LOGIK, MÄNGDER OCH FUNKTIONER

Storlek: px
Starta visningen från sidan:

Download "LOGIK, MÄNGDER OCH FUNKTIONER"

Transkript

1 LOGIK, MÄNGDER OCH FUNKTIONER KOMPLETTERANDE STUDIEMATERIAL TILL MMA121 MATEMATISK GRUNDKURS VÅRTERMINEN 2014 ERIK DARPÖ 1. Utsagor, implikation och ekvivalens En utsaga är en påstående, formulerat med matematiska formler eller vanlig text, som kan vara sant eller falskt, eventuellt beroende på någon okänd variabel. Några exempel är: a) 2 < 3; b) 2 > 3; c) 4x > 3; d) jorden är rund; e) det är måndag idag. Nedanstående exempel är inte utsagor: f) 2; g) x; h) jorden; i) måndag. Observera skillnaden mellan de två typerna: Exemplen(a) (e) är påståenden om någonting, (f) (i) är enbart namn på saker eller företeelser. Emedan de förra är antingen sanna eller falska, har de senare inget eget sanningsvärde. Det som händer när man löser en ekvation är att man har en utsaga (ofta om ett tal x) som man steg för steg omformulerar till enklare utsagor, så att man till sist kan läsa ut vad värdet av x måste vara för att utsagan skall vara sann. Till exempel: x 2 + x 3 = 10 3x 6 + 2x 6 = 10 5x 6 = 10 5x = 60 x = 12 I varje steg ersätter man den ovanstående utsagan med en annan, som är sann om och endast om den ovanstående är det. Exempelvis är den första och den andra raden sanna för samma värden på x, ty x/2 = 3x/6 och x/3 = 2x/6, så vänsterleden x 2 + x 3 och 1 3x 6 + 2x 6

2 2 ERIK DARPÖ i de båda utsagorna är lika med varandra. Likaledes gäller att exempelvis utsagorna 5x 6 = 10 och 5x = 60 är sanna precis samtidigt, eftersom den ena ekvationen kan fås från den andra genom att multiplicera respektive dividera båda led i den andra med talet 6. Att två utsagor (om exempelvis variabeln x) är sanna precis samtidigt uttrycks i matematiken ofta med en så kallad ekvivalenspil:. Lösningen av ekvationen ovan skulle alltså även kunna skrivas som: x 2 + x 3 = 10 3x 6 + 2x 6 = 10 5x 6 = 10 5x = 60 x = 12. I exemplet ovan visar kalkylen att likheten x 2 + x 3 = 10 är uppfylld om och endast om x = 12. Det är emellertid inte alltid som det typen av omskrivningar är de mest praktiska. Vissa typer av uträkningar (bland annat lösningar av rotekvationer) kan ge upphov till så kallade falska rötter. Betrakta nedanstående ekvationslösning: (1) x 2 4 x 2 = 0 x 2 4 = 0 x 2 = 4 x = ±2 Eftersom vänsterledet den ursprungliga ekvationen inte är definierat för x = 2, är detta värde inte en lösning, trots att vår kakyl verkar indikera just det. Förklaringen ligger i det första steget i uträkningen, där ekvationen x2 4 x 2 = 0 ersätts med x2 4 = 0. För att den första likheten skall kunna vara sann, måste den senare hålla (ty en kvot a/b är lika med noll endast om täljaren a är lika med noll). Dock kan x 2 4 = 0 vara sant utan att den första ekvationen är det; nämligen om x = 2: Det är klart att = 0, medan uttrycket (x 2 4)/(x 2) är odefinierat (och därmed i synnerhet inte lika med noll) för x = 2. Ekvationerna x2 4 x 2 = 0 = 0 är sann så måste även x 2 4 = 0 vara det. Detta förhållande mellan två utsagor kallas inom matematiken för implikation, och indikeras med symbolen. Vårt sista exempel skulle alltså kunna skrivas som: x 2 4 x 2 = 0 x2 4 = 0 x 2 = 4 x = ±2. och x 2 4 = 0 är alltså inte ekvivalenta, däremot gäller att om x2 4 x 2 Slutsatsen är att om x är en lösning till ekvation (1) så måste x vara lika med 2 eller 2, däremot är det inte säkert att dessa två värden verkligen är lösningar till ekvationen. För att avgöra detta måste vi sätta in dem i den ursprungliga ekvationen och testa, varvid vi ser att endast x = 2 är en lösning. Sammafattningsvis används alltså symbolerna och mellan utsagor, till skilland från exempelvis = och, som sätts mellan termer som en del av en utsaga. Låt p och q vara utsagor (som kan bero på en eller flera variabler). Då skriver man p q p q ifall p och q är sanna precis samtidigt; ifall p är sann endast om q är sann.

3 LOGIK, MÄNGDER OCH FUNKTIONER KOMPLETTERANDE STUDIEMATERIAL TILLMMA121 MATEMATISK GRUNDKURSVÅRT Analogt skriver man ibland p q ifall p är sann om q är sann (det vill säga, q är sann endast om p är sann). 2. Funktioner Låt A och B vara mängder. En funktion f : A B från A till B är en regel, som till varje element a A ordnar ett element f(a) B. Notationen a b betyder att bilden a av under en given funktion är b. De båda uttrycken f : A B, f(a) = b f : A B, a b betyder alltså samma sak. Mängden A kallas f:s definitionsmängd (domain). Ibland skriver man D f för att beteckna definitionsmängden av f. B är målmängden (codomain) till f. Värdemängden (image) till f är V f = {f(a) a A} B (skrivs ibland också f(a) eller im(f)). Elementet f(a) B kallas för bilden av a A under f. Mängden f 1 (b) = {a A f(a) = b} A är urbilden (preimage) av elementet b B. I många sammanhang anges funktioner av reella variabler enbart som formler, utan explicit angivelse av definition- och målmängd. I dessa fall är det underförstått att definitionsmängden är den största mängd för vilken funktionsuttrycket är definierat. När man till exempel stöter på ett uttryck som f(x) = x x+1 skall man tolka det som att definitionsmängden är D f = {x R x 1} (eftersom funktionsuttrycket är inte definierat för x = 1). Värdemängden består av alla tal y som kan skrivas som y = x x+1 för något x D f. Löser vi ut x ur denna ekvation får vi: y(x+1) = x yx+y = x y = x yx y = (1 y)x y 1 y = x Det sista uttrycket, x = y/(1 y), är definierat och ingår i D f om och endast om y 1. I så fall har vi att ( ) y y 1 y f = y 1 y 1 y +1 = = y 1 y 1 y = y 1 1 = y, y 1 y y+(1 y) 1 y det vill säga, y ingår i värdemängden om y 1. Om istället y = 1 så implicerar likheten y = x/(x+1) att x+1 = x, vilket inte är uppfyllt för något x, och talet 1 ligger därför inte i värdemängden. Vi har alltså visat att V f = {y R y 1}.

4 4 ERIK DARPÖ 3. Blandade övningar (1) Sätt in någon av följande symboler i uttrycket, så att det bildar en sann utsaga:,,, =,,, (a) , (b) x 2... x 1, (c) x 2 = y... x = y, (d) (x 2)(x+3) x 2 4 = 0... x = 3, (e) x+1... x 1, (f) z Q... {z Q x 2}. (2) Ange i var och ett av nedanstående fall vilken av de tre symbolerna,, som passar in. (a) x = 5... (x 5)(x 6) = 0 (b) x < 7... x < 6 (c) x 2 = x = 4 (d) x < 2... x < 2 (e) x > 3... x > 3 (f) (x 3)(x 11) 0... x 7 4 (3) Lös ekvationen genom att successsivt skriva om den som enklare, ekvivalenta uttryck. [Mellan alla steg i lösningen skall alltså en ekvivalenspil,, kunna skrivas.] (a) x2 4 x+2 = 0 (b) 3x 8 = 12x+29 (4) Bestäm definitions- och värdemängder till följande funktionsuttryck: (a) f(x) = x+2 x 2, (b) g(x) = x+7, (c) h(x) = 1 x + x+2, { x om x 0, (d) u(x) = x+1 om x < 0. (5) Funktionerna f och g är relaterade genom sambandet f(x) = g(3x). Antag att definitionsoch värdemängderna för funktionen f är D f = {x : 0 x 4} respektive V f = {y : 2 y 5}. Ange och förklara definitions- och värdemängderna för g. Mälardalens Högskola, UKK, Box 883, Västerås

5 Följande är saxat ur ett kompendium om logik och mängdlära av Clas Nordin. Hela kompendiet finns på kurshemsidan som extraläsning för den som är intresserad. Några begrepp ur mängdläran Mängdlära är en avancerad matematisk disciplin, införd av den tyske matematikern Cantor i slutet av 1800-talet. I denna teori används definitioner och beteckningar som är användbara även i mindre avancerade sammanhang. Några av dessa skall beskrivas i detta avsnitt. I matematiken arbetar man med objekt av olika slag, t ex punkter, tal, räta linjer och polynom. Man har ofta anledning att intressera sig för en samling av objekt och betrakta denna samling som en enhet. En sådan samling av objekt kallas en mängd och objekten som samlingen består av kallas mängdens element. Om man vill fortsätta ett resonemang kring en viss mängd är det bekvämt att ge den en beteckning. Exempel 1 M={efternamn på de personer mantalsskrivna i Västerås som fyller år i januari} Detta läses mängden av efternamn på de personer mantalsskrivna i Västerås som fyller år i januari. Klamrarna { } kallas i detta sammanhang mängdklamrar. Elementen i mängden är efternamn. Nordin är ett element i mängden eftersom det fanns en person mantalsskriven i Västerås med födelsedag i januari som hette Clas Gustaf Nordin. Förmodligen är Andersson ett element i M. Övning 2 a) Motivera förmodan att Andersson är ett element i M. b) Kan du genom att bara utnyttja kunskap om dig själv avgöra om ditt eget efternamn är ett element i mängden M? Motivera! c) Ange ett tal, så litet som möjligt, som är sådant att antalet element i M säkert är mindre än detta tal. Motivera ditt val. Det finns ett bestämt ändligt antal element i M. Man säger att M är ändlig. Om en mängd ej är ändlig kallas den oändlig. Lägg märke till hur vi här definierar begreppet ändlig mängd och sedan använder detta begrepp för att definiera vad som menas med en oändlig mängd. Övning 3 a) Ge ett exempel på en ändlig mängd. b) Ge ett exempel på en oändlig mängd.

6 Talmängder Nedan visas hur man kan beskriva den oändliga mängden N av naturliga tal. N={naturliga tal} ={0, 1, 2, 3,...} Denna rad läses N är lika med mängden av naturliga tal är lika med mängden av talen 0,1,2,3 osv. Elementen i N består av alla naturliga tal 0, 1, 2, 3,.... Efter trean finns ett kommatecken följt av fyra prickar. De tre första prickarna efter kommatecknet står för en konvention som innebär att uppräkningen skall fortsätta på det sätt som den påbörjade uppräkningen antyder. Den sista punkten, som föregås av ett mellanslag, är den vanliga punkt som man använder då man avslutar en mening. En viktig symbol är tillhörtecknet och tillhörintetecknet. Man skriver som läses 7 tillhör N med innebörden att 7 är ett element i N. Enklare säger man förstås att 7 är ett naturligt tal. Det är enkelt att inse hur man läser och vad detta innebär. N är en standardbeteckning i all matematisk litteratur över hela världen på mängden av naturliga tal, eventuellt med undantag av äldre litteratur där talet 0 kan vara undantaget från mängden. Resten av detta avsnitt definierar andra viktiga talmängder och anger deras standardbeteckningar. Beteckningarna är internationella. Det är en bra idé att lära sig dem och vad de står för så snart som möjligt. Z={hela tal} ={...,-3,-2,-1,0,1,2,3,...} = {0, ± 1, ± 2, } Se ovan hur man läser beteckningen för naturliga tal och fundera ut hur man kan läsa ovanstående rad. Q ={rationella tal}={tal som kan skrivas på formen a/b där a Z och b Z och där b 0} Övning 4 a) Visa med hjälp av definitionen att 3,14 är ett rationellt tal. b) Visa med hjälp av definitionen att 0 Q. c) Visa med hjälp av definitionen att 10 är ett rationellt tal. d) Vilka av de hela talen är rationella? e) Ge exempel på ett rationellt tal som inte tillhör talmängden Z. f) Ge exempel på ett x som är sådant att x Z men x N. Naturliga tal, möjligtvis med undantag av talet 0, är enkla att koppla till vardagslivet. De används när man räknar antal. De flesta människor känner inte heller något hinder att använda negativa tal, åtminstone inte i Sverige där temperaturer under noll grader betecknas med hjälp av ett minustecken. Rationella tal är inte heller svåra att koppla till vardagslivet. De flesta människor är medvetna av innebörden då man säger att någon skall ärva 2/7, två sjundedelar, av den totala kvarlåtenskapen. Möjligtvis kan det ålderdomliga ordet kvarlåtenskap ställa till problem!

7 Observera att man med 12 symboler (10 siffror, minustecken och bråkstreck) på ett lättfattligt sätt kan ange vilket som helst rationellt tal. En fantastisk uppfinning! Eftersom Q omfattar N och N är oändlig så är även Q oändlig. Att det finns tal som inte är rationella insåg redan den grupp av grekiska matematiker som förknippas med Pythagoras och verkade i Grekland mellan 585 f kr och 400 f kr. Från denna tid finns ett bevis för att längden av diagonalen i en kvadrat där sidlängden är 1 enhet inte kan uttryckas på formen a/b där a och b är heltal och b inte lika med noll. Samma bevis används fortfarande när man bevisar att 2 inte är rationellt. Tal som inte är rationella kallas irrationella. Ir är en förled som betyder icke. Mängden av irrationella tal är också oändlig och man kan i en viss, här inte definierad mening, säga att de irrationella talen är fler än de rationella. Observera att ordet fler här inte kan ha den vanliga innebörden eftersom de båda talmängderna bägge är oändliga. För att namnge irrationella tal räcker det inte med de 12 symbolerna ovan. Irrationella tal som man ofta refererar får egna beteckningar. π och e är två viktiga exempel på sådana tal. Den talmängd som består av alla rationella och alla irrationella tal tillsammans kallas mängden av reella tal och betecknas R. Det är denna talmängd som du är van att illustrera på tallinjen. Talmängden R kan utvidgas till en större talmängd, C={komplexa tal, mängden av alla komplexa tal. Att talmängden är större innebär att den förutom alla reella tal också innehåller andra slags tal. Dessa andra tal kallas icke-reella. Ett av talen i denna 2 talmängd betecknas i och uppfyller i = 1. C illustreras i det komplexa talplanet. Sammanfattning av viktiga talmängder N = {naturliga tal} = {0, 1, 2, 3,...} Z = {hela tal} = {...,-3,-2,-1,0,1,2,3,...} = {0, ± 1, ± 2, } Q = {rationella tal} = = {tal som kan skrivas på formen a/b där a Z och b Z och b 0} R = {reella tal} C ={ komplexa tal} Övning 5 a) Ange minst tre reella tal som inte är rationella. b) Ange minst ett rationellt tal som inte är ett heltal. c) Ange minst ett heltal som inte är ett naturligt tal. Övning 6 Med ett decimaltal avses reellt tal på formen a1 a2...a n,b1b 2... bm (m stycken decimaler) a 1 0 och bm. där alla talen a1,a2,...,an,b1,b2,..., bm är naturliga tal och 0 a) Visa med hjälp av definitionen att varje decimaltal är ett rationellt tal.

8 b) Ge exempel på ett rationellt tal som inte är ett decimaltal. Illustration av mängder När man skall illustrera samband och relationer mellan mängder använder man ofta plana rundade figurer. Figuren illustrerar en mängd som betecknats med A. Man tänker sig att elementen i A ligger innanför den runda kurvan. Nedanstående figur illustrerar att varje rationellt tal är reellt och att de irrationella talen består av de reella tal som inte är rationella. De irrationella talen skall tänkas ligga i den del som är innanför den innersta kurvan och utanför den yttersta kurvan. Illustration av reella intervall Nedan finns en vanlig variant av standardbeteckningar för de mängder av reella tal som kallas intervall. I figurerna bredvid visas en vanlig variant på hur de illustreras. Eftersom dessa standardbeteckningar kommer att användas flitigt i flera kurser är det bra att lära sig dem utantill så snart som möjligt. [ a, b] = { x : a x b} [ a, b) = { x : a x < b} ( a, b] = { x : a < x b} ( a, b) = { x : a < x < b} [ a, ) = { x : x a} ( a, ) = { x : x > a}

9 (, b ) = { x : x < b} (, b] = { x : x b} Anmärkning I beteckningarna ovan så läser man tecknet : sådana att. En annan vanlig beteckning för frasen sådana att är (ett lodrät streck). Den första beteckningen kan fullständigt läsas mängden av x sådana att a är mindre än eller lika med x som är mindre än eller lika med b. Övning 7 Illustrera intervallen a) (3,4) b) [-1,0) c) (0,3] d) (-,-1) e) [2,5] Övning 10 a) Vilka tal ingår i talmängden { x R : x = 2 k där k Zoch k > 0} beteckningen? b) Beskriv med mängdlärans symboler mängden av alla udda tal.? Hur utläser man

Innehållsförteckning Inledning... 2 Vad är matematik... 3 Det matematiska språket... 4 Några begrepp ur mängdläran... 4

Innehållsförteckning Inledning... 2 Vad är matematik... 3 Det matematiska språket... 4 Några begrepp ur mängdläran... 4 Innehållsförteckning Inledning... Vad är matematik... 3 Det matematiska språket... 4 Några begrepp ur mängdläran... 4 Talmängder... 5 Mängdoperationer, den tomma mängden... 9 Några begrepp ur logiken...

Läs mer

Sanningsvärdet av ett sammansatt påstående (sats, utsaga) beror av bindeord och sanningsvärden för ingående påståenden.

Sanningsvärdet av ett sammansatt påstående (sats, utsaga) beror av bindeord och sanningsvärden för ingående påståenden. MATEMATISK LOGIK Matematisk logik formaliserar korrekta resonemang och definierar formellt bindeord (konnektiv) mellan påståenden (utsagor, satser) I matematisk logik betraktar vi påståenden som antingen

Läs mer

TATM79: Föreläsning 1 Notation, ekvationer, polynom och summor

TATM79: Föreläsning 1 Notation, ekvationer, polynom och summor TATM79: Föreläsning 1 Notation, ekvationer, polynom och summor Johan Thim 22 augusti 2018 1 Vanliga symboler Lite logik Implikation: P Q. Detta betyder att om P är sant så är Q sant. Utläses P medför Q

Läs mer

TATM79: Föreläsning 1 Notation, ekvationer, polynom och olikheter

TATM79: Föreläsning 1 Notation, ekvationer, polynom och olikheter TATM79: Föreläsning 1 Notation, ekvationer, polynom och olikheter Johan Thim 15 augusti 2015 1 Vanliga symboler Lite logik Implikation: P Q. Detta betyder att om P är sant så är Q sant. Utläses P medför

Läs mer

Modul 1 Mål och Sammanfattning

Modul 1 Mål och Sammanfattning Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2016-2017 Lars Filipsson Modul 1 Mål och Sammanfattning 1. Reella tal. 1. MÅL FÖR MODUL 1 Känna till talsystememet och kunna använda notation

Läs mer

Institutionen för Matematik. SF1625 Envariabelanalys. Lars Filipsson. Modul 1

Institutionen för Matematik. SF1625 Envariabelanalys. Lars Filipsson. Modul 1 Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2017-2018 Lars Filipsson Modul 1 1. MÅL FÖR MODUL 1 1. Reella tal. Känna till talsystememet och kunna använda notation för mängder och intervall

Läs mer

Föreläsning 1: Tal, mängder och slutledningar

Föreläsning 1: Tal, mängder och slutledningar Föreläsning 1: Tal, mängder och slutledningar Tal Tal är organiserade efter några grundläggande egenskaper: Naturliga tal, N De naturliga talen betecknas med N och innehåller alla positiva heltal, N =

Läs mer

MATEMATIKENS SPRÅK. Avsnitt 1

MATEMATIKENS SPRÅK. Avsnitt 1 Avsnitt 1 MATEMATIKENS SPRÅK Varje vetenskap, liksom varje yrke, har sitt eget språk som ofta är en blandning av vardagliga ord och speciella termer. En instruktionshandbok för ett kylskåp eller för en

Läs mer

Mängdlära. Kapitel Mängder

Mängdlära. Kapitel Mängder Kapitel 2 Mängdlära 2.1 Mängder Vi har redan stött på begreppet mängd. Med en mängd menar vi en väldefinierad samling av objekt eller element. Ordet väldefinierad syftar på att man för varje tänkbart objekt

Läs mer

MA2047 Algebra och diskret matematik

MA2047 Algebra och diskret matematik MA2047 Algebra och diskret matematik Något om logik och mängdlära Mikael Hindgren 5 september 2018 Utsagor Utsaga = Påstående som har sanningsvärde Utsagan kan vara sann (S) eller falsk (F) öppen eller

Läs mer

LMA033/LMA515. Fredrik Lindgren. 4 september 2013

LMA033/LMA515. Fredrik Lindgren. 4 september 2013 LMA033/LMA515 Fredrik Lindgren Matematiska vetenskaper Chalmers tekniska högskola och Göteborgs universitet 4 september 2013 F. Lindgren (Chalmers&GU) Matematik 4 september 2013 1 / 25 Outline 1 Föreläsning

Läs mer

ANDREAS REJBRAND NV3ANV Matematik Matematiskt språk

ANDREAS REJBRAND NV3ANV Matematik   Matematiskt språk ANDREAS REJBRAND NV3ANV 2006-02-14 Matematik http://www.rejbrand.se Matematiskt språk Innehållsförteckning MATEMATISKT SPRÅK... 1 INNEHÅLLSFÖRTECKNING... 2 INLEDNING... 3 MÄNGDER... 4 Att uttrycka en mängd...

Läs mer

Induktion, mängder och bevis för Introduktionskursen på I

Induktion, mängder och bevis för Introduktionskursen på I Induktion, mängder och bevis för Introduktionskursen på I J A S, ht 04 1 Induktion Detta avsnitt handlar om en speciell teknik för att försöka bevisa riktigheten av påståenden eller formler, för alla heltalsvärden

Läs mer

Övningshäfte 3: Funktioner och relationer

Övningshäfte 3: Funktioner och relationer GÖTEBORGS UNIVERSITET MATEMATIK 1, MAM100, HT2014 INLEDANDE ALGEBRA Övningshäfte 3: Funktioner och relationer Övning H Syftet är att utforska ett av matematikens viktigaste begrepp: funktionen. Du har

Läs mer

ÄNDLIGT OCH OÄNDLIGT AVSNITT 4

ÄNDLIGT OCH OÄNDLIGT AVSNITT 4 VSNITT ÄNDLIGT OCH OÄNDLIGT Är det möjligt att jämföra storleken av olika talmängder? Har det någon mening om man säger att det finns fler irrationella tal än rationella? Är det överhuvudtaget möjligt

Läs mer

Block 1 - Mängder och tal

Block 1 - Mängder och tal Block 1 - Mängder och tal Mängder Mängder och element Venndiagram Talmängder Heltalen Z Rationella talen Q Reella talen R Räkning med tal. Ordning av talen i R Intervall Absolutbelopp Olikheter 1 Prepkursen

Läs mer

Övningshäfte 1: Logik och matematikens språk

Övningshäfte 1: Logik och matematikens språk GÖTEBORGS UNIVERSITET MATEMATIK 1, MMG200, HT2014 INLEDANDE ALGEBRA Övningshäfte 1: Logik och matematikens språk Övning A Målet är att genom att lösa och diskutera några inledande uppgifter få erfarenheter

Läs mer

Talmängder. Målet med första föreläsningen:

Talmängder. Målet med första föreläsningen: Moment 1..1, 1.., 1..4, 1..5, 1.. 1..5, 1..6 Viktiga exempel 1.7, 1.8, 1.8,1.19,1. Handräkning 1.7, 1.9, 1.19, 1.4, 1.9 b,e 1.0 a,b Datorräkning 1.6-1.1 Målet med första föreläsningen: 1 En första kontakt

Läs mer

Lite om räkning med rationella uttryck, 23/10

Lite om räkning med rationella uttryck, 23/10 Lite om räkning med rationella uttryck, / Tänk på att polynom uppför sig ungefär som heltal Summan, differensen respektive produkten av två heltal blir ett heltal och på motsvarande sätt blir summan, differensen

Läs mer

A B A B A B S S S S S F F S F S F S F F F F

A B A B A B S S S S S F F S F S F S F F F F Uppsala Universitet Matematiska institutionen Isac Hedén isac distans@math.uu.se Algebra I, 5 hp Vecka 17. Logik När man utför matematiska resonemang så har man alltid vissa logiska spelregler att förhålla

Läs mer

Material till kursen SF1679, Diskret matematik: Lite om kedjebråk. 0. Inledning

Material till kursen SF1679, Diskret matematik: Lite om kedjebråk. 0. Inledning Matematik, KTH Bengt Ek november 207 Material till kursen SF679, Diskret matematik: Lite om kedjebråk 0 Inledning Talet π (kvoten mellan en cirkels omkrets och dess diameter) är inte ett rationellt tal

Läs mer

Block 1 - Mängder och tal

Block 1 - Mängder och tal Block 1 - Mängder och tal Mängder Mängder och element Venndiagram Delmängder och äkta delmängder Union och snittmängd Talmängder Heltalen Z Rationella talen Q Reella talen R Räkning med tal. Ordning av

Läs mer

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson Uppsala Universitet Matematiska Institutionen Thomas Erlandsson LÄSANVISNINGAR VECKA 36 VERSION 1. ARITMETIK FÖR RATIONELLA OCH REELLA TAL, OLIKHETER, ABSOLUTBELOPP ADAMS P.1 Real Numbers and the Real

Läs mer

Mängder och kardinalitet

Mängder och kardinalitet UPPSALA UNIVERSITET Matematiska institutionen Erik Melin Specialkursen HT07 28 september 2007 Mängder och kardinalitet Dessa blad utgör skissartade föreläsningsanteckningar kombinerat med övningar. Framställningen

Läs mer

Definitionsmängd, urbild, domän

Definitionsmängd, urbild, domän 5B1493, lekt 5, HT06 Funktioner Definition av begreppet Definition: Låt X och Y vara två mängder. En funktion f av typ X Y är detsamma som en delmängd av X Y, sådan att 1. Om (x, y) och (x, z) f, så är

Läs mer

Föreläsningsanteckningar och övningar till logik mängdlära

Föreläsningsanteckningar och övningar till logik mängdlära Inledande matematisk analys tma970, 010, logik, mängdlära Föreläsningsanteckningar och övningar till logik mängdlära Dessa öreläsningsanteckningar kompletterar mycket kortattat kap 0 och appendix B i Persson/Böiers,

Läs mer

inte följa någon enkel eller fiffig princip, vad man nu skulle mena med det. All right, men

inte följa någon enkel eller fiffig princip, vad man nu skulle mena med det. All right, men MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Christian Gottlieb Gymnasieskolans matematik med akademiska ögon Induktion Dag 2. Explicita formler och rekursionsformler. Dag mötte vi flera talföljder,

Läs mer

Avsnitt 3, introduktion.

Avsnitt 3, introduktion. KTHs Sommarmatematik Introduktion 3:1 3:1 Avsnitt 3, introduktion. Teckenstudium Här tränas teckenstudium av polynom och rationella funktioner (som är kvoter av polynom). Metoden går ut på att man faktoriserar

Läs mer

Exempel. Komplexkonjugerade rotpar

Exempel. Komplexkonjugerade rotpar TATM79: Föreläsning 4 Polynomekvationer och funktioner Johan Thim 2 augusti 2016 1 Polynomekvationer Vi börjar med att upprepa definitionen av ett polynom. Polynom Definition. Ett polynom p(z) är ett uttryck

Läs mer

MÖNSTER OCH TALFÖLJDER

MÖNSTER OCH TALFÖLJDER MÖNSTER OCH TALFÖLJDER FÖRELÄSNINGENS INNEHÅLL OCH SYFTE Genomgång av viktiga matematiska begrepp, uttryck och symboler med anknytning till mönster och talföljder. Skälet till att välja detta innehåll

Läs mer

Talmängder N = {0,1,2,3,...} C = {a+bi : a,b R}

Talmängder N = {0,1,2,3,...} C = {a+bi : a,b R} Moment 1..1, 1.., 1..4, 1..5 Viktiga exempel 1., 1.4, 1.8 Övningsuppgifter I 1.7, 1.8, 1.9 Extrauppgifter 1,,, 4 Den teori och de exempel, som kommer att presenteras här, är normalt vad jag kommer att

Läs mer

1. Inledning, som visar att man inte skall tro på allt man ser. Betrakta denna följd av tal, där varje tal är dubbelt så stort som närmast föregående

1. Inledning, som visar att man inte skall tro på allt man ser. Betrakta denna följd av tal, där varje tal är dubbelt så stort som närmast föregående MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Christian Gottlieb Gymnasieskolans matematik med akademiska ögon Induktion Dag 1 1. Inledning, som visar att man inte skall tro på allt man ser. Betrakta

Läs mer

1 Föreläsning Implikationer, om och endast om

1 Föreläsning Implikationer, om och endast om 1 Föreläsning 1 Temat för dagen, och för dessa anteckningar, är att introducera lite matematisk terminologi och notation, vissa grundkoncept som kommer att vara genomgående i kursen. I grundskolan presenteras

Läs mer

SF1661 Perspektiv på matematik Tentamen 24 oktober 2013 kl Svar och lösningsförslag. z 11. w 3. Lösning. De Moivres formel ger att

SF1661 Perspektiv på matematik Tentamen 24 oktober 2013 kl Svar och lösningsförslag. z 11. w 3. Lösning. De Moivres formel ger att SF11 Perspektiv på matematik Tentamen 4 oktober 013 kl 14.00 19.00 Svar och lösningsförslag (1) Låt z = (cos π + i sin π ) och låt w = 1(cos π 3 + i sin π 3 ). Beräkna och markera talet z11 w 3 z 11 w

Läs mer

Begreppen "mängd" och "element" är grundläggande begrepp i matematiken.

Begreppen mängd och element är grundläggande begrepp i matematiken. MÄNGDER Grundläggande begrepp och beteckningar Begreppen "mängd" och "element" är grundläggande begrepp i matematiken. Vi kan beskriva (ange, definiera) en mängd som innehåller ändligt många element genom

Läs mer

INDUKTION OCH DEDUKTION

INDUKTION OCH DEDUKTION AVSNITT 3 INDUKTION OCH DEDUKTION Med induktion menar man vanligen en mycket vanlig resonemangsmetod: man gör flera observationer, upptäcker ett mönster (eller något som man tror är ett mönster) och därefter

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys Föreläsning 2 Institutionen för matematik KTH 31 augusti 2016 Att göra denna vecka Översikt över modul 1 Funktion Definitionsmängd Värdemängd Udda, jämn Begränsad Absolutbelopp, Trigonometri, Polynom Gränsvärde

Läs mer

sanningsvärde, kallas utsagor. Exempel på utsagor från pass 1 är

sanningsvärde, kallas utsagor. Exempel på utsagor från pass 1 är PASS 7. EKVATIONSLÖSNING 7. Grundbegrepp om ekvationer En ekvation säger att två matematiska uttryck är lika stora. Ekvationen har alltså ett likhetstecken och två deluttryck på var sin sida om likhetstecknet.

Läs mer

Tisdag v. 2. Speglingar, translationer och skalningar

Tisdag v. 2. Speglingar, translationer och skalningar 1 Tisdag v 2 Speglingar, translationer och skalningar Ofta i matematik och i matematiska kurser är det så att man måste kunna några grundläggande exempel utantill och man måste kunna några regler som säger

Läs mer

x) 3 = 0. 1 (1 + 2x) Bestäm alla reella tal x som uppfyller att 0 x 2π och att tangenten till kurvan y = sin(cos(x)) är parallell med x-axeln.

x) 3 = 0. 1 (1 + 2x) Bestäm alla reella tal x som uppfyller att 0 x 2π och att tangenten till kurvan y = sin(cos(x)) är parallell med x-axeln. MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Erik Darpö TENTAMEN I MATEMATIK MMA11 Matematisk grundkurs TEN Datum: 11 juni 014

Läs mer

Sidor i boken f(x) = a x 2 +b x+c

Sidor i boken f(x) = a x 2 +b x+c Sidor i boken 18-151 Andragradsfunktioner Här ska vi studera andragradsfunktionen som skrivs f(x) = ax +bx+c där a, b, c är konstanter (reella tal) och där a 0. Grafen (kurvan) till f(x), y = ax + bx +

Läs mer

Kontinuitet och gränsvärden

Kontinuitet och gränsvärden Kapitel Kontinuitet och gränsvärden.1 Introduktion till kontinuerliga funktioner Kapitlet börjar med allmänna definitioner. Därefter utvidgar vi successivt familjen av kontinuerliga funktioner, genom specifika

Läs mer

Utsagor (Propositioner) sammansatta utsagor sanningstabeller logisk ekvivalens predikat (öppna utsagor) kvantifierare Section

Utsagor (Propositioner) sammansatta utsagor sanningstabeller logisk ekvivalens predikat (öppna utsagor) kvantifierare Section Föreläsning 1 Utsagor (Propositioner) sammansatta utsagor sanningstabeller logisk ekvivalens predikat (öppna utsagor) kvantifierare Section 1.1-1.3 i kursboken Definition En utsaga (proposition) är ett

Läs mer

Föreläsning 5. Deduktion

Föreläsning 5. Deduktion Föreläsning 5 Deduktion Hur ett deduktivt system fungerar Komponenter - Vokabulär Ett deduktivt system använder ett visst slags språk som kan kallas för systemets vokabulär. I mindre formella fall är kanske

Läs mer

Repetition av matematik inför kurs i statistik 1-10 p.

Repetition av matematik inför kurs i statistik 1-10 p. Karlstads universitet Leif Ruckman Summasymbolen. Repetition av matematik inför kurs i statistik 1-10 p. I stället för att skriva en lång instruktion att vissa värden skall summeras brukar man använda

Läs mer

Hur man skriver matematik

Hur man skriver matematik Hur man skriver matematik Niels Chr. Overgaard 2018-10-01 N. Chr. Overgaard Skriva matematik 2018-10-01 1 / 12 Information: Opposition och kompisgranskning En del av inlämningsuppgift går ut på att man

Läs mer

1. Ange samtliga uppsättningar av heltal x, y, z som uppfyller båda ekvationerna. x + 2y + 24z = 13 och x 11y + 17z = 8.

1. Ange samtliga uppsättningar av heltal x, y, z som uppfyller båda ekvationerna. x + 2y + 24z = 13 och x 11y + 17z = 8. Tentamenskrivning MATA15 Algebra: delprov 1, 6hp Lördagen den mars 014 Matematikcentrum Matematik NF LÖSNINGSFÖRSLAG 1. Ange samtliga uppsättningar av heltal x, y, z som uppfyller båda ekvationerna x +

Läs mer

Lite Kommentarer om Gränsvärden

Lite Kommentarer om Gränsvärden Lite Kommentarer om Gränsvärden På föreläsningen (Föreläsning 2 för att vara eakt) så introducerade vi denitionen Denition. Vi säger att f() går mot a då går mot oändligheten, uttryckt i symboler som f()

Läs mer

x2 6x x2 6x + 14 x (x2 2x + 4)

x2 6x x2 6x + 14 x (x2 2x + 4) Tentamenskrivning MATA15 Algebra: delprov 1, 6hp Måndagen den 5:e november 01 Matematikcentrum Matematik NF LÖSNINGSFÖRSLAG 1. För vilka reella tal x gäller olikheten x 6x + 14? Lösningsalternativ 1: Den

Läs mer

Grundidén är att våra intuitiva rationella tal (bråk) alltid kan fås som lösningar till ekvationer av typen α ξ = β, där α och β är tal Z och α 0.

Grundidén är att våra intuitiva rationella tal (bråk) alltid kan fås som lösningar till ekvationer av typen α ξ = β, där α och β är tal Z och α 0. 5B2710, lekt 4, HT07 Konstruktion av de rationella talen Q (AEE 2.3) Grundidén är att våra intuitiva rationella tal (bråk) alltid kan fås som lösningar till ekvationer av typen α ξ = β, där α och β är

Läs mer

1 Att läsa matematik.

1 Att läsa matematik. 1 Att läsa matematik. Precis som vid all annan läsning som betyder något skall matematik läsas aktivt. Detta innebär olika saker för olika personer. För en del kanske det betyder att visualisera de idéer

Läs mer

2 Matematisk grammatik

2 Matematisk grammatik MATEMATISK GRAMMATIK Matematisk grammatik.1 Skriva matematik Matematisk grammatik, minst lika kul som det låter, och hur man skriver matematik är nästan lika viktigt som vad man skriver. En grammatisk

Läs mer

Begreppen "mängd" och "element" är grundläggande begrepp i matematiken.

Begreppen mängd och element är grundläggande begrepp i matematiken. MÄNGDER Grundläggande begrepp och beteckningar egreppen "mängd" och "element" är grundläggande begrepp i matematiken. Vi kan beskriva (ange, definiera) en mängd som innehåller ändligt många element genom

Läs mer

Uppföljning av diagnostiskt prov Repetition av kursmoment i TNA001-Matematisk grundkurs.

Uppföljning av diagnostiskt prov Repetition av kursmoment i TNA001-Matematisk grundkurs. Uppföljning av diagnostiskt prov 06-0- Repetition av kursmoment i TNA00-Matematisk grundkurs. Reella tal, intervall, räta linjer, cirklar Faktorsatsen, faktoriseringar, polynomekvationer Olikheter Ekvationer

Läs mer

Repetitionsuppgifter inför Matematik 1-973G10. Matematiska institutionen Linköpings universitet 2014

Repetitionsuppgifter inför Matematik 1-973G10. Matematiska institutionen Linköpings universitet 2014 Repetitionsuppgifter inför Matematik - 7G0 Matematiska institutionen Linköpings universitet 04 Innehåll De fyra räknesätten Potenser och rötter 7 Algebra 0 4 Funktioner 4 Facit Repetitionsuppgifter inför

Läs mer

Modul 1: Funktioner, Gränsvärde, Kontinuitet

Modul 1: Funktioner, Gränsvärde, Kontinuitet Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2015/2016 Modul 1: Funktioner, Gränsvärde, Kontinuitet Denna modul omfattar kapitel P och kapitel 1 kursboken Calculus av Adams och Essex och

Läs mer

Linjära ekvationer med tillämpningar

Linjära ekvationer med tillämpningar UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Olof Johansson, Nina Rudälv 2006-10-17 SÄL 1-10p Linjära ekvationer med tillämpningar Avsnitt 2.1 Linjära ekvationer i en variabel

Läs mer

Modul 1: Funktioner, Gränsvärde, Kontinuitet

Modul 1: Funktioner, Gränsvärde, Kontinuitet Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2015/2016 Modul 1: Funktioner, Gränsvärde, Kontinuitet Denna modul omfattar kapitel P och kapitel 1 kursboken Calculus av Adams och Essex och

Läs mer

Introduktion. Exempel Övningar Lösningar 1 Lösningar 2 Översikt

Introduktion. Exempel Övningar Lösningar 1 Lösningar 2 Översikt KTHs Sommarmatematik 2002 Exempel Övningar Lösningar 1 Lösningar 2 Översikt 5.1 Introduktion Introduktion Exponentialfunktionen e x och logaritmfunktionen ln x är bland de viktigaste och vanligast förekommande

Läs mer

Kan du det här? o o. o o o o. Derivera potensfunktioner, exponentialfunktioner och summor av funktioner. Använda dig av derivatan i problemlösning.

Kan du det här? o o. o o o o. Derivera potensfunktioner, exponentialfunktioner och summor av funktioner. Använda dig av derivatan i problemlösning. Kan du det här? o o o o o o Vad innebär det att x går mot noll? Vad händer då x går mot oändligheten? Vad betyder sekant, tangent och ändringskvot och vad har dessa begrepp med derivatan att göra? Derivera

Läs mer

Föreläsning 3: Ekvationer och olikheter

Föreläsning 3: Ekvationer och olikheter Föreläsning 3: Ekvationer och olikheter En ekvation är en likhet som innehåller en flera obekanta storheter. Exempel: x = 9, x är okänd. t + t + 1 = 7, t är okänd. Vi säger att ett värde på den obekanta

Läs mer

Komplexa tal: Begrepp och definitioner

Komplexa tal: Begrepp och definitioner UPPSALA UNIVERSITET Baskurs i matematik, 5hp Matematiska institutionen Höstterminen 007 Erik Darpö Martin Herschend Komplexa tal: Begrepp och definitioner Komplexa tal uppstod ur det faktum att vissa andragradsekvationer,

Läs mer

Ekvationer och olikheter

Ekvationer och olikheter Kapitel Ekvationer och olikheter I kapitlet bekantar vi oss med första och andra grads linjära ekvationer och olikheter. Vi ser också på ekvationer och olikheter med absolutbelopp och kvadratrötter. När

Läs mer

(N) och mängden av heltal (Z); objekten i en mängd behöver dock inte vara tal. De objekt som ingår i en mängd kallas för mängdens element.

(N) och mängden av heltal (Z); objekten i en mängd behöver dock inte vara tal. De objekt som ingår i en mängd kallas för mängdens element. Grunder i matematik och logik (2017) Mängdlära Marco Kuhlmann 1 Grundläggande begrepp Mängder och element 2.01 En mängd är en samling objekt. Två standardexempel är mängden av naturliga tal (N) och mängden

Läs mer

Denna uppdelning är ovanlig i Sverige De hela talen (Både positiva och negativa) Irrationella tal (tal som ej går att skriva som bråk)

Denna uppdelning är ovanlig i Sverige De hela talen (Både positiva och negativa) Irrationella tal (tal som ej går att skriva som bråk) UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Olof Johansson, Nina Rudälv 2006-10-24 SÄL 1-10p Avsnitt 1.1 Grundläggande begrepp Detta avsnitt behandlar de symboler som används

Läs mer

Komposanter, koordinater och vektorlängd Ja, den här teorin gick vi igenom igår. Istället koncentrerar vi oss på träning inför KS3 och tentamen.

Komposanter, koordinater och vektorlängd Ja, den här teorin gick vi igenom igår. Istället koncentrerar vi oss på träning inför KS3 och tentamen. Sidor i boken 40-4 Komposanter, koordinater och vektorlängd Ja, den här teorin gick vi igenom igår. Istället koncentrerar vi oss på träning inför KS3 och tentamen. Läxa 1. En rät linje, L 1, skär y-axeln

Läs mer

D. x 2 + y 2 ; E. Stockholm ligger i Sverige; F. Månen är en gul ost; G. 3 2 = 6; H. x 2 + y 2 = r 2.

D. x 2 + y 2 ; E. Stockholm ligger i Sverige; F. Månen är en gul ost; G. 3 2 = 6; H. x 2 + y 2 = r 2. Logik Vid alla matematiskt resonemang måste man vara säker på att man verkligen menar det man skriver ner på sitt papper. Därför måste man besinna hur man egentligen tänker. Den vetenskap, som sysslar

Läs mer

Diskret matematik, lektion 2

Diskret matematik, lektion 2 Diskret matematik, lektion Uppgifter med (*) är överkurs, och potentiellt lite klurigare. Ni behöver inte kunna lösa dessa. 1 Uppgifter 1. Låt A = {1,, 3}, B = {a, b}. Vilka element finns med i... a) A

Läs mer

Checklista för funktionsundersökning

Checklista för funktionsundersökning Linköpings universitet Matematiska institutionen TATA41 Envariabelanalys 1 Hans Lundmark 2015-02-10 Checklista för funktionsundersökning 1. Vad är definitionsmängden D f? 2. Har funktionen några uppenbara

Läs mer

4 Fler deriveringsregler

4 Fler deriveringsregler 4 Fler deriveringsregler 4. Dagens Teori Derivatan av potensfunktioner. Potensfunktioner med heltalsexponenter, som du redan kan derivera, kallas polynomfunktioner, som till exempel: f(x) = 2x4 x3 + 2x

Läs mer

Kapitel 4. Funktioner. 4.1 Definitioner

Kapitel 4. Funktioner. 4.1 Definitioner Kapitel 4 Funktioner I det här kapitlet kommer vi att undersöka funktionsbegreppet. I de första sektionerna genomgås definitionen av begreppet funktion och vissa egenskaper som funktioner har. I slutet

Läs mer

Studiehandledning. kurs Matematik 1b

Studiehandledning. kurs Matematik 1b Studiehandledning kurs Matematik 1b Innehållsförteckning Inledning och Syfte... 1 Ämnesplan för ämnet matematik... 1 Ämnets syfte... 1 Centralt innehåll... 2 Problemlösning... 2 Taluppfattning, aritmetik

Läs mer

x +y +z = 2 2x +y = 3 y +2z = 1 x = 1 + t y = 1 2t z = t 3x 2 + 3y 2 y = 0 y = x2 y 2.

x +y +z = 2 2x +y = 3 y +2z = 1 x = 1 + t y = 1 2t z = t 3x 2 + 3y 2 y = 0 y = x2 y 2. Lösningar till tentamen i Inledande matematik för M/TD, TMV155/175 Tid: 2006-10-27, kl 08.30-12.30 Hjälpmedel: Inga Betygsgränser, ev bonuspoäng inräknad: 20-29 p. ger betyget 3, 30-39 p. ger betyget 4

Läs mer

Svar till vissa uppgifter från första veckan.

Svar till vissa uppgifter från första veckan. Svar till vissa uppgifter från första veckan. Svar till kortuppgifter F:. Ja! Förhoppningsvis så ser man direkt att g fx) är ett polynom. Vidare så gäller det att g fα) = gfα)) = gβ) = 0. Använd faktorsatsen!

Läs mer

Matematik 4 Kap 3 Derivator och integraler

Matematik 4 Kap 3 Derivator och integraler Matematik 4 Kap 3 Derivator och integraler Konkretisering av ämnesplan (länk) http://www.ioprog.se/public_html/ämnesplan_matematik/struktur_ämnesp lan_matematik/struktur_ämnesplan_matematik.html Inledande

Läs mer

Avsnitt 4, introduktion.

Avsnitt 4, introduktion. KTHs Sommarmatematik Introduktion 4:1 4:1 Avsnitt 4, introduktion. Potensregler. Följande grundläggande potensregler är startpunkten för detta avsnitt: Ex 1: 2 3 2-2 = 2 3-2 =2 1 = 2. Ex 2: 8 4 = (2 3

Läs mer

Övningshäfte 2: Induktion och rekursion

Övningshäfte 2: Induktion och rekursion GÖTEBORGS UNIVERSITET MATEMATIK 1, MMG200, HT2017 INLEDANDE ALGEBRA Övningshäfte 2: Induktion och rekursion Övning D Syftet är att öva förmågan att utgående från enkla samband, aritmetiska och geometriska,

Läs mer

Repetitionsuppgifter inför Matematik 1. Matematiska institutionen Linköpings universitet 2013

Repetitionsuppgifter inför Matematik 1. Matematiska institutionen Linköpings universitet 2013 Repetitionsuppgifter inför Matematik Matematiska institutionen Linköpings universitet 0 Innehåll De fyra räknesätten Potenser och rötter 7 Algebra 0 4 Facit 4 Repetitionsuppgifter inför Matematik Repetitionsuppgifter

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet 27 augusti 2013 Innehåll Linjära ekvationssystem

Läs mer

TATM79: Föreläsning 3 Komplexa tal

TATM79: Föreläsning 3 Komplexa tal TATM79: Föreläsning 3 Komplexa tal Johan Thim 22 augusti 2018 1 Komplexa tal Definition. Det imaginära talet i uppfyller att i 2 = 1. Detta är alltså ett tal vars kvadrat är negativ. Det kan således aldrig

Läs mer

Dockvetviattimånga situationer räcker inte de naturliga talen. För att kunna hantera negativa tal har de hela talen definierats:

Dockvetviattimånga situationer räcker inte de naturliga talen. För att kunna hantera negativa tal har de hela talen definierats: Kapitel Introduktion I detta kapitel kommer vi främst att behandla grundbegrepp. Vi undersöker några speciella samlingar av tal (kallas mängder), matematiska symboler och ser på vissa räkneregler. Dessa

Läs mer

Här studera speciellt rationella funktioner, dvs kvoter av polynom, ex:.

Här studera speciellt rationella funktioner, dvs kvoter av polynom, ex:. KTHs Sommarmatematik 2003 Exempel Övningar Lösningar 1 Lösningar 2 Översikt 3.1 Introduktion Introduktion Avsnitt 3 handlar om problemet att avgöra hur en given funktions värden växlar tecken. Här studera

Läs mer

Utvidgad aritmetik. AU

Utvidgad aritmetik. AU Utvidgad aritmetik. AU Delområdet omfattar följande tio diagnoser som är grupperade i tre delar, negativa tal, potenser och närmevärden: AUn1 Negativa tal, taluppfattning AUn Negativa tal, addition och

Läs mer

Några viktiga satser om deriverbara funktioner.

Några viktiga satser om deriverbara funktioner. Några viktiga satser om deriverbara funktioner Rolles sats Differentialkalkylens medelvärdessats (=) 3 Cauchys medelvärdessats Sats Om funktionen f är deriverbar i en punkt x 0 så är f kontinuerlig i samma

Läs mer

MAA7 Derivatan. 2. Funktionens egenskaper. 2.1 Repetition av grundbegerepp

MAA7 Derivatan. 2. Funktionens egenskaper. 2.1 Repetition av grundbegerepp MAA7 Derivatan 2. Funktionens egenskaper 2.1 Repetition av grundbegerepp - Det finns vissa begrepp som återkommer i nästan alla kurser i matematik. Några av dessa är definitionsmängd, värdemängd, största

Läs mer

TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer

TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer Johan Thim 0 januari 207 Introduktion En differentialekvation (DE) i en variabel är en ekvation som innehåller både

Läs mer

a5 bc 3 5 a4 b 2 c 4 a3 bc 3 a2 b 4 c

a5 bc 3 5 a4 b 2 c 4 a3 bc 3 a2 b 4 c MMA11 Matematisk grundkurs TEN Datum: 15 augusti 01 Skrivtid: timmar Hjälpmedel: Penna, linjal och radermedel Denna tentamen TEN består av nio stycken om varannat slumpmässigt ordnade uppgifter som vardera

Läs mer

MATEMATIKENS SPRÅK. Syftet med denna övning är att med hjälp av logik lära oss att uttrycka matematik mer exakt, lära oss

MATEMATIKENS SPRÅK. Syftet med denna övning är att med hjälp av logik lära oss att uttrycka matematik mer exakt, lära oss Explorativ övning 1 LMA100 vt 2003 MATEMATIKENS SPRÅK Syftet med denna övning är att med hjälp av logik lära oss att uttrycka matematik mer exakt, lära oss förstå språket. Vi skall försöka utveckla vårt

Läs mer

1 Addition, subtraktion och multiplikation av (reella) tal

1 Addition, subtraktion och multiplikation av (reella) tal Omstuvat utdrag ur R Pettersson: Förberedande kurs i matematik Addition, subtraktion och multiplikation av (reella) tal För reella tal gäller som bekant bl.a. följande räkneregler: (a + b) + c = a + (b

Läs mer

Repetitionsuppgifter i Matematik inför Basår. Matematiska institutionen Linköpings universitet 2014

Repetitionsuppgifter i Matematik inför Basår. Matematiska institutionen Linköpings universitet 2014 Repetitionsuppgifter i Matematik inför Basår Matematiska institutionen Linköpings universitet 04 Innehåll De fyra räknesätten Potenser och rötter 7 Algebra 0 4 Funktioner 7 Logaritmer 9 6 Facit 0 Repetitionsuppgifter

Läs mer

Instuderingsfrågor för Endimensionell analys kurs B1

Instuderingsfrågor för Endimensionell analys kurs B1 Instuderingsfrågor för Endimensionell analys kurs B1 Anvisningar Avsikten med följande frågor är att hjälpa dig med självkontroll av dina kunskaper. Om du känner dig osäker på svaren bör du slå upp motsvarande

Läs mer

a = a a a a a a ± ± ± ±500

a = a a a a a a ± ± ± ±500 4.1 Felanalys Vill man hårddra det hela, kan man påstå att det inte finns några tal i den tillämpade matematiken, bara intervall. Man anger till exempel inte ett uppmätt värde till 134.78 meter utan att

Läs mer

Sidor i boken KB 6, 66

Sidor i boken KB 6, 66 Sidor i boken KB 6, 66 Funktioner Ordet funktion syftar inom matematiken på en regel som innebär att till varje invärde associeras ett utvärde. Ofta beskrivs sambandet mellan invärde och utvärde med en

Läs mer

Hur man skriver matematik

Hur man skriver matematik Hur man skriver matematik Niels Chr. Overgaard 2015-09-28 1 / 8 Opposition och kompisgranskning En del av inlämningsuppgift går ut på att man granskar och opponerar på en annan kursdeltagares lösning.

Läs mer

Filosofisk logik Kapitel 15. Robin Stenwall Lunds universitet

Filosofisk logik Kapitel 15. Robin Stenwall Lunds universitet Filosofisk logik Kapitel 15 Robin Stenwall Lunds universitet Dagens upplägg Första ordningens mängdlära Naiv mängdlära Abstraktionsaxiomet (eg. comprehension) Extensionalitetsaxiomet Små mängder Ordnade

Läs mer

Dugga 2 i Matematisk grundkurs

Dugga 2 i Matematisk grundkurs Linköpings tekniska högskola Matematiska institutionen Tillämpad matematik Kurskod: TATA68 Provkod: TEN Inga hjälpmedel är tillåtna. Dugga i Matematisk grundkurs 013 16 kl 8.00 1.00 Lösningarna skall vara

Läs mer

III. Analys av rationella funktioner

III. Analys av rationella funktioner Analys 360 En webbaserad analyskurs Grundbok III. Analys av rationella funktioner Anders Källén MatematikCentrum LTH anderskallen@gmail.com III. Analys av rationella funktioner () Introduktion Vi ska nu

Läs mer

Sidor i boken 110-113, 68-69 2, 3, 5, 7, 11,13,17 19, 23. Ett andragradspolynom Ett tiogradspolynom Ett tredjegradspolynom

Sidor i boken 110-113, 68-69 2, 3, 5, 7, 11,13,17 19, 23. Ett andragradspolynom Ett tiogradspolynom Ett tredjegradspolynom Sidor i boken 110-113, 68-69 Räkning med polynom Faktorisering av heltal. Att primtalsfaktorisera ett heltal innebär att uppdela heltalet i faktorer, där varje faktor är ett primtal. Ett primtal är ett

Läs mer

Övningshäfte 2: Komplexa tal (och negativa tal)

Övningshäfte 2: Komplexa tal (och negativa tal) LMA110 VT008 ARITMETIK OCH ALGEBRA DEL Övningshäfte : Komplexa tal (och negativa tal) Övningens syfte är att bekanta sig med komplexa tal och att fundera på några begreppsliga svårigheter som negativa

Läs mer

ANDREAS REJBRAND 2014-04-25 Matematik http://www.rejbrand.se. Numeriska serier. Andreas Rejbrand, april 2014 1/29

ANDREAS REJBRAND 2014-04-25 Matematik http://www.rejbrand.se. Numeriska serier. Andreas Rejbrand, april 2014 1/29 Numeriska serier Andreas Rejbrand, april 2014 1/29 1 Inledning Författarens erfarenhet säger att momentet med numeriska serier är ganska svårt för många studenter i inledande matematikkurser på högskolenivå.

Läs mer