Övningshäfte 3: Funktioner och relationer
|
|
- Helen Henriksson
- för 8 år sedan
- Visningar:
Transkript
1 GÖTEBORGS UNIVERSITET MATEMATIK 1, MAM100, HT2014 INLEDANDE ALGEBRA Övningshäfte 3: Funktioner och relationer Övning H Syftet är att utforska ett av matematikens viktigaste begrepp: funktionen. Du har redan stött på detta begrepp i skolan. Det är viktigt att utgå från sina egna erfarenheter av detta begrepp och härifrån öka precisionen och klarheten av vad som menas med en funktion. Begreppet är betydligt vidare än den bild man vanligen har med sig från gymnasiet. De viktigaste begreppen i samband med funktioner är: definitionsmängd, målmängd och värdemängd injektiv, surjektiv och bijektiv invers funktion och inverterbarhet graf och funktionskurva operatorer 1. Vad är en funktion? Vad tänker du att en funktion är? Kan du definiera begreppet funktion? Vad är en funktions definitionsmängd, målmängd samt värdemängd? När är två funktioner lika? 2. Hitta på exempel på funktioner som har definitionsmängd D och värdemängd V där: (a) D = {1, 2} och V = {3} (b) D = {1, 2} och V = {3, 4} (c) D = {1, 2} och V = {3, 4, 5} (d) D = [0, 1] (ett slutet intervall) och V = {1, 2} (e) D = [0, 1] och V = [0, 1] (f) D = [0, 1] och V = (0, 1) (ett öppet intervall) (g) D = Z och V = N (h) D = N och V = Z (i) D = R och V = Z Hur många möjliga funktioner finns det i frågorna (a), (b) och (c)? 1
2 3. Vad är det för likheter/skillnader på följande funktioner? f : R R, f(x) = x 2 g : [0, ) R, g(x) = x 2 h : R [0, ), h(x) = x 2 k : [0, ) [0, ), k(x) = x 2 Vad är f(x 1), k(x 1), g( x), g(x 2 )? För vilka x? 4. Vad är sammansättningen av två funktioner? När är sammansättningen av två funktioner definierad? Låt f(x) = 1/x och g(x) = (x + 1) med definitionsmängder D f = D g = R \ {0, 1}. (a) Vad är värdemängderna V f respektive V g? (b) Vad är f g respektive g f? (c) Är f g = g f? (d) Vad händer om vi istället sätter D f = R \ {0} och D g = R? 5. För att illustrera en funktion kan man använda sig av dess graf. (a) Vad är grafen till en funktion? (b) Bestäm/rita grafen till funktionerna i uppgift 2 (a) och (b), uppgift 3 samt uppgift 4. (c) Har någon av funktionerna en invers? Varför/varför inte? Vad är en invers? Hur kan man se i grafen huruvida en funktion har invers? Bestäm inversen i de fall den existerar. (d) Kan ni hitta en egenskap som är gemensam (och unik) för alla funktioner som har invers? 6. Kolla upp vad som är villkoren för att en funktion ska vara injektiv respektive surjektiv. Diskutera inom gruppen för att försöka att också få en klar bild av vad de formella definitionerna innebär. Ge nu exempel på vardera en funktion som är (a) injektiv men inte surjektiv. (b) surjektiv men inte injektiv. (c) både injektiv och surjektiv. (Det finns en term som anger precis detta, vilken?) (d) varken surjektiv eller injektiv. Observera att det är viktigt att ange vilka definitions- och målmängderna är i de fyra exemplen. 7. Av exemplen i förra uppgiften är det precis en funktion som är inverterbar. Vilken och varför? 8. Låt f : R R och g : R R definieras av f(x) = x och g(x) = x 2. (a) Visa att f g = g f = g. Viktigt att tänka över och kunna motivera varje steg i beviset. 2
3 (b) Vad är det för fel i följande härledning: f = f (g g 1 ) = (f g) g 1 = g g 1 = id R, där id R är identitetsfunktionen på R? 9. En speciell typ av funktioner (som man oftast kanske inte tänker på som funktioner) är operatorer (eller operationer). Svara på nedanstående frågor för följande operatorer: addition på heltalen Z multiplikation på heltalen Z snitt på potensmängden P(M) av någon mängd M implikation på mängden {Sant, Falskt} sammansättning av funktioner f : M M där M är någon mängd (a) Motivera kort att de är binära operatorer. (b) Vilka är kommutativa? (c) Vilka är associativa? (d) Vilka har en identitet? Vad är den i så fall? (e) Om det finns en identitet, vilka element har i så fall invers och vad är den? Övning I Syftet med övningen är att bekanta sig med begreppet relation som kan ses som en generalisering av funktion. Speciellt ska vi titta på en viktig klass av relationer, så kallade ekvivalensrelationer. 1. Vad är definitionen av en relation? Hur kan en funktion betraktas som en relation? Ge exempel på relationer som inte är funktioner (a) från Z till Z (b) från R till R (c) från R till Z Sammanfattningsvis så har vi motiverat att relation är en generalisering av begreppet funktion, eller hur? 2. Betrakta de två relationerna och < på R. Skissa relationerna (som delmängder av planet) och jämför. Vad är skillnaden? Kan ni beskriva den egenskap som har men som < saknar, i matematiska termer, utan att referera till skisserna? 3. Nu ska ni jämföra två olika relationer på mängden M = {människor på jorden}. Den första är given av att en person A är relaterad till en person B om A är yngre än B. Den andra relationen ges av att A är relaterad till B om de är syskon. Kan ni hitta någon egenskap som den andra relationen har men inte den första? Kan ni beskriva denna egenskap i matematiska termer? 3
4 4. Då 3 < 5 och 5 < x så kan man dra en självklar slutsats. Vilken? Vad är det för en egenskap som en relation behöver ha för att man ska kunna dra en sådan slutsats? Skriv ner en definition av denna egenskap. 5. I de tre föregående uppgifterna fann ni tre egenskaper som en relation kan ha eller inte ha. Läs nu i boken om reflexivitet, symmetri och transitivitet. Var det dessa egenskaper ni fann? Om inte, diskutera gärna med handledaren vad ni fann. 6. I denna uppgiften gäller det att hitta exempel på relationer med olika egenskaper. Fyll i en tabell enligt mallen nedan där varje möjlig kombination av Ja och Nej ska ingå (totalt 8 stycken). Reflexiv Symmetrisk Transitiv Exempel på relation Ja Ja Ja? Ja Ja Nej? 7. Kolla upp vad en ekvivalensrelation är. Exakt ett av era exempel i förra uppgiften är en ekvivalensrelation, vilken? Hitta två exempel till på ekvivalensrelationer. 8. Vad är en ekvivalensklass? Bestäm alla ekvivalensklasser i något av de exempel på ekvivalensrelationer som ni hittat. 9. En partition ev en mängd M är en uppdelning av alla element i parvis disjunkta delmängder. Vad betyder detta? Ge exempel på partitioner av mängderna {1, 2, 3}, Z och R. Hur många olika partitioner av {1, 2, 3} finns det? 10. Begreppen ekvivalensrelation och partition är mycket tätt förknippade. Undersök detta genom att svara på följande två frågor. Om man har en partition, hur kan man då få en ekvivalensrelation? Omvänt, hur ger en ekvivalensrelation en partition? Övning J Syftet med övningen är att undersöka hur man kan jämföra storleken, kardinaliteten, av olika mängder inklusive sådana med oändligt många element. Centralt är funktionsbegreppet och bijektivitet. Först lite teori. För en ändlig mängd kan vi tala om hur många element den har genom att helt enkelt räkna dem. I mängden M = {x, y, z} finns det 3 element och vi skriver att M = 3 och säger att M har kardinaliteten 3. För oändliga mängder, som t ex N och R, är det inte lika enkelt att tala om hur många element de har eller vad hur många egentligen ska betyda. (Det är faktiskt ganska svårt och tas upp i vad som kallas axiomatisk mängdteori.) Vi ska här bara diskutera vad det innebär att två mängder har lika många element. Vi gör följande definition: En mängd A har samma kardinalitet som en mängd B om och endast om det finns en bijektiv funktion f : A B. Om ni har ont om tid så gör bara de fyra första uppgifterna. 4
5 1. Visa att ha samma kardinalitet är en ekvivalensrelation. 2. Visa att {x, y, z} och {5, 6, 7} har samma kardinalitet enligt definitionen. 3. För ändliga mängder innebär samma kardinalitet samma sak som det vi intuitivt menar med lika många element. Varför det? 4. Låt A = {2n : n Z} och Z + = {n Z : n > 0}. (a) Visa att Z och A har samma kardinalitet. (Det finns alltså lika många heltal som det finns jämna heltal!) (b) Visa att Z och Z + har samma kardinalitet. (Det finns alltså lika många heltal som det finns positiva heltal!) (c) Visa att N = {0, 1, 2,...} och Z + har samma kardinalitet. En mängd M som har samma kardinalitet som Z + säges vara uppräknelig. Namnet kommer av att om f : Z + M är en bijektiv funktion så får vi en uppräkning av elementen i M genom m 1 = f(1), m 2 = f(2), m 3 = f(3), I Hilberts hotell finns det oändligt många rum som är numrerade 1, 2, 3,.... (Det finns alltså uppräkneligt många rum.) (a) En matematiker får problem med sin inkvartering för när han anländer får han höra att alla rum är upptagna. Han föreslår ägaren att flytta gästerna så att alla inklusive han själv får varsitt rum. Hur skulle det kunna gå till? (b) Det kommer en busslast med 50 nya gäster. Hur kan alla få varsitt rum om det redan är fullt? (c) Det kommer nu oändligt många nya gäster till det fulla hotellet (uppräkneligt många dock). Hur löser man nu inkvarteringsproblemet i Hilberts hotell? (Tänk på hur ni visade att Z hade samma kardinalitet som alla jämna heltal.) 6. Visa att de rationella talen Q är uppräkneliga. (Börja med att visa att mängden av positiva rationella tal är uppräknelig och utnyttja samma idé som när ni visade att Z var uppräkneligt.) Det finns alltså lika många rationella tal som heltal! Ledning: Antag att de är förkortade så mycket som möjligt och ordna dem efter summan av täljare och nämnare. 7. Nu börjar man kanske få känslan att alla oändliga mängder är uppräkneliga, men så är inte fallet. De reella talen R är inte uppräkneliga. Försök bevisa detta. Den förste som gjorde det var Georg Cantor, en av grundarna av den moderna mängdteorin, år Uppgiften är svår, men inte omöjlig och dessutom rolig!? Ledning: Gör ett motsägelsebevis. Antag att x 1, x 2, x 3,... är en uppräkning av de reella talen i intervallet (0, 1). Låt a in vara decimalsiffra nummer n i x i, d v s x i = 0, a i1 a i2 a i3 a i4, för i = 1, 2, 3... Konstruera nu ett tal x = 0, b 1 b 2 b 3 b 4 som inte finns i uppräkningen x 1, x 2, x 3,.... 5
6 8. Kan du ge en definition av att en mängd är oändlig med hjälp av begreppet samma kardinalitet. Uppgifter ur boken som rekommenderas för självstudier: Kapitel 3: 4, 5, 7, 10, 13, 22, 36, 40, 42 6
Explorativ övning 4 ÄNDLIGT OCH OÄNDLIGT. Övning A
Explorativ övning 4 ÄNDLIGT OCH OÄNDLIGT Första delen av övningen handlar om begreppet funktion. Syftet är att bekanta sig med funktionsbegreppet som en parbildning. Vi koncentrerar oss på tre viktiga
Kap. 8 Relationer och funktioner
Begrepp och egenskaper: Kap. 8 elationer och funktioner relation, relationsgraf och matris, sammansatt relation reflexivitet, symmetri, anti-symmetri, transitivitet ekvivalensrelation, partialordning,
Definitionsmängd, urbild, domän
5B1493, lekt 5, HT06 Funktioner Definition av begreppet Definition: Låt X och Y vara två mängder. En funktion f av typ X Y är detsamma som en delmängd av X Y, sådan att 1. Om (x, y) och (x, z) f, så är
MA2047 Algebra och diskret matematik
MA2047 Algebra och diskret matematik Något om funktioner och relationer Mikael Hindgren 1 oktober 2018 Funktionsbegreppet Exempel 1 f (x) = x 2 + 1, g(x) = x 3 och y = sin x är funktioner. Exempel 2 Kan
Explorativ övning 9 RELATIONER OCH FUNKTIONER
Explorativ övning 9 RELATIONER OCH FUNKTIONER Övningens syfte är att bekanta sig med begreppet relation på en mängd M. Begreppet relation i matematiska sammanhang anknyter till betydelsen av samma ord
Relationer och funktioner
Relationer och funktioner Joakim Nivre Uppsala universitet Institutionen för lingvistik och filologi Översikt Relationer: Binära relationer på mängder Mängd-, graf- och matrisnotation Egenskaper hos relationer
Mängder, funktioner och naturliga tal
Lådprincipen Följande sats framstår som en fullständig självklarhet: Sats (Lådprincipen (pigeon hole principle)). Låt n > m vara naturliga tal. Fördelar man n föremål i m lådor, så kommer åtminstone en
Diskret matematik, lektion 2
Diskret matematik, lektion Uppgifter med (*) är överkurs, och potentiellt lite klurigare. Ni behöver inte kunna lösa dessa. 1 Uppgifter 1. Låt A = {1,, 3}, B = {a, b}. Vilka element finns med i... a) A
ÄNDLIGT OCH OÄNDLIGT AVSNITT 4
VSNITT ÄNDLIGT OCH OÄNDLIGT Är det möjligt att jämföra storleken av olika talmängder? Har det någon mening om man säger att det finns fler irrationella tal än rationella? Är det överhuvudtaget möjligt
Grundidén är att våra intuitiva rationella tal (bråk) alltid kan fås som lösningar till ekvationer av typen α ξ = β, där α och β är tal Z och α 0.
5B2710, lekt 4, HT07 Konstruktion av de rationella talen Q (AEE 2.3) Grundidén är att våra intuitiva rationella tal (bråk) alltid kan fås som lösningar till ekvationer av typen α ξ = β, där α och β är
En bijektion mellan två mängder A och B som har ändligt antal element kan endast finnas om mängderna har samma antal element.
BIJEKTION, INJEKTION, SURJEKTION NUMRERBARA (eller UPPRÄKNELIGA) MÄNGDER Allmän terminologi. I samband med variabelbyte vid beräkning av integraler har vi en avbildning mellan två mängder A och B, dvs
Relationer. 1. Relationer. UPPSALA UNIVERSITET Matematiska institutionen Erik Melin. Specialkursen HT07 23 oktober 2007
UPPSALA UNIVERSITET Matematiska institutionen Erik Melin Specialkursen HT07 23 oktober 2007 Relationer Dessa blad utgör skissartade föreläsningsanteckningar kombinerat med övningar. Framställningen är
Övningshäfte 6: 2. Alla formler är inte oberoende av varandra. Försök att härleda ett par av de formler du fann ur några av de övriga.
GÖTEBORGS UNIVERSITET MATEMATIK 1, MAM100, HT2005 MATEMATISK BASKURS Övningshäfte 6: Syftet med övningen är att utforska strukturen hos talsystemen under addition respektive multiplikation samt sambandet
Mängder och kardinalitet
UPPSALA UNIVERSITET Matematiska institutionen Erik Melin Specialkursen HT07 28 september 2007 Mängder och kardinalitet Dessa blad utgör skissartade föreläsningsanteckningar kombinerat med övningar. Framställningen
Föreläsning 8 i kursen Ma III, #IX1305, HT 07. (Fjärde föreläsningen av Bo Åhlander)
Föreläsning 8 i kursen Ma III, #IX1305, HT 07. (Fjärde föreläsningen av Bo Åhlander) Böiers 5.3 Relationer. Vi har definierat en funktion f: A B som en regel som kopplar ihop ett element a A, med ett element
Om relationer och algebraiska
Om relationer och algebraiska strukturer Anders Källén MatematikCentrum LTH anderskallen@gmail.com Sammanfattning Även i analysen behöver man en del algebraiska begrepp. I den här artikeln definierar vi
2MA105 Algebraiska strukturer I. Per-Anders Svensson
2MA105 Algebraiska strukturer I Per-Anders Svensson Föreläsning 4 Innehåll Bijektiva avbildningar en repetition Permutationsgrupper Permutationer skrivna som produkter av cykler Jämna och udda permutationer
Föreläsningsanteckningar och övningar till logik mängdlära
Inledande matematisk analys tma970, 010, logik, mängdlära Föreläsningsanteckningar och övningar till logik mängdlära Dessa öreläsningsanteckningar kompletterar mycket kortattat kap 0 och appendix B i Persson/Böiers,
Modul 1 Mål och Sammanfattning
Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2016-2017 Lars Filipsson Modul 1 Mål och Sammanfattning 1. Reella tal. 1. MÅL FÖR MODUL 1 Känna till talsystememet och kunna använda notation
Modul 1: Funktioner, Gränsvärde, Kontinuitet
Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2015/2016 Modul 1: Funktioner, Gränsvärde, Kontinuitet Denna modul omfattar kapitel P och kapitel 1 kursboken Calculus av Adams och Essex och
Modul 1: Funktioner, Gränsvärde, Kontinuitet
Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2015/2016 Modul 1: Funktioner, Gränsvärde, Kontinuitet Denna modul omfattar kapitel P och kapitel 1 kursboken Calculus av Adams och Essex och
Lösningar till utvalda uppgifter i kapitel 3
Lösningar till utvalda uppgifter i kapitel 3 3.37 (a) Att ` ' är reexiv, antisymmetrisk och transitiv följer direkt av att `den vanliga' är det på N och Z. (b) Följden m n = ( n, n) där n = 0, 1, 2,...
729G04: Inlämningsuppgift i Diskret matematik
729G04: Inlämningsuppgift i Diskret matematik Instruktioner Dessa uppgifter utgör del av examinationen i kursen 729G04 Programmering och diskret matematik. Uppgifterna ska utföras individuellt och självständigt,
Sådana avbildningar kallar vi bijektioner mellan A och B (eller från A till B).
BIJEKTION, INJEKTION, SURJEKTION Allmän terminologi. I samband med variabelbyte vid beräkning av integraler har vi en avbildning mellan två mängder A och B, dvs en funktion f : A B. Vi har oftast krav
SF1625 Envariabelanalys
Föreläsning 7 Institutionen för matematik KTH 12 september 2016 Injektiva funktioner En funktion är en regel som till varje tal i definitionsmängden ordnar ett bestämt tal i värdemängden. Injektiva funktioner
Matematik för språkteknologer
1 / 27 Matematik för språkteknologer 2.3 (Relationer och funktioner) Mats Dahllöf Institutionen för lingvistik och filologi Februari 2014 2 / 27 Dagens nya punkter Relationer Definitioner Egenskaper hos
Algebra och kombinatorik 28/4 och 5/ Föreläsning 9 och 10
Grupper En grupp är ett par (G,*) där G är en mängd och * är en binär operation på G som uppfyller följande villkor: G1 (sluten) x,yϵg så x*yϵg G2 (associativ) x,y,z ϵg (x*y)*z=x*(y*z) G3 (identitet) Det
729G04 - Diskret matematik. Lektion 3. Valda lösningsförslag
729G04 - Diskret matematik. Lektion 3. Valda lösningsförslag 1 Uppgifter 1.1 Relationer 1. Vi ges mängden A = {p, q, r, s, t}. Är följande mängder relationer på A? Om inte, ge ett exempel som visar vad
Diofantiska ekvationer
Uppsala Universitet Matematiska institutionen Isac Hedén isac distans@math.uu.se Algebra I, 5 hp Vecka 19. Diofantiska ekvationer Vi börjar med en observation som rör den största gemensamma delaren till
Institutionen för Matematik. SF1625 Envariabelanalys. Lars Filipsson. Modul 1
Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2017-2018 Lars Filipsson Modul 1 1. MÅL FÖR MODUL 1 1. Reella tal. Känna till talsystememet och kunna använda notation för mängder och intervall
Uppgifter i TDDC75: Diskreta strukturer Kapitel 8 Ordning och oändlighet
Uppgifter i TDDC75: Diskreta strukturer Kapitel 8 Ordning och oändlighet Mikael Asplund 19 oktober 2016 Uppgifter 1. Avgör om följande relationer utgör partialordningar. Motivera varför eller varför inte.
Övningshäfte 1: Logik och matematikens språk
GÖTEBORGS UNIVERSITET MATEMATIK 1, MMG200, HT2014 INLEDANDE ALGEBRA Övningshäfte 1: Logik och matematikens språk Övning A Målet är att genom att lösa och diskutera några inledande uppgifter få erfarenheter
Relationer och funktioner
MAAA26 Diskret Matematik för Yrkeshögskoleutbildning-IT Block 11 BLOCK INNEHÅLL Referenser Inledning 1. Relationer 2. Funktioner 3. Övningsuppgifter Assignment 11 & 12 Referenser Relationer och funktioner
Uppgifter om funktioner
Uppgifter om funktioner Mikael Forsberg September 27, 2004 1. Med hjälp av uttrycket y = x 2 så definierar vi tre funktioner: f 1 : R x x 2 R, f 2 : R x x 2 R f 3 : R x x 2 R, där R = {x R : x 0} Eftersom
Övningshäfte 2: Induktion och rekursion
GÖTEBORGS UNIVERSITET MATEMATIK 1, MMG200, HT2017 INLEDANDE ALGEBRA Övningshäfte 2: Induktion och rekursion Övning D Syftet är att öva förmågan att utgående från enkla samband, aritmetiska och geometriska,
I kursen i endimensionell analys är mängden av reella tal (eng. real number), R, fundamental.
Lunds tekniska högskola Datavetenskap Lennart ndersson Föreläsningsanteckningar EDF10 4 Mängder 4.1 Motivering Mängden är den mest grundläggande diskreta strukturen. Nästan alla matematiska begrepp går
Läsanvisning till Discrete matematics av Norman Biggs - 5B1118 Diskret matematik
Läsanvisning till Discrete matematics av Norman Biggs - 5B1118 Diskret matematik Mats Boij 18 november 2001 13 Grupper Det trettonde kapitlet behandlar grupper. Att formulera abstrakta begrepp som grupper
1.1. Fördjupning: Jämförelse av oändliga mängder
Kapitel 1 Kardinalitet Den här texten är tagen från boken Diskret matematik av Asratian Björn Turesson (och delvis modifierad) Av den anledningen finns det visa hänvisningar på en del ställen som är ersatta
Introduktion till funktioner
Introduktion till funktioner Mikael Forsberg 5 februari 010 1 Introduktion Ordet funktion kommer från latinets functio som har samma betydelse som det svenska ordet. Ordet har använts i Sverige åtminstone
MS-A0409 Grundkurs i diskret matematik I
MS-A0409 Grundkurs i diskret matematik I G. Gripenberg Aalto-universitetet oktober 014 G. Gripenberg (Aalto-universitetet) MS-A0409 Grundkurs i diskret matematik I oktober 014 1 / 44 Mängder (naiv, inte
TDP015: Lektion 5 - Svar
TDP015: Lektion 5 - Svar 11 maj 015 1. Huvudsaken här är att det spelar roll vilket initialvärde vi har. Nedan har jag valt beräkningar som slutar när f(x) < ɛ, där ɛ 10 10. Detta behöver ni såklart inte
Föreläsning 5: Kardinalitet. Funktioners tillväxt
Föreläsning 5: Kardinalitet. Funktioners tillväxt A = B om det finns en bijektion från A till B. Om A har samma kardinalitet som en delmängd av naturliga talen, N, så är A uppräknelig. Om A = N så är A
MS-A0409 Grundkurs i diskret matematik I
MS-A0409 Grundkurs i diskret matematik I G. Gripenberg Aalto-universitetet oktober 04 G. Gripenberg (Aalto-universitetet) MS-A0409 Grundkurs i diskret matematik I oktober 04 / 45 Mängder och logik Relationer
MITTUNIVERSITETET TFM. Modelltenta Algebra och Diskret Matematik. Skrivtid: 5 timmar. Datum: 1 oktober 2007
MITTUNIVERSITETET TFM Modelltenta 2007 MA014G Algebra och Diskret Matematik Skrivtid: 5 timmar Datum: 1 oktober 2007 Den obligatoriska delen av denna (modell)tenta omfattar 8 frågor, där varje fråga kan
TATM79: Föreläsning 4 Funktioner
TATM79: Föreläsning 4 Funktioner Johan Thim augusti 08 Funktioner Vad är egentligen en funktion? Definition. En funktion f är en regel som till varje punkt i en definitionsmängd D f tilldelar precis ett
(N) och mängden av heltal (Z); objekten i en mängd behöver dock inte vara tal. De objekt som ingår i en mängd kallas för mängdens element.
Grunder i matematik och logik (2017) Mängdlära Marco Kuhlmann 1 Grundläggande begrepp Mängder och element 2.01 En mängd är en samling objekt. Två standardexempel är mängden av naturliga tal (N) och mängden
Filosofisk logik Kapitel 15. Robin Stenwall Lunds universitet
Filosofisk logik Kapitel 15 Robin Stenwall Lunds universitet Dagens upplägg Första ordningens mängdlära Naiv mängdlära Abstraktionsaxiomet (eg. comprehension) Extensionalitetsaxiomet Små mängder Ordnade
INVERSA FUNKTIONER DEFINITION. (invers funktion) Låt ff vara en funktion av en reell variabel med definitionsmängden DD ff och värdemängden VV ff. Vi säger att funktionen ff är inverterbar om ekvationen
Diskret Matematik A för CVI 4p (svenska)
MITTHÖGSKOLAN TFM Tentamen 2004 MAAA98 Diskret Matematik A för CVI 4p (svenska) Skrivtid: 5 timmar Datum: 3 juni 2004 Denna tentamen omfattar 10 frågor, där varje fråga kan ge 12 poäng. Delfrågornas poäng
Dagens teman. Mängdlära forts. Relationer och funktioner (AEE 1.2-3, AMII K1.2) Definition av de naturliga talen, Peanos axiom.
Dagens teman Mängdlära orts. Relationer och unktioner (AEE 1.2-3, AMII K1.2) Deinition av de naturliga talen, Peanos axiom. Relationer och unktioner Relationer Generell deinition: En relation R på mängden
Bisektionsalgoritmen. Kapitel Kvadratroten ur 2
Kapitel 4 Bisektionsalgoritmen Vi ska konstruera lösningar till algebraiska ekvationer av formen f(x) = 0 med hjälp av bisektionsalgoritmen (intervallhalveringsmetoden). På samma gång ska vi se hur man
Introduktion till funktioner
Introduktion till funktioner Mikael Forsberg 27 mars 2012 1 Introduktion Ordet funktion kommer från latinets functio som har samma betydelse som det svenska ordet. Ordet har använts i Sverige åtminstone
729G04 - Diskret matematik. Hemuppgift.
729G04 - Diskret matematik. Hemuppgift. 2016-08-31 Instruktioner Dessa uppgifter utgör en del av examinationen i kursen 729G04 Programmering och diskret matematik. Uppgifterna ska utföras individuellt
Block 1 - Mängder och tal
Block 1 - Mängder och tal Mängder Mängder och element Venndiagram Talmängder Heltalen Z Rationella talen Q Reella talen R Räkning med tal. Ordning av talen i R Intervall Absolutbelopp Olikheter 1 Prepkursen
Tentamensskrivning i Diskret Matematik för CINTE och CMETE, SF1610, onsdagen den 20 augusti 2014, kl
1 Matematiska Institutionen KTH Tentamensskrivning i Diskret Matematik för CINTE och CMETE, SF1610, onsdagen den 20 augusti 2014, kl 14.00-19.00. Examinator: Olof Heden Hjälpmedel: Inga hjälpmedel är tillåtna
Mängder. 1 Mängder. Grunder i matematik och logik (2015) 1.1 Grundläggande begrepp. 1.2 Beskrivningar av mängder. Marco Kuhlmann
Marco Kuhlmann 1 Diskret matematik handlar om diskreta strukturer. I denna lektion kommer vi att behandla den mest elementära diskreta strukturen, som alla andra diskreta strukturer bygger på: mängden.
Filosofisk Logik (FTEA21:4) föreläsningsanteckningar I. v. 2.0, den 24/4 2013
Filosofisk Logik (FTEA21:4) föreläsningsanteckningar I v. 2.0, den 24/4 2013 Om detta kompendium: Filosofiska institutionen, Lunds Universitet staffan.angere@fil.lu.se Förberedande Det här kompendiet är
12. CANTORS PARADIS. KORT ORIENTERING OM MÄNGDTEORI.
75 12. CANTORS PARADIS. KORT ORIENTERING OM MÄNGDTEORI. I slutet av 1800-talet uppfann Cantor mängdteorin som ett hjälpmedel vid sitt arbete med integrationsteori. Med en mängd menade Cantor "vilken som
Lösningar för tenta i TMV200 Diskret matematik kl. 14:00 18:00
Lösningar för tenta i TMV200 Diskret matematik 2018-08-31 kl 1:00 18:00 1 Om argumentet inte är giltigt går det att hitta ett motexempel, dvs en uppsättning sanningsvärden för vilka alla hypoteserna är
Kontinuitet och gränsvärden
Kapitel Kontinuitet och gränsvärden.1 Introduktion till kontinuerliga funktioner Kapitlet börjar med allmänna definitioner. Därefter utvidgar vi successivt familjen av kontinuerliga funktioner, genom specifika
En bijektion mellan två mängder A och B som har ändligt antal element kan finnas endast om mängderna har samma antal element.
Inversa unktion BIJEKTION, INJEKTION, SURJEKTION Allmän terminologi I samband med variabelbyte vid beräkning av integraler har vi en avbildning mellan två mängder A och B, dvs en unktion : A B Vi har otast
Algebra och kryptografi Facit till udda uppgifter
VK Algebra och kryptografi Facit till udda uppgifter Tomas Ekholm Niklas Eriksen Magnus Rosenlund Matematiska institutionen, 2002 48 Grupper. Lösning 1.1. Vi väljer att studera varje element i G H för
Grupper och RSA-kryptering
UPPSALA UNIVERSITET Matematiska institutionen Erik Melin Specialkursen HT07 26 oktober 2007 Grupper och RSA-kryptering Dessa blad utgör skissartade föreläsningsanteckningar kombinerat med övningar. Framställningen
10x 3 4x 2 + x. 4. Bestäm eventuella extrempunkter, inflexionspunkter samt horizontella och vertikala asymptoter. y = x 1 x + 1
TM-Matematik Mikael Forsberg Pär Hemström Övningstenta Envariabelanalys ma034a ovnt--vt0 Skrivtid: 5 timmar. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift
Algebra och Diskret Matematik A (svenska)
MITTUNIVERSITETET TFM Tentamen 2005 MAAA99 Algebra och Diskret Matematik A (svenska) Skrivtid: 5 timmar Datum: 2 november 2005 Denna tenta omfattar 8 frågor, där varje fråga kan ge 3 poäng. Maximalt poängantal
Några satser ur talteorin
Några satser ur talteorin LCB 997/2000 Fermats, Eulers och Wilsons satser Vi skall studera några klassiska satser i talteori, vilka är av betydelse bland annat i kodningsteknik och kryptoteknik. De kan
Algebra och Diskret Matematik A (svenska)
MITTUNIVERSITETET TFM Tentamen 2006 MAAA99 Algebra och Diskret Matematik A (svenska) Skrivtid: 5 timmar Datum: 10 januari 2006 Denna tenta omfattar 8 frågor, där varje fråga kan ge 3 poäng. Maximalt poängantal
f(x) = x 1 g(x) = x 2 2x + 3.
Kapitel 1 Uppgifter 1 Heltal 2 Mängder och funktioner 2.1 Betrakta funktionerna f : Z Z och g : Z Z som ges av f(x) = x 1 och Visa att a fg gf; g(x) = x 2 2x + 3. b det finns ett x Z sådant att fg(x) =
Block 1 - Mängder och tal
Block 1 - Mängder och tal Mängder Mängder och element Venndiagram Delmängder och äkta delmängder Union och snittmängd Talmängder Heltalen Z Rationella talen Q Reella talen R Räkning med tal. Ordning av
SF1625 Envariabelanalys
Föreläsning 2 Institutionen för matematik KTH 31 augusti 2016 Att göra denna vecka Översikt över modul 1 Funktion Definitionsmängd Värdemängd Udda, jämn Begränsad Absolutbelopp, Trigonometri, Polynom Gränsvärde
Lösningar till Algebra och kombinatorik
Lösningar till Algebra och kombinatorik 090520 1. Av a 0 = 0, a 1 = 1 och rekursionsformeln får vi successivt att a 2 = 1 4 a 1 a 0 + 3 2 = 1 4 1 0 + 32 = 4, a 3 = 1 4 a 2 a 1 + 3 2 = 1 4 4 1 + 32 = 9,
1 Föreläsning Implikationer, om och endast om
1 Föreläsning 1 Temat för dagen, och för dessa anteckningar, är att introducera lite matematisk terminologi och notation, vissa grundkoncept som kommer att vara genomgående i kursen. I grundskolan presenteras
Kapitel 1. betecknas detta antal med n(a). element i B; bet. A B. Den tomma mängden är enligt överenskommelsen en delmängd. lika; bet. A = B.
Kapitel 1 Mängdlära Begreppet mängd är fundamentalt i vårt tänkande; en mängd är helt allmänt en samling av objekt, vars antal kan vara ändligt eller oändligt. I matematiken kallas dessa objekt mängdens
KTHs Matematiska Cirkel. Reella tal. Joakim Arnlind Tomas Ekholm Andreas Enblom
KTHs Matematiska Cirkel Reella tal Joakim Arnlind Tomas Ekholm Andreas Enblom Institutionen för matematik, 2005 Finansierat av Marianne och Marcus Wallenbergs Stiftelse Innehåll 1 Mängdlära 7 1.1 Mängder...............................
Begreppen "mängd" och "element" är grundläggande begrepp i matematiken.
MÄNGDER Grundläggande begrepp och beteckningar Begreppen "mängd" och "element" är grundläggande begrepp i matematiken. Vi kan beskriva (ange, definiera) en mängd som innehåller ändligt många element genom
MA2047 Algebra och diskret matematik
MA2047 Algebra och diskret matematik Något om logik och mängdlära Mikael Hindgren 5 september 2018 Utsagor Utsaga = Påstående som har sanningsvärde Utsagan kan vara sann (S) eller falsk (F) öppen eller
MITTUNIVERSITETET TFM. Tentamen Algebra och Diskret Matematik A (svenska) Skrivtid: 5 timmar. Datum: 9 januari 2007
MITTUNIVERSITETET TFM Tentamen 2007 MAAA99 Algebra och Diskret Matematik A (svenska) Skrivtid: 5 timmar Datum: 9 januari 2007 Denna tenta omfattar 8 frågor, där varje fråga kan ge 3 poäng. Maximalt poängantal
LMA515 Matematik, del B Sammanställning av lärmål
LMA515 Matematik, del B Sammanställning av lärmål Lärmål för godkänt Funktion, gränsvärde, kontinuitet, derivata. Förklara begreppen funktion, definitionsmängd och värdemängd, och bestämma (största möjliga)
Induktion, mängder och bevis för Introduktionskursen på I
Induktion, mängder och bevis för Introduktionskursen på I J A S, ht 04 1 Induktion Detta avsnitt handlar om en speciell teknik för att försöka bevisa riktigheten av påståenden eller formler, för alla heltalsvärden
Abstrakt algebra för gymnasister
Abstrakt algebra för gymnasister Veronica Crispin Quinonez Sammanfattning. Denna text är föreläsningsanteckningar från föredraget Abstrakt algebra som hölls under Kleindagarna på Institutet Mittag-Leffler
Kapitel 4. Funktioner. 4.1 Definitioner
Kapitel 4 Funktioner I det här kapitlet kommer vi att undersöka funktionsbegreppet. I de första sektionerna genomgås definitionen av begreppet funktion och vissa egenskaper som funktioner har. I slutet
Träning i bevisföring
KTHs Matematiska Cirkel Träning i bevisföring Andreas Enblom Institutionen för matematik, 2005 Finansierat av Marianne och Marcus Wallenbergs Stiftelse 1 Mängdlära Här kommer fyra tips på hur man visar
Lösningsförslag TATM
Lösningsförslag TATM9 0-0-0. a) Summan är geometrisk med kvoten q = / och termer. Alltså, 50 k = 50 k+ = k ) ) ) ) =. k= k= b) Från definitionen av binomialkoefficienter ser vi att ) ) n n nn ) 6 = = =
Matematik 1c. address: URL: Daniel Bosk
Matematik 1c E-mail address: dbosk@kth.se URL: http://www.bosk.se/ Daniel Bosk Innehåll Kapitel 1. Introduktion 1 1.1. Vad är då matematik? 1 Kapitel 2. Logik och bevis 3 2.1. Logik 3 2.2. Axiom 5 2.3.
Algebra och kryptografi
VK Algebra och kryptografi Tomas Ekholm Niklas Eriksen Magnus Rosenlund Institutionen för matematik, 2002 Grekiska alfabetet alfa A α iota I ι rho P ρ beta B β kappa K κ sigma Σ σ gamma Γ γ lambda Λ λ
RELATIONER OCH FUNKTIONER
RELATIONER OCH FUNKTIONER 1 ORDNADE LISTOR (n-tipplar) Ordningen i en mängd spelar ingen roll Exempelvis {1,,3}={3,1,}={1,3,} För att beskriva listor med objekt där ordningen är viktigt använder vi rundparenteser
Begreppen "mängd" och "element" är grundläggande begrepp i matematiken.
MÄNGDER Grundläggande begrepp och beteckningar egreppen "mängd" och "element" är grundläggande begrepp i matematiken. Vi kan beskriva (ange, definiera) en mängd som innehåller ändligt många element genom
Filosofisk Logik (FTEA21:4) föreläsningsanteckningar v , den 24/
Filosofisk Logik (FTEA21:4) föreläsningsanteckningar v. 2.1.1, den 24/11 2014 Om detta kompendium: Filosofiska institutionen, Lunds Universitet staffan.angere@fil.lu.se Förberedande Det här kompendiet
SF1661 Perspektiv på matematik Tentamen 24 oktober 2013 kl Svar och lösningsförslag. z 11. w 3. Lösning. De Moivres formel ger att
SF11 Perspektiv på matematik Tentamen 4 oktober 013 kl 14.00 19.00 Svar och lösningsförslag (1) Låt z = (cos π + i sin π ) och låt w = 1(cos π 3 + i sin π 3 ). Beräkna och markera talet z11 w 3 z 11 w
σ 1 = (531)(64782), τ 1 = (18)(27)(36)(45), τ 1 σ 1 = (423871)(56).
MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik Examinator: Övningstenta i Algebra och Kombinatorik 7,5 hp 2015-11-24 Exempel på hur tentan skulle kunna se ut om alla uppgifter var från
Mängdlära. Kapitel Mängder
Kapitel 2 Mängdlära 2.1 Mängder Vi har redan stött på begreppet mängd. Med en mängd menar vi en väldefinierad samling av objekt eller element. Ordet väldefinierad syftar på att man för varje tänkbart objekt
Lösningsförslag till Tentamen i 5B1118 Diskret matematik 5p 22 augusti, 2001
Institutionen för matematik, KTH Mats Boij Lösningsförslag till Tentamen i 5B1118 Diskret matematik 5p 22 augusti, 2001 1. Ange kvot och rest vid division av 5BE med 1F där båda talen är angivna i hexadecimal
Tisdag v. 2. Speglingar, translationer och skalningar
1 Tisdag v 2 Speglingar, translationer och skalningar Ofta i matematik och i matematiska kurser är det så att man måste kunna några grundläggande exempel utantill och man måste kunna några regler som säger
Matematiska strukturer - Satser
Matematiska strukturer - Satser April 2, 2018 I detta dokument har jag samlat och översatt de flesta satser som ingår i kursen Matematiksa Strukturer (FMAN65) från kursboken Set Theory and Metric Spaces
Några saker att tänka på inför dugga 2
LINKÖPINGS UNIVERSITET 17 oktober 017 Matematiska institutionen TATA68 Matematik och tillämpad matematik Några saker att tänka på inför dugga Dugga omfattar HELA kursen, så titta även på de tips som lämnades
Diskret matematik: Övningstentamen 4
Diskret matematik: Övningstentamen 22. Beskriv alla relationer, som är såväl ekvivalensrelationer som partiella ordningar. Är någon välbekant relation sådan? 23. Ange alla heltalslösningar till ekvationen
LMA222a. Fredrik Lindgren. 17 februari 2014
LMA222a Fredrik Lindgren Matematiska vetenskaper Chalmers tekniska högskola och Göteborgs universitet 17 februari 2014 F. Lindgren (Chalmers&GU) Matematisk analys 17 februari 2014 1 / 68 Outline 1 Lite
Tentamen i TDDC75 Diskreta strukturer , lösningsförslag
Tentamen i TDDC75 Diskreta strukturer 2018-10-23, lösningsförslag 1 1. (a) Sanningstabell för uttrycken p q r p q p r r q r p q 0 0 0 1 0 1 1 1 0 0 1 1 1 0 1 1 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 0 1 0 0 0 1
Lösningar till Algebra och kombinatorik
Lösningar till Algebra och kombinatorik 091214 1. Av a 0 = 1 och rekursionsformeln får vi successivt att a 1 = 1 + a 0 1 a 0 = 1 + 1 1 1 = 2, a 2 = 1 + a 1 1 a 0 + 1 a 1 = 1 + 2 1 + 1 = 4, 2 a 3 = 1 +
Föreläsning 5. Deduktion
Föreläsning 5 Deduktion Hur ett deduktivt system fungerar Komponenter - Vokabulär Ett deduktivt system använder ett visst slags språk som kan kallas för systemets vokabulär. I mindre formella fall är kanske