt och med matrisen, eller åtminstone att när man fått fram sin slutliga matris går tillbaka till ekvationsformen Två matriser A, B som ovan kallas radekvivalenta, skrivet A B, om den ena kan fås från den andra via ett ändligt antal elementära radoperationer (Notera att alla radoperationer är reversibla, så kan vi ta oss från den ena till den andra på detta sätt kan vi göra det åt andra hållet också För de som vet vad en ekvivalensrelation är kan vi också säga att det är lätt att visa att utgör en sådan Strategin för att lösa ett sådant system är att skapa en så kallad trappstegsmatris av vänstersidan via elementära radoperationer: Denition 1 Ett element a ij i vänstersidan av ovanstående matris A kallas ett pivotelement om a ij 0 och a µν = 0 för alla µ i, ν j med (µ, ν (i, j Om alla rader vars vänstersida ej är identiskt noll står över alla de rader där dessa är identiskt noll, samt att alla rader vars vänstersidor är nollskilda har ett pivotelement, då säger vi att systemmatrisen är på trappstegsform Så tex är följande system på trappstegsform: medan följande inte är det: Poängen är att det första systemet är enkelt att skriva ner lösningarna till Detta motsvarar ju systemet x 1 + 2x 2 + 3x 3 = 2 0x 1 + 1x 2 + 2x 3 = 3 0x 1 + 0x 2 + 0x 3 = 0 I detta fall nns det oändligt många lösningar, och vi kan skriva dessa på formen x 1 = 4 + t x 2 = 3 2t, t R x 3 = t Jag anser att det bästa sättet att lära sig ovanstående om linjära ekvationssystem helt enkelt är genom att titta på en del exempel, och efter det kommer nog följande sats framstå som ganska självklar Sats 2 Alla ekvationssystem är radekvivalenta med ett ekvationssystem på trappstegsform,
4 4 TOMAS SJÖDIN Följande är också sådant man bör övertyga sig om: Det nns till varje ekvationssystem som ovan endast tre möjligheter Antingen nns det en unik lösning, ingen lösning alls eller så nns det oändligt många lösningar Om alla b i :a är 0 kallas ekvationssystemet för homogent Ett ekvationssystem som är homogent har alltid minst en lösning, kallad den triviala lösningen: x 1 = x 2 = = x n = 0 Om ett ekvationssystem saknar lösning är det alltid möjligt att skapa en radekvivalent matris som har en nollrad på vänster sida, men på motsvarande högersida har man något som är skilt från 0, tex Här säger ju den sista ekvationen att 0 = 1, och detta går givetvis inte att uppfylla När det gäller de med oändligt antal lösningar, när vi skapat vår trappstegsform kommer det vara så att de nollskilda raderna på vänstersidan är färre än antalet obekanta, som tex var fallet ovan, och såvida vi inte är i situationen att det inte nns några lösningar alls, så måste vi införa parametrar på lämpligt sätt Antalet parametrar som behövs är helt enkelt antalet obekanta - antalet nollskilda rader i vänstersidan (när vi har trappstegsform Det är också värt att notera att om vi har era ekvationssystem med samma vänstersida, då kan dessa lösas simultant genom att man sätter in alla högerleden i matrisen efter varandra 2 Geometriska vektorer, rummen R n och M n 1 En (geometrisk vektor är ett objekt som har storlek och riktning, men inte någon naturlig startpunkt Om vi i ett plan har två punkter P och Q, då låter vi den riktade sträckan från P till Q, ritad som en pil som startar i P och slutar i Q, betecknas P Q Vi låter nu mängden av alla sådana riktade sträckor med samma storlek och riktning (det är alltså underförstått att vi kan mäta detta betecknas [ P Q] Detta tar vi som denition av vektorer i planet Givetvis kan motsvarande också göras i ett tredimensionellt rum (För de som vet vad en ekvivalensrelation är kan vi säga att ha samma storlek och riktning är en ekvivalensrelation, och en vektor är helt enkelt en ekvivalensklass av riktade sträckor Notera att det för varje vektor u och punkt P nns en unik punkt Q sådan att u = [ P Q] En speciell vektor är nollvektorn, som har längd noll (och alltså inte kan sägas ha någon riktning Denna betecknas 0, och vi har 0 = [ P P ]
5 LINJÄR ALGEBRA 5 Vi inför även för en vektor u = [ P Q] längden/normen u att vara avståndet mellan punkterna P och Q För dessa vektorer inför man nu två operationer Addition av två vektorer, samt multiplikation med skalär (=reellt tal Addition av två vektorer u = [ P R] och v = [ RQ] denieras som u + v = [ P R] + [ RQ] = [ P Q] Multiplikation med skalär denieras så att ku är den unika vektor som uppfyller ku = k u och ku har samma riktning som u om k > 0, ku har motsatt riktning om k < 0 Om k = 0 är ku = 0 Vi inför även beteckningen u := 1u, dvs den vektor som har samma storlek men motsatt riktning Det är lätt att inse att följande räknelagar gäller: Sats 3 För alla vektorer u, v, w (i ett plan eller rum och skalärer λ, µ gäller följande: (a u + v = v + u, (b u + (v + w = (u + v + w, (c u + 0 = u, (d u + v = 0 u = v, (e 1u = u, (f λ(µu = (λµu, (g (λ + µu = λu + µu, (h λ(u + v = λu + λv Tack vare lag (b, (f ovan kommer vi skriva u + v + w, λµu eftersom det inte spelar någon roll i vilken ordning vi tar dessa operationer
6 6 TOMAS SJÖDIN Nu har vi den geometriska denitionen av vektorer klar, och den viktigaste algebraiska strukturen för dessa klara Vektorerna i planet/rummet med denna struktur utgör exempel på vad som kallas vektorrum som är den typ av rum som linjär algebra handlar om Det vi nu vill göra är att på något systematiskt sätt införa siror för vektorer för att överföra dessa geometriska konstruktioner till algebra Den idé som Descartes (även kallad Kartesius ck var att införa koordinataxlar för att kunna ge punkter koordinater (därför kallas dessa koordinatsystem för kartesiska koordinater Vad vi behöver göra är först och främst att xera någon punkt i vårt plan/rum där axlarna kan utgå ifrån Vi kallar denna punkt origo och betecknar den O Sedan inför vi koordinataxlar som i guren nedan i planet respektive rummet Till varje axel x i placerar vi också ut en vektor e i i dess riktning I detta och nästa kapitel kommer vi alltid anta att detta gjorts på ett sådant sätt att alla e i har längd 1 samt att dessa vektorer alla är parvis ortogonala mot varandra (dvs vinkel π/2 mellan dem En sådan bas kallar man för ortonormal, eller ON-bas Vidare är det viktigt att axlarna är orienterade som i denna gur De utgör vad som kallas ett högersystem, men mer om detta senare när vi talar om kryssprodukten i rummet Notera att vi alltså här är lite mindre allmänna än kursboken där generella baser behandlas Vi väntar dock med diskussion kring allmänna baser till senare när vi talar om allmänna vektorrum Vi kommer dock nämna lite om dem i samband med exempel på föreläsningarna Det är nu så att vi till varje punkt P i planet (rummet kan införa koordinaterna (a 1, a 2 ((a 1, a 2, a 3 där dessa fås genom att projicera ortogonalt på axlarna Om vi nu har en vektor u så vet vi att det nns en unik punkt P sådan att u = [ OP ] Notera att detta innebär att ( u = a 1 e 1 + a 2 e 2 respektive u = a 1 e 1 + a 2 e 2 + a 3 e 3 Denna uppdelning av u som en summa av vektorer parallella med e i :a är unik Dvs varje vektor u kan på entydigt sätt skrivas på formen ( som ovan Därför säger vi att e = (e 1 e 2 (e = (e 1 e 2 e 3 utgör en bas till planet (rummet Det är tack vare att en bas till planet (rummet består av två (tre vektorer som vi säger att ett plan är två-dimensionellt och ett rum tre-dimensionellt Vi kommer införa följande beteckning: ( a1 u = e a 2 respektive u = e a 1 a 2, a 3
7 och kolumnmatrisen ( a1 a 2 LINJÄR ALGEBRA 7 ( a 1 kallas för u:s koordinater i basen e Motiveringen till denna a 2 a 3 notation kommer senare i kursen när vi börjar med matrisräkning, men för tillfället är det bara en notation för att beteckna vektorer Nu kan vi komma till hela poängen Varje vektor u i planet kan på entydigt sätt skrivas på formen ( a1 u = a 1 e 1 + a 2 e 2 = e, a 2 och dessutom är för varje par a 1, a 2 R detta uttryck en vektor i planet På samma sätt kan varje vektor u i rummet skrivas som a 1 u = a 1 e 1 + a 2 e 2 + a 3 e 3 = e a 2, a 3 och återigen för varje taltrippel a 1, a 2, a 3 R utgör detta uttryck en vektor i rummet Alltså kan varje vektor i planet/rummet identieras med talpar/taltrippler på detta sätt Givetvis beror dessa på valet av basvektorer, men vi antar alltså nu att vi redan xerat dessa, samt xerat origo När det gäller de algebraiska operationerna vi har infört blir dessa mycket enkla om vi uttrycker alla vektorer i samma bas: ( ( ( ( ( a1 b1 a1 + b u + v = e + e = e 1 a1 ka1, ku = ke = e, a 2 b 2 a 2 + b 2 a 2 ka 2 respektive u + v = e a 1 a 2 + e b 1 b 2 = e a 1 + b 1 a 2 + b 2, a 3 b 3 a 3 + b 3 ku = ke a 1 a 2 = e ka 1 ka 2 a 3 ka 3 Det vill säga för att addera två vektorer adderar vi bara deras koordinater, och för att multiplicera en vektor med en skalär multiplicerar vi bara varje koordinat med denna skalär Det är ganska lätt att övertyga sig om att detta stämmer överens med den geometriska denitionen av addition och multiplikation med skalär som vi införde ovan 21 Rummen R n och M n 1 Vi har ovan sett att om vi väljer origo och en bas så har vi att varje punkt P i ett ( plan kan identieras med sina koordinater (a 1, a 2, och varje vektor u med a1 sina koordinater, samt att vi hade enkla uttryck för våra algebraiska operationer så fort vi a 2 uttryckt allt i denna xa bas Samma sak kan sägas även i tre dimensioner, och man kan givetvis tänka sig att man gjorde motsvarande även i högre dimensioner, även om det givetvis inte går att visualisera på samma sätt Detta leder till följande denition: Denition 4 Mängden av alla tal n-tupler (a 1, a 2,, a n, där a 1, a 2,, a n R, betecknas R n På samma sätt betecknar vi mängden av alla kolumnmatriser med M n 1 a 1 a 2 a n Vårt främsta motiv för att införa dessa rum redan här är att det gör att vi enklare kan formulera satser gemensamt för två och tre dimensioner, och behöver inte behandla dessa separat Det är än så länge främst n = 2, 3 vi är intresserade av Vi inför också följande operationer på R n respektive M n 1 (a 1, a 2,, a n +(b 1, b 2,, b n = (a 1 +b 1, a 2 +b 2,, a n +b n, k(a 1, a 2,, a n = (ka 1, ka 2,, ka n,
8 8 TOMAS SJÖDIN a 1 b 1 a 1 + b 1 a 2 + b 2 = a 2 + b 2, a n b n a n + b n a 1 ka 1 k a 2 = ka 2 a n ka n Rummen R n och M n 1 tillsammans med ovanstående operationer är exempel på det man kallar vektorrum som vi ska deniera allmänt senare i kursen Här kanske det är värt att notera att då vi jobbar med geometriska problem är det givetvis viktigt att skilja på punkter och vektorer, och vi använder främst element i R n för att beteckna punkter och element i M n 1 (egentligen med e framför för att beteckna basen om man ska vara noga som vektorer Då kan det ju tyckas konstigt att vi inför addition och multiplikation med skalär för punkter Nu är det så att det bara är i dessa geometriska problem (som handlar om linjer och plan i två och tre dimensioner främst som vi kommer tala om punkter, annars kommer vi enbart i kursen tala om vektorer Det nns en uppenbar 1 1 korrespondens mellan punkter och motsvarande vektor som startar i origo Dessutom om vi identierar (a 1, a 2,, a n med a 1 a 2 a n, så är ju rummen ovan helt ekvivalenta på alla sätt Anledningen till att vi vill ha båda är att R n är det i särklass vanligaste rummet i matematiklitteraturen, men när vi sedan räknar med matriser är det rätta sättet att skriva vektorer som kolumnmatriser I princip skulle det kanske vara bättre att göra detta rakt igenom i kursen och skippa R n, men det som talar starkt för R n är att det är betydligt smidigare att skriva dessa vektorer, samt att det är mer standardiserat Nedan kommer vi formulera alla begrepp/satser enbart för R n, och givetvis nns det en direkt motsvarighet för M n 1 Dessa fall lämnas åt läsaren att formulera, och vi kommer hämningslöst använda dessa motsvarande satser senare i kursen Notera också att jämfört med kursboken vänder vi till stor del upp och ner på materialet, för vi inför våra operationer nedan på R n, och ger sedan geometriska tolkningar av dem, medan boken ger geometriska denitioner och visar räknelagarna utifrån dessa Det är också värt att notera att rent geometriskt betyder det att vi lägger ut våra basvektorer e i så att e 1 = (1, 0,, 0, e 2 = (0, 1, 0,, 0,, e n = (0, 0,, 0, 1, och dessa kallas standardbasen till R n Vidare lägger vi origo O i punkten (0, 0,, 0 22 Skalärprodukt Vi kommer nu i R n införa den så kallade skalärprodukten mellan två vektorer R n tillsammans med denna utgör då ett exempel på ett så kallat Euklidiskt rum som vi ska deniera mer allmänt senare i kursen Namnet skalärprodukt kommer av att den tar två vektorer och ger en skalär (alltså inte en vektor! (a 1, a 2,, a n (b 1, b 2,, b n := a 1 b 1 + a 2 b a n b n Vi denierar även längden av en vektor (a 1, a 2,, a n via (a 1, a 2,, a n := a a a2 n Igen är det enkelt att se via Pythagoras sats att detta verkligen överensstämmer med längden av motsvarande geometriska vektor om vi infört säg ett koordinatsystem i planet som ovan Men detta beror på både att våra basvektorer har längd 1 och att de är ortogonala mot varandra! Följande sats gäller för skalärprodukten: Sats 5 Om u, v, w R n och λ R så gäller: (a u v = v u, (b u (v + w = u v + u w, (c u (λv = (λu v = λ(u v, (d u u = u 2, (e u u = 0 u = 0
9 LINJÄR ALGEBRA 9 Följande viktiga olikheter gäller för skalärprodukten: Schwarz olikhet: x ȳ x ȳ Triangelolikheten: x + ȳ x + ȳ 221 Geometrisk tolkning av skalärprodukten Antag att vi har två nollskilda vektorer u, v i R n, då denierar vi vinkeln θ mellan dessa att vara den unika vinkel i intervallet [0, π] sådan att u v = u v cos(θ Först och främst är det enkelt att visa att u v u v u v, så det nns verkligen ett unikt sådant θ För att se att detta stämmer överens geometriskt antag att de två vektorerna ligger i ett plan där ( vi infört koordinataxlar som ovan, och ( antag för enkelhets skull att den ena har a1 1 koordinaterna där a a 1, a 2 > 0 och den andra (dvs vektorn e Vad ovanstående då säger är att vinkeln θ mellan dessa ges av cos(θ = a 1 / a a2 2, dvs närliggande sida genom hypotenusan, vilket vi ju känner igen att det stämmer Vi säger också att två vektorer u, v är ortogonala, skrivet u v, om vinkeln mellan dem är π/2, dvs om u v = Ortogonal projektion av en vektor på en annan vektor (linje
10 10 TOMAS SJÖDIN Om vi som i bilden ovan har två vektorer u, v där v 0 då kan vi på entydigt sätt skriva u på formen u = u v + u v, där u v är ortogonal mot v, och u v är parallell med v Detta betyder att u v = kv och u v = u kv Så (u kv v = 0, vilket ger k = u v v 2 Eller u v = u v v 2 v
11 LINJÄR ALGEBRA Linjer på parameterform i R n 3 Linjer En linje L i planet/rummet ses enkelt vara unikt bestämd om vi vet en punkt P 0 på den, samt en riktningsvektor v som är parallell med denna För varje punkt P på L nns då unikt tal t så att [ OP ] = [ OP0 ] + tv, och vidare för varje t gäller att den unika punkt P som uppfyller denna ekvation ligger på L, vilket ger att detta bestämmer L unikt Om vi uttrycker detta i koordinater, så att vi hamnar i R n (då vi nu tillåter även n > 3 då motsvaras [ OP 0 ] av någon vektor (a 1, a 2,, a n, v av (v 1, v 2,, v n, och de punkter (x 1, x 2,, x n som ligger på L är de som kan skrivas på formen (x 1, x 2,, x n = (a 1, a 2,, a n + t(v 1, v 2,, v n t R Detta kallas att linjen L är given på parameterform (t kallas för parameter 32 Linjer i planet Om vi har en linje L i R 2, given av (x 1, x 2 = (a 1, a 2 + t(v 1, v 2, då kan vi om v 1 0 lösa ut x 2 = a 2 + tv 2 = a 2 + x 1 a 1 v 1 v 2 = kx 1 + m Detta kallas att linjen är given på riktningskoecientsform, och k kallas för riktningskoecienten Notera att v 1 = 0 svarar mot att linjen är parallell med x 2 axeln, och dessa linjer kan inte skrivas på denna form Det är också lätt att se att en linje L i planet är unikt bestämd om vi känner till en normalvektor n och en punkt P 0 på linjen En punkt P ligger då på L om och endast om n [ P 0 P ] = 0 Man säger då att linjen L är given på normalform Om vi är i R 2 och n = (n 1, n 2 är normalvektor till L och (a 1, a 2 är en x punkt på L, då ges alltså linjen av ekvationen (n 1, n 2 (x 1 a 1, x 2 a 2 = 0 n 1 x 1 + n 2 x 2 = n 1 a 1 + n 2 a 2
12 12 TOMAS SJÖDIN 4 Kryssprodukt, trippelprodukt och plan Denna föreläsning ska främst handla om det tredimensionella rummet R 3, men vissa saker gör vi något mer allmänt 41 Kryssprodukt (vektorprodukt Denna produkt är endast denierad i tre dimensioner Vi denierar (a 1, a 2, a 3 (b 1, b 2, b 3 = (a 2 b 3 a 3 b 2, a 3 b 1 a 1 b 3, a 1 b 2 a 2 b 1 Notera alltså att vi tar två vektorer i R 3 och får en ny vektor i R 3 Det är enkelt att visa följande: Om u = kv då gäller att u v = 0 u (u v = 0 och v (u v = 0 Det vill säga kryssprodukten ger en vektor som är ortogonal mot både u och v 411 Geometrisk tolkning, högersystem Vi såg ovan att kryssprodukten av två vektorer u, v i R 3 gav en ny vektor som är ortogonal mot båda dessa Angående storleken kan vi säga att vi har följande u v = u v sin(θ, där θ återigen är vinkeln mellan u och v Dessutom kan man se att den pekar i den riktning som anges av den så kallade högerhandsregeln Man säger att u, v, u v utgör ett så kallat högersystem Dessa två egenskaper är enkelt att inse att de karaktäriserar kryssprodukten unikt Om de två vektorerna u, v inte är parallella (om de är det är ju kryssprodukten nollvektorn då nns det ju bara två riktningar att välja på sådana att de är ortogonala mot bägge dessa vektorer Storleken ges av formeln ovan, och högerhandsregeln ger oss en av dessa två riktningar För att motivera ovanstående påstående, antag för enkelhets skull att u = (1, 0, 0 och v = (b 1, b 2, 0 med b 1, b 2 > 0 Då gäller enligt ovanstående att u v = (0, 0, b 2 Notera nu att b 2 = sin(θ b b2 2 = sin(θ v, samt att denna vektor pekar i positiva e 3-riktningen Vidare kan vi säga att uttrycket u v sin(θ helt enkelt är arean av det parallellogram som spänns upp av u och v
13 LINJÄR ALGEBRA Trippelprodukt (volymprodukt Denna produkt tar tre vektorer och ger ett reellt tal Givet tre vektorer u, v, w i R 3, då är trippelprodukten mellan dessa uttrycket (u v w Observera att denna produkt alltså beror på ordningen av dessa vektorer Rent geometriskt är detta tal ± volymen av den parallellepiped som de tre vektorerna spänner upp Vi har även följande resultat: Sats 6 (u v w > 0 om och endast om u, v, w utgör ett högersystem Om (u v w = 0, då ligger alla tre vektorer i ett gemensamt plan 43 Plan på parameterform i R n
14 14 TOMAS SJÖDIN Ett plan Π i rummet ses enkelt vara bestämt av att vi vet en punkt P 0 i Π samt två vektorer u, v som är parallella med Π men inte parallella med varandra Då ligger en punkt P i Π om och endast om det nns två tal (parametrar s, t sådana att [ OP ] = [ OP0 ] + su + tv I R n kan vi göra motsvarande med koordinater Om vi låter (a 1, a 2,, a n vara en x punkt, och u = (u 1, u 2,, u n, v = (v 1, v 2,, v n där u och v inte är parallella, då kallar vi mängden av alla (x 1, x 2,, x n som uppfyller (x 1, x 2,, x n = (a 1, a 2,, a n + s(u 1, u 2,, u n + t(v 1, v 2,, v n s, t R för ett plan på parameterform 44 Plan på normalform i R 3 I rummet är det också lätt att se att ett plan Π är unikt bestämt om vi vet en punkt P 0 i Π samt en normalvektor n En punkt P ligger då i Π om och endast om n [ P 0 P ] = 0 Om vi är i R 3 kan detta i koordinater (precis som för linjer i planet skrivas som en ekvation n 1 x 1 + n 2 x 2 + n 3 x 3 = n 1 a 1 + n 2 a 2 + n 3 a 3, där (n 1, n 2, n 3 är normalvektorn och (a 1, a 2, a 3 en x punkt i Π
15 LINJÄR ALGEBRA 15 5 Matriser Denition 7 Om vi för varje par ij med 1 i r, 1 j k har fått tal a ij R då kallar vi a 11 a 12 a 1k a 21 a 22 a 2k A = (a ij r k = a r1 a r2 a rk för en r k matris över R En r k matris har r rader och k kolumner En matris som bara har en rad, (a 11 a 12 a 1k, kallas en radmatris, och en matris som bara har en kolumn, a 11 a 21, a r1 kallas en kolumnmatris En r r matris kallas kvadratisk Denition 8 (a ij r k = (b ij r k om och endast om a ij = b ij för alla ij, (a ij r k + (b ij r k = (a ij + b ij r k, λ(a ij r k = (λa ij r k, (a ij r m (b ij m k = (c ij r k, där c ij = a i1 b 1j + a i2 b 2j + + a im b mj Denitionen av matrismultiplikation förtjänar att titta lite närmare på Det är svårt att än så länge motivera denna närmare, mer än att säga att vi med denna får en så kallad associativ multiplikation: A(BC = (ABC När vi sedan börjar studera linjära avbildningar kommer vi se varför detta är rätt denition
16 16 TOMAS SJÖDIN Det är dock värt att notera följande För en radmatris gånger en kolumnmatris gäller: b 1 ( b 2 a1 a 2 a n = (a 1b 1 + a 2 b a n b n b n Detta är en 1 1 matris, och normalt identierar vi dessa med reella tal Dvs det är precis samma sak som skalärprodukten (a 1, a 2,, a n (b 1, b 2,, b n i R n Talet c ij ovan är helt enkelt ovanstående multiplikation mellan rad i från matrisen (a ij r m med kolumn j från matrisen (b ij m k Vi inför även beteckningarna: Nollmatris: = 0 r k =, Enhetsmatris (r r: A = 1A I = I r = Följande sats gäller också (Beviset bygger helt enkelt på att man inför beteckningar för alla ingående matriser och jämför höger och vänsterledet i varje ekvation, vilket lämnas till läsaren/kursboken Sats 9 Nedan är A, B, C matriser så att operationerna är väldenierade och λ, µ R A + B = B + A, (A + B + C = A + (B + C, A + 0 = A, A + ( A =: A A = 0, 1A = A, λ(µa = (λµa, (λ + µa = λa + µa, λ(a + B = λa + λb, (ABC = A(BC, (λab = λ(ab, A(B + C = AB + AC, (B + CA = BA + CA, A0 = 0, 0A = 0, AI = A, IA = A OBS! AB BA normalt även om bägge sidor är väldenierade Denition 10 Låt A = (a ij r k Då denierar vi transponatet A t till A att vara k r matrisen given av A t = (a t ij k r där a t ij = a ji (1 i k, 1 j r (Dvs A t fås från A genom att byta plats på rader och kolumner Sats 11 (A + B t = A t + B t, (λa t = λ(a t, (A t t = A, (AB t = B t A t
17 LINJÄR ALGEBRA Matriser och ekvationssystem Ett linjärt ekvationssystem a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2 a m1 x 1 + a m2 x a mn x n = b m, är ekvivalent med följande matrisekvation: a 11 a 12 a 1n x 1 a 11 a 12 a 1n b 1 a 21 a 22 a 2n x 2 = x a x a x a 2n n = b 2 a m1 a m2 a mn x n a m1 a m2 a mn b m Denition 12 En n n matris A sägs vara inverterbar om det nns en n n matris A 1, kallad A : s invers, sådan att AA 1 = A 1 A = I n För att hitta inversen till A (om den nns ställer man upp systemmatrisen (A I n och gör radoperationer tills man fått ett radekvivalent system (I n B och då är B = A 1 (det går alltså att göra sådana radoperationer om och endast om A har en invers Sats 13 Låt A vara en n n matris Då är följande ekvivalent: (a A 1 existerar, (b AX = B har entydig lösning X för varje n 1 matris B, (c AX = 0 har endast den triviala lösningen X = 0 Sats 14 (A 1 1 = A, (A t 1 = (A 1 t, (AB 1 = B 1 A 1, (A k 1 = (A 1 k =: A k 6 Vektorrum, linjärt oberoende Denition 15 Låt V vara en icketom mängd, vars element vi kallar vektorer, sådan att vi denierat två operationer Addition av vektorer: u, v V u + v V, Multiplikation med skalär: λ R, u V λu V Om dessa uppfyller följande axiom, då säger vi att V är ett vektorrum (över R u + v = v + u, u + (v + w = (u + v + w, Det nns unikt element 0 V sa u + 0 = u för alla u V, Till varje u V nns unik additiv invers u sa u + ( u =: u u = 0, 1u = u, λ(µu = (λµu, (λ + µu = λu + µu, λ(u + v = λu + λv OBS! Det är lätt att kontrollera att följande gäller u + v = u v = 0, 0u = 0, u = 1u Observera också att begrepp som längd, vinkel etc inte har någon innebörd i ett allmänt vektorrum
18 18 TOMAS SJÖDIN Exempel 16 Det är lätt att veriera att R n som vi denierat tidigare utgör ett vektorrum Likaså utgör mängden M r k bestående av alla r k matriser ett vektorrum Slutligen, om vi låter P n beteckna alla polynom av grad högst n, dvs alla polynom på formen a 0 + a 1 x + a 2 x a n x n, då utgör detta ett exempel på ett vektorrum Addition/multiplikation med skalär är i detta fall denierat som följer: (a 0 +a 1 x+a 2 x 2 + a n x n +(b 0 +b 1 x+b 2 x 2 + +b n x n = (a 0 +b 0 +(a 1 +b 1 x+(a 2 +b 2 x 2 + +(a n +b n x n, λ(a 0 + a 1 x + a 2 x 2 + a n x n = (λa 0 + (λa 1 x + (λa 2 x 2 + (λa n x n Denition 17 En icketom delmängd U till V kallas ett delrum (underrum till V om U med samma operationer som de i V själv är ett vektorrum Dvs U är ett delrum om och endast om (a u, v U u + v U, (b λ R, u U λu U Exempel 18 Självklart är varje vektorrum ett delrum till sig själv, och dessutom är det så kallade nollrummet som bara består av nollvektorn ett delrum till varje vektorrum Ett annat exempel är att ta V = R 3 och U = {(x 1, x 2, 0 : x 1, x 2 R}, då är det lätt att veriera att U är ett delrum till V 61 Linjärkombinationer Denition 19 Låt V vara ett vektorrum och v 1, v 2,, v n V Om λ 1, λ 2,, λ n R då kallas vektorn λ 1 v 1 + λ 2 v λ n v n för en linjärkombination av vektorerna v 1, v 2,, v n Mängden av alla linjärkombinationer av v 1, v 2,, v n kallas det linjära höljet till v 1, v 2,, v n och betecknas [v 1, v 2,, v n ] OBS! Det är lätt att kontrollera att det linjära höljet [v 1, v 2,, v n ] utgör ett delrum till V, vidare är det det minsta delrummet som innehåller alla vektorerna v 1, v 2,, v n Vi säger också att v 1, v 2,, v n spänner upp delrummet U om [v 1, v 2,, v n ] = U Tex har vi R n = [e 1, e 2,, e n ] där e 1 = (1, 0,, 0, e 2 = (0, 1, 0,, 0, Dessa kallas standardbasen till R n Sats 20 v n [v 1, v 2,, v n 1 ] [v 1, v 2,, v n 1 ] = [v 1, v 2,, v n ] Denition 21 Om den så kallade beroendeekvationen λ 1 v 1 + λ 2 v λ n v n = 0 endast har den triviala lösningen λ 1 = λ 2 = = λ n = 0, då sägs vektorerna v 1, v 2,, v n vara linjärt oberoende Det är lätt att kontollera att standardbasen till R n är linjärt oberoende tex Det är också lätt att se att v 1, v 2,, v n är linjärt beroende om och endast om det nns en vektor v j sådan att mängden v 1,, v j 1, v j+1,, v n spänner upp samma rum som alla v 1, v 2,, v n 7 Bas och Dimension Denition 22 Låt V vara ett vektorrum En ordnad uppsättning vektorer v = ( v 1 v 2 v n kallas för en bas till V om (1 v 1, v 2,, v n är linjärt oberoende, (2 V = [v 1, v 2,, v n ]
19 LINJÄR ALGEBRA 19 Ibland skriver vi bara att v 1, v 2,, v n eller {v 1, v 2,, v n } är en bas till V utan att använda matrisnotationen v som ovan Det är dock viktigt att tänka på att en bas alltid är ordnad Vi kommer använda notationen a 1 a 2 vx = v := a 1v 1 + a 2 v a n v n a n om a 1, a 2, a n R Dvs vi använder detta skrivsätt för att skriva linjärkombinationer med basvektorerna i v Notera också att detta stämmer överens med hur vi denierat matrismultiplikationen om v hade varit en vanlig radmatris Sats 23 En uppsättning vektorer v 1, v 2,, v n i ett vektorrum V är en bas om och endast om varje vektor v V på entydigt sätt kan skrivas på formen v = vx, där v = ( v 1 v 2 v n Kolumnmatrisen X kallas för koordinaterna till v i basen v (Notera att koordinaterna påverkas av ordningen på basvektorerna, och det är därför det är viktigt att ha dem ordnade Alla vektorrum har inte ändliga baser (vi denierar inte oändliga baser i denna kurs, tex har rummet av alla kontinuerliga funktioner på ett givet intervall inte någon ändlig bas Men i denna kurs kommer vi i princip uteslutande vara intresserad av de vektorrum som har ändliga baser Standardbasen till R n är enkel att visa att den utgör en bas till R n Sats 24 Om ett vektorrum V har en bas v = ( v 1 v 2 v n, då har alla andra baser till V också n element Vi säger då att V har dimension dimv = n Per denition sätter vi också dim{0} = 0 Sats 25 En mängd vektorer i V som har er element än dimv är linjärt beroende Om å andra sidan en mängd vektorer i ett ändligdimensionellt vektorrum är linjärt oberoende, då nns en bas som innehåller dessa som element 8 Euklidiska rum Vi ska nu införa en extra struktur på vektorrum, en så kallad skalärprodukt, vilken vi kan använda för att deniera längd och vinklar mm som inte har någon mening i ett allmänt vektorrum Denition 26 En skalärprodukt på ett vektorrum E är en funktion som tar två vektorer u, v E och ger ett reellt tal (u v, och som uppfyller följande för alla u, v, w E, λ R: (u v = (v u, (u v + w = (u v + (u w, (u λv = λ(u v, (u u 0 med likhet om och endast om u = 0 E tillsammans med ( kallas för ett Euklidiskt rum R n (och M n 1 tillsammans med standardskalärprodukten som vi denierat tidigare är ett Euklidiskt rum Detta rum betecknas även ibland E n Vidare är det klart att ett delrum U till ett Euklidiskt rum E automatiskt är ett Euklidiskt rum med samma skalärprodukt som i E I ett Euklidiskt rum E denierar vi även följande begrepp via skalärprodukten: Längd/norm: u = (u u, Avstånd: d(u, v = u v, u, v ortogonala om (u v = 0, Vinkeln θ mellan u, v 0 denieras att vara den unika vinkel i [0, π] sa cos θ = (u v u v
20 20 TOMAS SJÖDIN Vidare har vi följande resultat: Pythagoras sats: (u v = 0 u + v 2 = u 2 + v 2 Cauchy-Schwarz olikhet: (u v u v Triangelolikheten: u + v u + v Vi kan också precis som i R n införa den ortogonala projektionen av en vektor u på en vektor v 0 att vara den unika vektor u v som är parallell med v och sådan att u v := u u v är ortogonal mot v Samma formel som i R n (med samma argument som i R n för att få fram den gäller även här: u v = (u v v 2 v 81 ON-mängder/baser Denition 27 {u 1, u 2,, u m } i ett Euklidiskt rum kallas en ON-mängd (ortonormal mängd om (u i u j = { 1 i = j 0 i j Om ( u 1 u 2 u m dessutom är en bas då kallas den en ON-bas Notera att detta säger att en ON-mängd består av vektorer med längd 1 och som är parvis ortogonala mot varandra Sats 28 En ON-mängd i ett Euklidiskt rum är alltid linjärt oberoende Normalt är det just ON-baser som är rätt baser att jobba med i Euklidiska rum, som följande sats förklarar Sats 29 Om u = ( u 1 u 2 u m är en ON-bas till det Euklidiska rummet E, då gäller följande för skalärprodukten: x 1 y 1 u x 2 y 2 u = x 1y 1 + x 2 y x m y m x m y m Dvs när vi väl uttrycker allt i en ON-bas så är skalärprodukten samma som i R m 82 Ortogonal projektion på delrum Denition 30 Om U är ett delrum till det Euklidiska rummet E, då denierar vi det ortogonala komplementet till U: U = {v E : (v u = 0 för alla u U}
21 LINJÄR ALGEBRA 21 Det är lätt att kontrollera att U också är ett delrum till E Sats 31 Om U = [u 1, u 2,, u m ] då gäller att U = {v E : (v u i = 0 för alla i = 1, 2,, m} Sats 32 Om ( u 1 u 2 u m är en ON-bas till delrummet U i E, då gäller att u U := (u u 1 u 1 + (u u 2 u (u u m u m U, u U := u u U U Vi kallar u U den ortogonala projektionen av u på U OBS! Notera att uppdelningen u = v + w där v U, w U är unik Notera även att om vi tillämpar satsen med U = E säger den att om ( u 1 u 2 u m är en ON-bas till E då gäller u = (u u 1 u 1 + (u u 2 u (u u m u m 83 Gram-Schmidts metod Gram-Schmidts metod tar en bas till ett Euklidiskt rum och skapar en ON-bas utifrån denna som följer Låt ( u 1 u 2 u m vara en bas till det Euklidiska rummet E (alltså inte nödvändigtvis en ON-bas Skapa nu vektorer e 1, e 2,, e m som följer: e 1 := u 1 / u 1, e 2 := v 2 / v 2 där v 2 := u 2 (u 2 e 1 e 1, e m := v m / v m där v m := u m (u m e 1 e 1 (u m e 2 e 2 (u m e m 1 e m 1 Denna bas uppfyller också följande för varje j = 1, 2,, m: [e 1, e 2,, e j ] = [u 1, u 2,, u j ]
22 22 TOMAS SJÖDIN (Om det är så att man har en mängd vektorer u 1, u 2,, u m som man bara vet genererar E, men ej nödvändigtvis är linjärt oberoende kan man använda ovanstående metod också för att skapa en ON-bas med den skillnaden att om man i något steg får ett v j som är nollvektorn så kastar man helt enkelt bort den 9 Mer om ortogonal projektion Minstakvadratmetoden Vi kommer ihåg att om U är ett delrum till ett Euklidiskt rum E då har vi infört det ortogonala komplementet U till U och vi har infört ortogonal projektion av u på U så att u = u U + u U, u U U, u U U Denna uppdelning är unik, och vidare är det lätt att inse att u U = u U Vidare gäller att u U u u U u v för alla v U Dvs avtsåndet mellan u och U ges av u U 91 Minstakvadratmetoden Detta handlar om att behandla linjära ekvationssystem som är överbestämda och saknar lösning Man vill då hitta värden som är så nära att vara en lösning som möjligt i viss mening Vi ser på ett ekvationssystem på formen: a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn Med kan vi skriva detta som x 1 x 2 x n a 11 a 12 = x a x a x a 2n n = b 2 a m1 a m2 a mn b m a 11 a 12 a 1n a 21 a 22 a 2n A =, X = a m1 a m2 a mn AX = Y x 1 x 2 x n b 1 a 1n, Y = b 2 b m I allmänhet vet vi att ett sådant system inte behöver ha någon lösning Minstakvadratmetoden går ut på att hitta X så att AX Y blir så litet som möjligt i M m 1, eller ekvivalent AX Y 2 b 1
23 LINJÄR ALGEBRA 23 blir så litet som möjligt (härav namnet minstakvadratmetoden Vi inför följande delrum till M m 1, kallat kolumnrummet till A: a 11 a 12 a 21 U =, a 22,, a 2n a m1 a m2 a mn a 1n Enligt ovanstående ska vi välja X sådant att AX = Y U Eftersom Y U = Y Y U = Y AX är detta ekvivalent med att Y AX är ortogonal mot alla element a 1i a 2i a mi i = 1, 2,, n Med en explicit uträkning kommer man fram till att de X som uppfyller detta är precis de som löser den så kallade normalekvationen: A t AX = A t Y (Egentligen är det ganska direkt varför denna ekvation är ekvivalent med att AX = Y U, ty detta är ju samma sak som att varje kolumn i AX Y är ortogonal mot varje kolumn i A, vilket är precis samma sak som att A t (AX Y = 0 Dvs lösningarna X till denna (det existerar alltså alltid minst en, och i praktiken i princip alltid exakt en även om det nns undantagsfall då X inte blir unik är precis de X sådana att AX Y 2 minimeras 11 Determinanter Determinanten är en funktion som tar kvadratiska matriser och ger reella tal på ett sådant sätt att determinanten är noll om och endast om matrisen ej är inverterbar Tyvärr är teorin för determinanter lite stökig, och vi kommer inte ge några explicita bevis, utan hänvisar för detta till kursboken Vi börjar med att deniera determinanten induktivt via så kallad radexpansion längs första raden Vi ska alltså deniera a 11 a 12 a 1n a 11 a 12 a 1n a 21 a 22 a 2n det =: a 21 a 22 a 2n för n 2 a n1 a n2 a nn a n1 a n2 a nn (För n = 1 denierar vi det(a 11 := a 11 Vi använder dock ej absolutbeloppstecknet i detta fall Notera att determinanten inte nödvändigtvis är positiv För n = 2 denierar vi a 11 a 12 a 21 a 22 := a 11a 22 a 12 a 21
24 24 TOMAS SJÖDIN Antag nu att vi denierat determinanten för (n 1 (n 1-matriser Då låter vi a 11 a 12 a 1n a 21 a 22 a 2n := a n1 a n2 a nn a 22 a 23 a 2n a 21 a 23 a 2n a 32 a 33 a 3n a 31 a 33 a 3n a 11 a 12 a n2 a n3 a nn a n1 a n3 a nn a 21 a 22 a 2(n ( 1 n+1 a 31 a 32 a 3(n 1 a 1n a n1 a n2 a n(n 1 Det är värt att notera att i fallet n = 2 är determinanten ± arean av det parallellogram som radvektorerna i matrisen spänner upp, och om n = 3 är den ± volymen av den parallellepiped som spänns upp av radvektorerna Man kan också visa att determinanten ges av följande (det är denna denition som används i boken: a 11 a 12 a 1n a 21 a 22 a 2n = ( 1 N(p1,p2,,pn a 1p1 a 2p2 a npn, a n1 a n2 a nn där summan tas över alla tillåtna produkter p 1 p 2 p n, och N(p 1, p 2,, p n är mängden av alla negativa par = antalet par (i, j sådana att i < j men p i > p j (Ett annat sätt att säga detta är att p 1, p 2,, p n är en permutation av 1, 2,, n och ( 1 N(p1,p2,,pn är permutationens tecken Man kan visa att följande gäller för determinanten Sats 33 deta 0 A är inverterbar I detta fall gäller deta 1 = 1/detA, det(ab = detadetb, deta t = deta deti n = 1, där I n är identitetsmatrisen Vi kan alltså använda denitionen ovan induktivt för att räkna ut determinater, men oftast är detta inte så smidigt Istället är det bättre att använda följande (eller ofta en kombination av detta och ovanstående denition som säger hur determinanten påverkas vid elementära radoperationer på matrisen A Sats 34 Om A är en n n matris, då ändras determinanten på följande sätt vid elementära radoperationer på A Multiplicerar vi en rad med en konstant k, då multipliceras även determinanten med k, Lägger vi till en konstant multipel av en rad till en annan ändras inte determinanten, Byter vi plats på två rader byter determinanten tecken Detta kan också användas för att beräkna determinanten För om A inte är inverterbar då kan vi skapa en nollrad via elementära radoperationer, och alltså blir determinanten noll Annars kan vi med hjälp av elementära radoperationer gå från A till I n, och om vi då håller reda på hur alla dessa radoperationer ändrar determinanten, samt använder att deti n = 1 får vi fram dess värde Oftast är det dock i praktiken bäst att använda en kombination av radoperationer och radexpansioner som ovan
25 LINJÄR ALGEBRA Linjära avbildningar Denition 35 En avbildning (=funktion F mellan två vektorrum U, V (skrivet F : U V som uppfyller F ( x + ȳ = F ( x + F (ȳ, F (k x = kf ( x för alla vektorer x, ȳ U och skalärer k kallas linjär F ( r 0 + t v = F ( r 0 + tf ( v ger att linjer avbildas på linjer eller punkter (det senare om F ( v = 0 Det är också lätt att se att en linjär avbildning uppfyller F (0 = 0 Vidare gäller att om F, G : U V är linjära, då är även dess summa F + G, denierad via (F + G( x = F ( x + G( x, linjär Och om k R då är även kf, denierad via (kf ( x = kf ( x linjär Dvs mängden av alla linjära avbildningar från U till V utgör själva ett vektorrum En speciellt viktig linjär avbildning av ett vektorrum på sig själv är identitetsavbildningen I som avbildar varje vektor på sig själv: I( x = x Andra exempel på linjära avbildningar är rotationer, och projektioner i Euklidiska rum 121 Matriser för linjära avbildningar: Låt F : U V vara en linjär avbildning, samt antag att vi valt baser u = ( ( u 1 u 2 u k samt v = v1 v 2 v r till U respektive V Då gäller att varje vektor u U kan skrivas entydigt på formen ux, och F (u = F (ux = vy för något unikt Y Om vi låter vy i = F (u i och skapar matrisen A := Y 1 Y 2 Y k, där vi med detta menar att vi sätter in Y i :a i kolumnerna i A, då gäller att F (ux = vax för alla X Vi säger att F har matrisrepresentation (eller bara matris A i baserna u, v Observera att denna i högsta grad beror på båda dessa val av baser Så man kan säga att när vi väl valt baser så är linjära avbildningar inget annat än multiplikation med en matris Dessutom är det lätt att inse att det bara nns en matris A som uppfyller ovanstående, så vi har alltså en 1 1 korrespondans mellan r k-matriser och linjära avbildningar från U till V För att se varför ovanstående gäller notera att med då har vi x 1 x 2 X = x k F (ux = F (x 1 u 1 + x 2 u x k u k = x 1 F (u 1 + x 2 F (u x k F (u k = x 1 (vy 1 + x 2 (vy x k (vy k = v(x 1 Y 1 + x 2 Y x k Y k = v(ax 13 Nollrum, Värderum och Dimensionssatsen Följande sats är rättfram att visa från denitionen av linjära avbildningar Sats 36 Låt F : U V vara linjär N(F := {u U : F (u = 0} är ett delrum till U, kallat F :s nollrum, V (F := {F (u : u U} är ett delrum till V, kallat F :s värderum
26 26 TOMAS SJÖDIN Vi har också följande resultat: U = [u 1, u 2,, u m ] V (F = [F (u 1, F (u 2,, F (u m ] Sats 37 (Dimensionssatsen Låt F : U V vara linjär Då gäller att dimn(f + dimv (F = dimu 131 Sammansatta avbildningar Antag att vi fått tre vektorrum U, V, W och F : U V, G : V W är linjära Vi denierar då den sammansatta avbildningen G F : U W via (G F (u = G(F (u Det är lätt att visa att detta är en linjär avbildning, vidare om u, v, w är baser där F respektive G har matriser A respektive B då har G F matris BA relativt u, w (Man kan säga att matrismultiplikationen är denierad precis så att detta ska gälla 132 Inversa Avbildningar Låt F : U V vara en linjär avbildning Vi säger då att F är inverterbar om det nns en linjär avbildning F 1 : V U, kallad F :s invers, sådan att F F 1 (v = v för alla v V, F 1 F (u = u för alla u U Om U, V är ändligdimensionella, då har F en invers om och endast om dimu = dimv och N(F = {0} Vi har också (som förväntat följande resultat: Sats 38 Låt U, V ha baser u respektive v, där dimu = dimv Den linjära avbildningen F : U V har då en invers om och endast om dess matris A i dessa baser är inverterbar, och F 1 har då matris A 1 relativt dessa 14 Isometriska avbildningar Låt E vara ett Euklidiskt rum En linjär avbildning F : E E kallas för en (linjär isometri om F (u = u för alla u E Vi har följande sats: Sats 39 Låt e = ( e 1 e 2 e n vara en ON-bas till E För en linjär avbildning är då följande ekvivalent: (a F är en isometri, (b (F (u F (v = (u v för alla u, v E, (c ( F (e 1 F (e 2 F (e n är en ON-bas till E, (d F :s matris A i basen e är ortonormal, dvs A t A = I OBS! En ortonormal matris uppfyller alltid deta = ±1 Följande sats karaktäriserar isometrier på R 2 och R 3 : Sats 40 (a Om F : R 2 R 2 är en isometri med matris A i standardbasen, då gäller att F är en vridning om deta = 1, och en spegling om deta = 1 (b Om F : R 3 R 3 är en isometri med matris A i standardbasen, då gäller att F är en vridning om deta = 1 Om deta = 1 då är F antingen en spegling, eller en sammansättning mellan en vridning och en spegling 141 Symmetriska avbildningar En avbildning F : E E kallas symmetrisk om (F (u v = (u F (v gäller för alla u, v E Om ( e 1 e 2 e n är en ON-bas till E då är F symmetrisk om och endast om dess matris A i denna bas är symmetrisk, dvs A t = A 15 Basbyte Basbyten: Antag att vi i ett vektorrum V har två baser u = ( ū 1 ū 2 ū n och v = ( v1 v 2 v n I så fall kan vi skriva v i = c 1i ū 1 + c 2i ū c ni ū n (1 i n
27 LINJÄR ALGEBRA 27 för unikt bestämda reella tal c 1i,, c ni Matrisen c 11 c 12 c 1n c 21 c 22 c 2n T = c n1 c n2 c nn kallas övergångsmatrisen från v till u basen Rent formellt kommer det vara bekvämt att skriva: c 11 c 12 c 1n ( ( c 21 c 22 c 2n v1 v 2 v n = ū1 ū 2 ū n c n1 c n2 c nn Mer kortfattat kan vi säga att med så är och v i = uy i T = Y 1 Y 2 Y n, v = ut u = vt 1 Notera att T 1 är övergångsmatrisen från u till v basen Vidare gäller att en matris T som är inverterbar alltid avbildar en bas på en bas, så T är en övergångsmatris mellan några baser om och endast om dett 0 Förhållandet mellan koordinater i de olika baserna ges av att om en vektor u = vy = ux, då gäller att vy = (ut Y = u(t Y = ux, eller med andra ord X = T Y (Observera att vi alltså får u koordinaterna från v koordinaterna Antag nu att vi har tre baser u, v, w till V och T 1 är övergångsmatris från v till u-basen, och T 2 är övergångsmatris från w till v-basen Då är T = T 1 T 2 övergångsmatris från w till u-basen ON-baser: Om u och v är ON-baser till ett Euklidiskt rum E, och T är övergångsmatrisen given ovan, då gäller att T t T = I, dvs T t = T 1 En matris T som uppfyller detta kallas ortonormal, eller ON-matris (Kom ihåg att detta innebär att motsvarande avbildning är en isometri Linjära avbildningars matriser i olika baser: Låt F : V V vara linjär och antag att vi har två olika baser u och v till V med övergångsmatris T från v till u basen Om vi låter A u respektive A v vara matrisen svarande mot F i respektive bas (dvs A u tar en vektors koordinater i u basen till bildens koordinater i u basen, och på samma sätt för A v så gäller: för vi har, om vy = ux, A v = T 1 A u T, F (ux = ua u X = vt 1 A u T Y = va v Y (Om vidare båda baserna är ON-baser kan vi också byta T 1 mot T t i denna formel Notera att det(a v = det(t 1 A u T = det(t 1 det(a u det(t = det(a u, så detta visar att determinanten är basoberoende, och vi tar detta som denition av detf
28 28 TOMAS SJÖDIN 17 Egenvärden, Egenvektorer, Spektralsatsen 171 Egenvärden, egenvektorer och diagonalisering Denition 41 En linjär avbildning F : V V sägs ha ett egenvärde λ (reellt tal, eventuellt 0 med motsvarande egenvektor v 0 (i V om F ( v = λ v Antag nu att F har n stycken linjärt oberoende egenvektorer v = ( v 1 v 2 v n, och dessa utgör en bas till V, med motsvarande egenvärden λ 1, λ 2,, λ n (ej nödvändigtvis alla olika I så fall gäller λ λ 2 0 A v = 0 0 λ n dvs A v är diagonal Omvänt om A v är diagonal i någon bas v är elementen i denna bas egenvektorer till A, och elementen i diagonalen egenvärdena Om det nns en bas v där A v är diagonal kallas F diagonaliserbar Eftersom F ( v = λ v (F λi v = 0 så har vi att λ är ett egenvärde till F om och endast om F λi inte är inverterbar, dvs om och endast om det(f λi = 0 (Kom ihåg att determinanten är basoberoende Sats 42 Om { v 1, v 2,, v k } är egenvektorer svarande mot olika egenvärden till F : V V så är de linjärt oberoende Speciellt om F har dimv stycken olika egenvärden, då nns alltid en bas av egenvektorer till F Vi kommer ibland vilja tala om egenvärden/egenvektorer till en n n matris A, och då menar vi att vi ser denna som en linjär avbildning på M n 1 i standardbasen 172 ON-diagonalisering Låt F : E E vara en linjär avbildning på ett Euklidiskt rum E med dime = n F kallas ON-diagonaliserbar om det nns en ON-bas i vilken F :s matris är diagonal Sats 43 (Spektralsatsen F är ON-diagonaliserbar om och endast om F är symmetrisk Kom ihåg att F är symmetrisk om och endast om den har en symmetrisk matris i någon ON-bas till E Om detta gäller har den automatiskt en symmetrisk matris i alla ON-baser till E 173 Något om lösningsmetoder för ovanstående problem Givet F, välj någon lämplig bas u (ON-bas om vi vill ON-diagonalisera i Euklidiskt rumoch bestäm F : s matris A i denna Antag att A nu är en n n matris som vi vill diagonalisera, då börjar vi med att lösa det(a λi = 0 med avseende på λ, vilket ger alla egenvärden till A Sedan för varje egenvärde λ bestäm lösningarna X till (A λix = 0 Dessa lösningar ger alla egenvektorer ux som svarar mot λ Om det nu går att hitta en bas av egenvektorer v = ( v 1 v 2 v n från ovanstående då ges transformationsmatrisen T från v till u basen som tidigare av: v i = uy i T = Y 1 Y 2 Y n,,
Linjär Algebra, Föreläsning 2
Linjär Algebra, Föreläsning 2 Tomas Sjödin Linköpings Universitet Geometriska vektorer, rummen R n och M n 1 En (geometrisk) vektor är ett objekt som har storlek och riktning, men inte någon naturlig startpunkt.
LINJÄR ALGEBRA. {x M : P (x)} = {x : P (x)}, TOMAS SJÖDIN. k j=1 Ofta betecknas mängder på följande sätt:
LINJÄR ALGEBRA TOMAS SJÖDIN Innehåll 0 Notation 1 1 Linjära Ekvationssystem 2 2 Geometriska vektorer, rummen R n och M n 1 3 3 Skalärprodukt, Vektorprodukt, Volymprodukt 7 4 Linjer och plan 10 5 Matriser
Linjär Algebra, Föreläsning 2
Linjär Algebra, Föreläsning 2 Tomas Sjödin Linköpings Universitet Riktade sträckor och Geometriska vektorer En (geometrisk) vektor är ett objekt som har storlek och riktning, men inte någon naturlig startpunkt.
Linjär Algebra, Föreläsning 9
Linjär Algebra, Föreläsning 9 Tomas Sjödin Linköpings Universitet Euklidiska rum Vi ska nu införa en extra struktur på vektorrum, en så kallad skalärprodukt, vilken vi kan använda för att definiera längd
1 Linjära ekvationssystem. 2 Vektorer
För. 1 1 Linjära ekvationssystem Gaußelimination - sriv om systemet för att få ett trappformat system genom att: byta ordningen mellan ekvationer eller obekanta; multiplicera en ekvation med en konstant
Dagens program. Linjära ekvationssystem och matriser
Dagens program Matriser Räkneoperationer och räknelagar Linjära ekvationssystem och matriser Matrisform av ekvationssystem Elementära radoperationer Trappstegsmatriser, rang och lösningsstruktur Matrisinvers,
Linjär algebra på 2 45 minuter
Linjär algebra på 2 45 minuter π n x F(x) Förberedelser inför skrivningen Den här genomgången täcker förstås inte hela kursen. Bra sätt att lära sig kursen: läs boken, diskutera med kompisar, gå igenom
Lite Linjär Algebra 2017
Lite Linjär Algebra 2017 Lektionsanteckningar och sammanfattning Johan Thim, MAI (johan.thim@liu.se) ū ū O z y ū // L : OP + t v x Ortogonalprojektion: ū // = ū v v v v, ū = ū ū //. Innehåll 1 Bakgrund
Linjär algebra på några minuter
Linjär algebra på några minuter Linjära ekvationssystem Ekvationssystem: { Löses på matrisform: ( ) ( ) I det här fallet finns en entydig lösning, vilket betyder att determinanten av koefficientmatrisen
Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna
Uppsala Universitet Matematiska Institutionen Bo Styf LAoG I, 5 hp ES, KandMa, MatemA -9-6 Sammanfattning av föreläsningarna 3-7 Föreläsningarna 3 7, 8/ 5/ : Det viktigaste är här att du lär dig att reducera
Vektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Linjära avbildningar IV Innehåll Nollrum och
Enhetsvektorer. Basvektorer i två dimensioner: 1 1 Basvektorer i tre dimensioner: Enhetsvektor i riktningen v: v v
Vektoraddition u + v = u + v = [ ] u1 u 2 u 1 u 2 + u 3 + [ v1 v 2 ] = v 1 v 2 = v 3 [ u1 + v 1 u 2 + v 2 u 1 + v 1 u 2 + v 2 u 3 + v 3 ] Multiplikation med skalär α u = α [ u1 u 2 α u = α ] = u 1 u 2
Övningar. MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik. Linjär algebra 2. Senast korrigerad:
MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik Linjär algebra 2 Senast korrigerad: 2006-02-10 Övningar Linjära rum 1. Låt v 1,..., v m vara vektorer i R n. Ge bevis eller motexempel till
Övningar. c) Om någon vektor i R n kan skrivas som linjär kombination av v 1,..., v m på precis ett sätt så. m = n.
Övningar Linjära rum 1 Låt v 1,, v m vara vektorer i R n Ge bevis eller motexempel till följande påståenden Satser ur boken får användas a) Om varje vektor i R n kan skrivas som linjär kombination av v
Linjär Algebra, Föreläsning 8
Linjär Algebra, Föreläsning 8 Tomas Sjödin Linköpings Universitet Linjärkombinationer (repetition) Låt v 1, v 2,..., v n vara vektorer i ett vektorrum V. Givet skalärer λ 1, λ 2,..., λ n R så kallas λ
SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A
SF64 Algebra och geometri Lösningsförslag till tentamen 04-05-0 DEL A. Planet P innehåller punkterna (,, 0), (0, 3, ) och (,, ). (a) Bestäm en ekvation, på formen ax + by + cz + d = 0, för planet P. (
DEL I. Matematiska Institutionen KTH. Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604, den 15 mars 2010 kl
1 Matematiska Institutionen KTH Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604, den 15 mars 010 kl 14.00-19.00. Hjälpmedel: Inga hjälpmedel är tillåtna på tentamensskrivningen. Betygsgränser:
SKRIVNING I VEKTORGEOMETRI
SKRIVNING I VEKTORGEOMETRI 201-0-0 14.00-17.00 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade.
SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A
SF64 Algebra och geometri Lösningsförslag till tentamen 0-0-0 DEL A De tre totalmatriserna 0 3 3 4 0 3 0 0 0 0, 0 3 0 4 4 0 3 0 3 0 0 0 0 och 0 3 0 4 0 3 3 0 0 0 0 0 svarar mot linjära ekvationssystem
Inför tentamen i Linjär algebra TNA002.
Inför tentamen i Linjär algebra TNA002. 1. Linjära ekvationssytem (a) Omskrivningen av ekvationssystem på matrisform samt utföra radoperationer. (b) De 3 typer av lösningar som dyker upp vid lösning av
Prov i matematik Civilingenjörsprogrammen EL, IT, K, X, ES, F, Q, W, Enstaka kurs LINJÄR ALGEBRA
UPPSALA UNIVERSITET Matematiska institutionen Volodymyr Mazorchuk Ryszard Rubinsztein Prov i matematik Civilingenjörsprogrammen EL, IT, K, X, ES, F, Q, W, Enstaka kurs LINJÄR ALGEBRA 007 08 16 Skrivtid:
SKRIVNING I VEKTORGEOMETRI
SKRIVNING I VEKTORGEOMETRI 2018-04-24 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade. 1. Bestäm
MVE022 Urval av bevis (på svenska)
MVE22 Urval av bevis (på svenska) J A S, VT 218 Sats 1 (Lay: Theorem 7, Section 2.2.) 1. En n n-matris A är inverterbar precis när den är radekvivalent med indentitesmatrisen I n. 2. När så är fallet gäller
Linjär algebra F1, Q1, W1. Kurslitteratur
UPPSALA UNIVERSITET MATEMATISKA INSTITUTIONEN Linjär algebra för F1, Q1, W1 Kurslitteratur Höstterminen 2006 Eriksson Lind Persson Tengstrand, Algebra för universitet och högskolor, Band II (Linjär Algebra),
. (2p) 2x + 2y + z = 4 y + 2z = 2 4x + 3y = 6
Kursen bedöms med betyg, 4, 5 eller underkänd, där 5 är högsta betyg För godkänt betyg krävs minst 4 poäng från uppgifterna -7 Var och en av dessa sju uppgifter kan ge maximalt poäng För var och en av
Föreläsningsanteckningar Linjär Algebra II Lärarlyftet
Föreläsningsanteckningar Linjär Algebra II Lärarlyftet Per Alexandersson Föreläsning I Timme I: Repetition av matriser, linjära ekvationssystem Linjärt ekvationssystem: x + y + z 3w = 3 2x + y + z 4w =
16.7. Nollrum, värderum och dimensionssatsen
170 16 LINJÄRA AVBILDNINGAR 16.7. Nollrum, värderum och dimensionssatsen Definition 16.33. Låt F : V W vara en linjär avbildning. 1. Nollrummet till F definierar vi som mängden av alla u V, vilkas bild
SF1624 Algebra och geometri Tentamen Torsdag, 9 juni 2016
SF624 Algebra och geometri Tentamen Torsdag, 9 juni 26 Skrivtid: 8: 3: Tillåtna hjälpmedel: inga Examinator: Tilman Bauer Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng. Del A på
Frågorna 1 till 6 ska svaras med ett kryss för varje korrekt påstående. Varje uppgift ger 1 poäng.
ATM-Matematik Mikael Forsberg 34-4 3 3 Matematik med datalogi, mfl. Linjär algebra mag4 6 3 Skrivtid: 9:-4:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift
1. (Dugga 1.1) (a) Bestäm v (3v 2u) om v = . (1p) and u =
Kursen bedöms med betyg,, 5 eller underkänd, där 5 är högsta betyg. För godkänt betyg krävs minst poäng från uppgifterna -7. Var och en av dessa sju uppgifter kan ge maximalt poäng. För var och en av uppgifterna
SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A
SF1624 Algebra och geometri Lösningsförslag till tentamen 2010-10-22 DEL A (1) Uttrycket (x, y, z) (1, 1, 1) + s(1, 3, 0) + t(0, 5, 1) definierar ett plan W i rummet där s och t är reella parametrar. (a)
En vektor är mängden av alla sträckor med samma längd och riktning.
En vektor är mängden av alla sträckor med samma längd och riktning. Slappdefinition En vektor är en riktad sträcka som får parallellförflyttas. Tänk på vektorn som en pil. Betecknar vektorer med små bokstäver
Slappdefinition. Räkning med vektorer. Bas och koordinater. En vektor är mängden av alla sträckor med samma längd och riktning.
Slappdefinition En vektor är mängden av alla sträckor med samma längd och riktning. En vektor är en riktad sträcka som får parallellförflyttas. Tänk på vektorn som en pil. Betecknar vektorer med små bokstäver
Veckoblad 4, Linjär algebra IT, VT2010
Veckoblad, Linjär algebra IT, VT Under den fjärde veckan ska vi under måndagens föreläsning se hur man generaliserar vektorer i planet och rummet till vektorer med godtycklig dimension. Vi kommer också
Matematiska Institutionen KTH. Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604, den 9 juni 2011 kl
1 Matematiska Institutionen KTH Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604, den 9 juni 2011 kl 08.00-1.00. OBS: Inga hjälpmedel är tillåtna på tentamensskrivningen. Bonuspoäng
Stöd inför omtentamen i Linjär algebra TNA002.
LINKÖPINGS UNIVERSITET ITN, Campus Norrköping Univ lekt George Baravdish Stöd inför omtentamen i Linjär algebra TNA002. Läsråd: Detta är ett stöd för dig som vill repetera inför en omtentamen. 1. Börja
SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A
SF624 Algebra och geometri Lösningsförslag till modelltentamen DEL A () (a) Använd Gauss-Jordans metod för att bestämma lösningsmängden till ekvationssystemet 2x + 4x 2 + 2x 3 + 2x 4 = 2, 3x + 6x 2 x 3
Crash Course Algebra och geometri. Ambjörn Karlsson c januari 2016
Crash Course Algebra och geometri Ambjörn Karlsson c januari 2016 ambjkarlsson@gmail.com 1 Contents 1 Projektion och minsta avstånd 4 2 Geometriska avbildningar och avbildningsmatriser 5 3 Kärnan 6 3.1
Uppsala Universitet Matematiska Institutionen Thomas Erlandsson
Uppsala Universitet Matematiska Institutionen Thomas Erlandsson MATRISER MED MERA VEKTORRUM DEFINITION Ett vektorrum V är en mängd av symboler u som vi kan addera samt multiplicera med reella tal c så
Egenvärden och egenvektorer
Föreläsning 10, Linjär algebra IT VT2008 1 Egenvärden och egenvektorer Denition 1 Antag att A är en n n-matris. En n-vektor v 0 som är sådan att A verkar som multiplikation med ett tal λ på v, d v s Av
Linjär Algebra M/TD Läsvecka 2
Linjär Algebra M/TD Läsvecka 2 Omfattning och Innehåll 2.1 Matrisoperationer: addition av matriser, multiplikation av matris med skalär, multiplikation av matriser. 2.2-2.3 Matrisinvers, karakterisering
Vektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Linjära avbildningar II Innehåll Repetition:
16.7. Nollrum, värderum och dimensionssatsen
86 6 LINJÄRA AVBILDNINGAR 6.7. Nollrum, värderum och dimensionssatsen Definition 6.36. Låt F : V W vara en linjär avbildning.. Nollrummet till F definierar vi som mängden av alla u V som avbildas på nollvektorn,
Lösning till tentamensskrivning på kursen Linjär algebra, SF1604, den 12 mars 2013 kl
1 Matematiska Institutionen KTH Lösning till tentamensskrivning på kursen Linjär algebra, SF1604, den 12 mars 2013 kl 14.00-19.00. Examinator: Olof Heden. OBS: Inga hjälpmedel är tillåtna på tentamensskrivningen.
ax + y + 2z = 3 ay = b 3 (b 3) z = 0 har (a) entydig lösning, (b) oändligt många lösningar och (c) ingen lösning.
UPPSALA UNIVERSITET Matematiska institutionen Anders Johansson Prov i matematik ES, Frist, KandMa LINJÄR ALGEBRA och GEOMETRI I 2010 10 21 Skrivtid: 8.00 13.00. Tillåtna hjälpmedel: Skrivdon. Lösningarna
3 1 = t 2 2 = ( 1) ( 2) 1 2 = A(t) = t 1 10 t
SF624 Algebra och geometri Tentamen med lösningsförslag måndag, 3 mars 207 Betrakta vektorerna P =, Q = 3, u = Låt l vara linjen som går genom 2 0 P och Q och låt l 2 vara linjen som är parallell med u
Dagens ämnen. Linjära ekvationssystem: Successiv elimination Vektorer Definitionen Grundläggande räkneoperationer Bas och koordinater Ortsvektorer
Dagens ämnen Linjära ekvationssystem: Successiv elimination Vektorer Definitionen Grundläggande räkneoperationer Bas och koordinater Ortsvektorer Linjära ekvationer Med en linjär ekvation i n variabler,
Matriser. En m n-matris A har följande form. Vi skriver också A = (a ij ) m n. m n kallas för A:s storlek. 0 1, 0 0. Exempel 1
Matriser En m n-matris A har följande form a 11... a 1n A =.., a ij R. a m1... a mn Vi skriver också A = (a ij ) m n. m n kallas för A:s storlek. Exempel 1 1 0 0 1, 0 0 ( 1 3 ) 2, ( 7 1 2 3 2, 1 3, 2 1
SF1624 Algebra och geometri Lösningsförslag till tentamen Fredagen den 23 oktober, 2009 DEL A
SF1624 Algebra och geometri Lösningsförslag till tentamen Fredagen den 23 oktober, 2009 DEL A (1) (a) Bestäm de övriga rötterna till ekvationen z 3 11z 2 + 43z 65 = 0 när det är känt att en av rötterna
Vektorerna är parallella med planet omm de är vinkelräta mot planets normal, dvs mot
Kursen bedöms med betyg,, eller underkänd, där är högsta betyg. För godkänt betyg krävs minst poäng från uppgifterna -7. Var och en av dessa sju uppgifter kan ge maximalt poäng. För var och en av uppgifterna
SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A. t 2
SF64 Algebra och geometri Lösningsförslag till tentamen 4--4 DEL A. I rummet R har vi punkterna P = (,, 4) och Q = (,, ), samt linjen L som ges av vektorerna på formen t t, t där t är en reell parameter.
DEL I. Matematiska Institutionen KTH. Lösning till tentamensskrivning på kursen Linjär algebra II, SF1604, den 17 april 2010 kl
Matematiska Institutionen KTH Lösning till tentamensskrivning på kursen Linjär algebra II, SF604, den 7 april 200 kl 09.00-4.00. DEL I. En triangel i den tredimensionella rymden har sina hörn i punkterna
Vektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Linjära avbildningar I Innehåll En liten tillbakablick:
Preliminärt lösningsförslag
Preliminärt lösningsförslag v4, 9 augusti 4 Högskolan i Skövde (SK) Tentamen i matematik Kurs: MA4G Linjär algebra MAG Linjär algebra för ingenjörer Tentamensdag: 4-8-6 kl 43-93 Hjälpmedel : Inga hjälpmedel
19. Spektralsatsen Spektralsatsen SPEKTRALSATSEN
9 SPEKTRALSATSEN 9. Spektralsatsen 9.. Spektralsatsen Symmetriska avbildningar är en viktig klass av linjära avbildningar. Vi kommer nedan att formulera ett antal viktiga resultat för dessa avbildningar
Modul 1: Komplexa tal och Polynomekvationer
Modul : Komplexa tal och Polynomekvationer. Skriv på formen a + bi, där a och b är reella, a. (2 + i)( 2i) 2. b. + 2i + 3i 3 4i + 2i 2. Lös ekvationerna a. (2 i)z = 3 + i. b. (2 + i) z = + 3i c. ( 2 +
Vektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Areor, vektorprodukter, volymer och determinanter
Chalmers tekniska högskola Datum: kl Telefonvakt: Linnea Hietala MVE480 Linjär algebra S
MATEMATIK Hjälpmedel: inga Chalmers tekniska högskola Datum: 69 kl 4-8 Tentamen Telefonvakt: Linnea Hietala 55 MVE48 Linjär algebra S Tentan rättas och bedöms anonymt Skriv tentamenskoden tydligt på placeringlista
SF1624 Algebra och geometri Tentamen med lösningsförslag onsdag, 11 januari 2017
SF64 Algebra och geometri Tentamen med lösningsförslag onsdag, januari 7. (a) För vilka värden på k har ekvationssystemet (med avseende på x, y och z) kx + ky + z 3 x + ky + z 4x + 3y + 3z 8 en entydig
SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A
SF1624 Algebra och geometri Lösningsförslag till tentamen 2011-06-09 DEL A (1) Betrakta ekvationssystemet x y 4z = 2 2x + 3y + z = 2 3x + 2y 3z = c där c är en konstant och x, y och z är de tre obekanta.
SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A
SF1624 Algebra och geometri Lösningsförslag till tentamen 14129 DEL A 1 (a) Bestäm linjen genom punkterna A = (,, 1) och B = (2, 4, 1) (1 p) (b) Med hjälp av projektion kan man bestämma det kortaste avståndet
SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A
SF64 Algebra och geometri Lösningsförslag till tentamen 533 DEL A Planet H ges av ekvationen 3x y + 5z + a) Bestäm en linje N som är vinkelrät mot H ( p) b) Bestäm en linje L som inte skär planet H ( p)
SKRIVNING I VEKTORGEOMETRI
SKRIVNING I VEKTORGEOMETRI 017-05-09 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade. 1. Bestäm
LÖSNINGAR LINJÄR ALGEBRA LUNDS TEKNISKA HÖGSKOLA MATEMATIK
LUNDS TEKNISKA HÖGSKOLA MATEMATIK LÖSNINGAR LINJÄR ALGEBRA 2017-10-2 1 Om vi skriver ekvationssystemet på matrisform AX = Y, så vet vi att systemet har en entydig lösning X = A 1 Y då det A 0 Om det A
6. Matriser Definition av matriser 62 6 MATRISER. En matris är ett rektangulärt schema av tal: a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n A =
62 6 MATRISER 6 Matriser 6 Definition av matriser En matris är ett rektangulärt schema av tal: A a a 2 a 3 a n a 2 a 22 a 23 a 2n a m a m2 a m3 a mn Matrisen A säges vara av typ m n, där m är antalet rader
Lösningsförslag till skrivningen i Vektorgeometri (MAA702) Måndagen den 13 juni 2005
VÄXJÖ UNIVERSITET Matematiska och systemtekniska institutionen Per-Anders Svensson Lösningsförslag till skrivningen i Vektorgeometri (MAA70) Måndagen den 13 juni 005 Uppgift 1. Lös ekvationssystemet AX
LYCKA TILL! kl 8 13
LUNDS TEKNISK HÖGSKOL MTEMTIK TENTMENSSKRIVNING Linjär algebra 0 0 kl 8 3 ING HJÄLPMEDEL Förklara dina beteckningar och motivera lösningarna väl Om inget annat anges är koordinatsystemen ortonormerade
Lösningsförslag till skrivningen i Vektorgeometri (MAA702) måndagen den 30 maj 2005
VÄXJÖ UNIVERSITET Matematiska och systemtekniska institutionen Per-Anders Svensson Lösningsförslag till skrivningen i Vektorgeometri (MAA702) måndagen den 30 maj 2005 Uppgift. Bestäm samtliga vektorer
UPPSALA UNIVERSITET Matematiska institutionen Styf. Exempeltenta med lösningar Programmen EI, IT, K, X Linjär algebra juni 2004
UPPSALA UNIVERSITET Matematiska institutionen Styf Exempeltenta med lösningar Programmen EI, IT, K, X Linjär algebra juni 24 Skrivtid: Fem timmar. Tillåtna hjälpmedel: Skrivdon. Lösningarna skall vara
4x az = 0 2ax + y = 0 ax + y + z = 0
LUNDS TEKNISKA HÖGSKOLA MATEMATIK TENTAMENSSKRIVNING LINJÄR ALGEBRA 206-03-4 kl 8 3 INGA HJÄLPMEDEL Lösningarna skall vara försedda med ordentliga motiveringar Alla koordinatsystem får antas vara ortonormerade
LINJÄR ALGEBRA HT2013. Kurslitteratur: Anton: Elementary Linear Algebra 10:e upplagan.
LINJÄR ALGEBRA HT2013 JONAS WIKLUND Kurslitteratur: Anton: Elementary Linear Algebra 10:e upplagan. 1. LINJÄRA EKVATIONSSYSTEM OCH MATRISER 1.1 Introduktion. Till stor del bör du känna till ekvationslösning
SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A
SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A (1) Vid lösningen av ekvationssystemet x 1 3x 2 +3x 3 4x 4 = 1, x 2 +x 3 x 4 = 0, 4x 1 +x 2 x 3 2x 4 = 5, kommer man genom Gausselimination
Vektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Diagonalisering av linjära avbildningar III
1. (a) (1p) Undersök om de tre vektorerna nedan är linjärt oberoende i vektorrummet
1 Matematiska Institutionen, KTH Lösningar till tentamensskrivning på kursen Linjär algebra, SF1604, för CDA- TE, CTFYS och vissa CL, fredagen den 13 mars 015 kl 08.00-13.00. Examinator: Olof Heden. OBS:
0 Allmänt. Följande delar behöver man kunna utöver avsnitten som beskrivs senare i dokumentet.
Linja r algebra TATA (del) Allmänt Följande delar behöver man kunna utöver avsnitten som beskrivs senare i dokumentet. Matrisekvationer och Gauss-elimination o Parameterform Allmänt om vektorer o Räknelagar
{ 1, om i = j, e i e j = 0, om i j.
34 3 SKALÄPRODUKT 3. Skaläprodukt Definition 3.. Skalärprodukten mellan två vektorer u och v definieras där θ är vinkeln mellan u och v. u v = u v cos θ, Anmärkning 3.. Andra beteckningar för skalärprodukt
SF1624 Algebra och geometri Lösningsförslag till tentamen Lördagen den 5 juni, 2010 DEL A
SF624 Algebra och geometri Lösningsförslag till tentamen Lördagen den 5 juni, 200 DEL A ( Betrakta det komplexa talet w = i. (a Skriv potenserna w n på rektangulär form, för n = 2,, 0,, 2. ( (b Bestäm
SF1624 Algebra och geometri Lösningsförsag till modelltentamen
SF1624 Algebra och geometri Lösningsförsag till modelltentamen DEL A (1) a) Definiera begreppen rektangulär form och polär form för komplexa tal och ange sambandet mellan dem. (2) b) Ange rötterna till
Vektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://w3.msi.vxu.se/users/pa/vektorgeometri/gymnasiet.html Institutionen för datavetenskap, fysik och matematik Linnéuniversitetet Vektorer i planet
Vektorer. Kapitel 1. Vektorbegreppet. 1.1 Låt u=(4,0, 1,3) och v=(2,1,4, 2). Beräkna vektorn 2u 3v.
Kapitel 1 Vektorer Vektorbegreppet 1.1 Låt u=(4,0, 1,3) och v=(2,1,4, 2). Beräkna vektorn 2u 3v. 1.2 Rita ut vektorerna u=(3,1) och v=( 2,2) i samma koordinatsystem. Illustrera additionerna/subtraktionerna
TMV166/186 Linjär Algebra M/TD 2011/2012 Läsvecka 1. Omfattning. Innehåll 2012-01-20. Lay, kapitel 1.1-1.9, Linjära ekvationer i linjär algebra
TMV166/186 Linjär Algebra M/TD 2011/2012 Läsvecka 1 Omfattning Lay, kapitel 1.1-1.9, Linjära ekvationer i linjär algebra Innehåll Olika aspekter av linjära ekvationssystem 1. skärning mellan geometriska
. b. x + 2 y 3 z = 1 3 x y + 2 z = a x 5 y + 8 z = 1 lösning?
Repetition, Matematik 2, linjär algebra 10 Lös ekvationssystemet 5 x + 2 y + 2 z = 7 a x y + 3 z = 8 3 x y 3 z = 2 b 11 Ange för alla reella a lösningsmängden till ekvationssystemet 2 x + 3 y z = 3 x 2
SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A. (1 p) (c) Bestäm avståndet mellan A och linjen l.
SF64 Algebra och geometri Lösningsförslag till tentamen 5.6. DEL A. Betrakta följande punkter i rummet: A = (,, ), B = (,, ) och C = (,, ). (a) Ange en parametrisk ekvation för linjen l som går genom B
Matematiska Institutionen KTH. Lösning till tentamensskrivning på kursen Linjär algebra, SF1604, den 15 mars 2012 kl
Matematiska Institutionen KTH Lösning till tentamensskrivning på kursen Linjär algebra, SF604, den 5 mars 202 kl 08.00-3.00. Examinator: Olof Heden. OBS: Inga hjälpmedel är tillåtna på tentamensskrivningen.
A = (3 p) (b) Bestäm alla lösningar till Ax = [ 5 3 ] T.. (3 p)
SF1624 Algebra och geometri Tentamen med lösningsförslag fredag, 21 oktober 216 1 Låt A = [ ] 4 2 7 8 3 1 (a) Bestäm alla lösningar till det homogena systemet Ax = [ ] T (3 p) (b) Bestäm alla lösningar
1 som går genom punkten (1, 3) och är parallell med vektorn.
KTH Matematik Extra uppgifter på linjär algebra SF1621 Analytiska metoder och linjär algebra 2 för OPEN och T Förkunskaper Obs en del av detta är repetition från förra kursen Men innan ni ens börjar med
SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A
SF1624 Algebra och geometri Lösningsförslag till tentamen 2013-10-28 DEL A 1. Vi har matriserna 1 1 1 1 1 0 3 0 A = 1 1 1 1 1 1 1 1 och E = 0 0 0 1 0 0 1 0. 1 0 0 1 0 1 0 0 (a) Bestäm vilka elementära
Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna 1-4.
Uppsala Universitet Matematiska Institutionen Bo Styf LAoG I, 5 hp ES, KandMa, MatemA -9-6 Sammanfattning av föreläsningarna -. Föreläsningarna, 6/9 /9 : I sammanfattningen kommer en del av det vi tagit
SKRIVNING I VEKTORGEOMETRI
SKRIVNING I VEKTORGEOMETRI 2016-05-10 14.00-17.00 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade.
ANTECKNINGAR - LINJÄR ALGEBRA II
ANTECKNINGAR - LINJÄR ALGEBRA II OLOF BERGVALL Contents Vektorrum och delrum Vektorrum I Vektorrum II 6 Delrum 9 4 Övningar 4 Linjärt oberoende, baser och koordinater 5 Linjärt oberoende 5 Baser 7 Koordinater
TMV166 Linjär algebra för M, vt 2016
TMV166 Linjär algebra för M, vt 2016 Lista över alla lärmål Nedan följer en sammanfattning av alla lärmål i kursen, uppdelade enligt godkänt- och överbetygskriterier. Efter denna lista följer ytterligare
Preliminärt lösningsförslag
Preliminärt lösningsförslag v7, 7 januari 6 Högskolan i Skövde Tentamen i matematik Kurs: MA4G Linjär algebra MAG Linjär algebra för ingenjörer Tentamensdag: 5--7 kl 43-93 Hjälpmedel : Inga hjälpmedel
Frågorna 1 till 6 ska svaras med ett kryss för varje korrekt påstående. Varje uppgift ger 1 poäng. Använd bifogat formulär för dessa 6 frågor.
TM-Matematik Mikael Forsberg 74-4 Matematik med datalogi, mfl. Linjär algebra ma4a 6 Skrivtid: 9:-4:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift på
Instuderingsuppgifter & Läsanvisningar till Linjär Algebra II för lärare
Instuderingsuppgifter & Läsanvisningar till Linjär Algebra II för lärare Per Alexandersson February 27, 2013 Abstract Här är läsanvisningar samt några kompletterande uppgifter till materialet i kursboken
Del 1: Godkäntdelen. TMV141 Linjär algebra E
Var god vänd! MATEMATIK Hjälpmedel: ordlistan från kurswebbsidan, ej räknedosa Chalmers tekniska högskola Datum: 26083 kl 0830 230 Tentamen Telefonvakt: Christoffer Standar 0703-088304 TMV4 Linjär algebra
Geometriska vektorer
Föreläsning 1, Linjär algebra IT VT2008 1 Geometriska vektorer De begrepp som linjär algebra kretsar kring är vektorer och matriser Dessa svarar mot datorernas fält (`arra') av dimension ett respektive
Preliminärt lösningsförslag
Preliminärt lösningsförslag v04, 7 augusti 05 Högskolan i Skövde (SK) Tentamen i matematik Kurs: MA4G Linjär algebra MAG Linjär algebra för ingenjörer Tentamensdag: 05-08-7 kl 080-0 Hjälpmedel : Inga hjälpmedel
Detta cosinusvärde för vinklar i [0, π] motsvarar α = π 4.
LUNDS TEKNISKA HÖGSKOLA MATEMATIK LÖSNINGAR LINJÄR ALGEBRA 8-- kl 4-9 a) Triangelns area är en halv av parallellograms area som spänns upp av tex P P (,, ) och P P (,, ), således area av P P P (,, ) (,,
Lösningar till utvalda uppgifter i kapitel 8
Lösningar till utvalda uppgifter i kapitel 8 8. Alla vektorer som är normaler till planet, d v s vektorer på formen (0 0 z) t, avbildas på nollvektorn. Dessa kommer därför att vara egenvektorer med egenvärdet
SF1624 Algebra och geometri
Föreläsning 16 Institutionen för matematik KTH 5 december 2017 Modul 6 Veckans arbete 1. Idag: Ortonormalt, kap 7.1-7.2 a. Ortogonala och ortonormala baser b. Gram-Schmidts metod c. Ortogonala matriser