Algebra och kombinatorik 28/4 och 5/ Föreläsning 9 och 10
|
|
- Henrik Axelsson
- för 7 år sedan
- Visningar:
Transkript
1 Grupper En grupp är ett par (G,*) där G är en mängd och * är en binär operation på G som uppfyller följande villkor: G1 (sluten) x,yϵg så x*yϵg G2 (associativ) x,y,z ϵg (x*y)*z=x*(y*z) G3 (identitet) Det existerar ett element eϵ G s.a. e*x=x*e=x för alla xϵg G4 (invers) För varje element xϵ G finns ett element x ϵg s.a. x *x=x*x =e Missbruk av notation, ofta skriver man att G är en grupp och låter * framgå av sammanhanget. Sats Låt (G,*) vara en grupp. Då finns precis ett element e med egenskapen beskriven i G3. Bevis Antag att f har samma egenskap e=f*e=f då är f=e Sats: Givet xϵg så finns det ett unikt element x som uppfyller G4 Bevis: Antag att x uppfyller G4 x =(G3)=x *e=(g4)=x *(x*x )=(G2)=(x *x)*x =(hypotes)=e*x =(G3)=x Exempel på grupper 1) Den symmetriska gruppen S n (S n, o)av permutationer av N n 2) Mängderna Z, Q, R och C är grupper under addition + 3) Mängden är Z n av kongruensklasser mod n är en grupp under addition + 4) Ingen av mängderna Z, Q, R och C är grupper under multiplikation! Inverser! Q\{0}, R\{0} och C\{0} är grupper under multiplikation. {-1,1} är en grupp under multiplikation. 5) Inverterbara element i Z n bildar gruppen U n under multiplikation. 6) Ett vektorrum V (över R) är en grupp under addition + 7) Mängden M nxm(r) (nxm-matriser med element R) är en grupp under addition. (Alla är inte inverterbara under multiplikation) 8) Mängden GL n(r) inverterbara nxn-matriser, en grupp under matrismultiplikation 9) Enhetscirkeln bildar en grupp kan också beskrivas {ZϵC: Z =1} C Denna delmängd ärver multiplikation från C. Notera Z,WϵC s.a. Z = W =1 då gäller Z*W = Z * W =1 1
2 Def: En grupp (G,*) kallas abelsk (eller kommutativ) om den dessutom uppfyller axiomet x*y=y*x för alla x,y element i G Notation. I abelska grupper betecknar man ofta gruppoperatorn med pluss och identitetselementet med 0. Annars använder man ofta gånger för att beteckna gruppoperationen och 1 för att beteckna identiteten. Multiplikativ additiv (endast för abelska grupper) Multiplikation x*y xy x+y Identitet e I 0 Invers x x (-1) -x Potenser x n (=x*x*x*x n faktorer) nx (x+x..+x n termer) x -n =(x -1 ) n -nx:= n(-x) Def: Ordningen för en grupp G är antalet element i den underliggande mängden. Betecknas G Ex Z n =n S n =n! U n =φ(n) Sats: Låt G vara en grupp Bevis: 1) a, b, c element i G gäller ab=ac b=c (kancellering) 2) Ekvationen ax=b och xa=b har unika lösningar (dock inte nödvändigtvis samma) 1) b=1*b=(a -1 a)b= a -1 (ab)= a -1 (ac) =(a -1 a)c=1c=c 2) ax=b a -1 (ax)= a -1 b VL: a -1 (ax)= (a -1 a)x=1x HL: x= a -1 b Potenslagar Låt G vara en grupp. Då gäller x m x n =x m+n, (x m ) n = x mn. Obs! Identiteten x n y n =(xy) n gäller om xy=yx, men inte nödvändigtvis annars. 2
3 Exempel: I S 5 gäller ((12)(345)) n =(12) n (234) n eftersom cyklerna är disjunkta, vilket medför (12)(345)=(345)(12) Men ((12)(13)) 2 =(12)(13)(12)(13)=(123) (12) 2 (13) 2 =()=(1)(2)(3) i S 3. Def: Låt xϵg där G är en grupp. Det minsta positiva heltal n s.a. x n =1 kallas för ordningen av x (om sådant n finns, annars säger vi att x har oändlig ordning) Sats: Låt xϵ G vara ett element av ordning m. Då gäller x n =1 omm m n Bevis: Skriv n=mq+r där 0 r<m Vi har x n =x mq+r = (x m ) q x r =1x eftersom r<m och m är maximalt m.a.p x m =1 så gäller att x r =1 omm r=0. Vilket är ekvivalent med att m n. Om G är en ändlig grupp (dvs G är ändlig) så har alla xϵg ändlig ordning. Bevis: Enligt lådprincipen finns n,m s.a. x n = x m, men n>m. Då gäller x n-m = x n (x m ) -1 =x n (x n ) -1 =1 så det existerar ett heltal t=n-m s.a. x t =1 Ex Beräkna ordningen för (12)(34)(5678) i S 8. ((12)(34)(5678)) n =(12) n (34) n (5678) n För att få identitetspermutationen måste alla tre faktorer bli 1. Detta ger villkoren 2 n, 2 n, 4 n för att vi ska få identiteten. Det minsta talet som uppfyller det här är 4. Sats: Ordningen för ett element xϵs n är minsta gemensamma multipeln av cykellängderna i x. Delgrupp Def Låt (G,*) vara en grupp och H G en delmängd. Paret (H,*) kallas delgrupp till (G,*) om (H,*) är en grupp. Ex. Delmängden {id,(12)} till S 2 är en delgrupp. Ex. Delmängden H={id,(1234),(13)(24),(1432),(14)(32),(12)(34),(24),(13)} är en delgrupp till S 4 H är gruppen av automorfier av grafen
4 Sats Låt G vara en grupp och H G en icke-tom delmängd till omm S1 S2 x,yϵh xyϵh xϵh x -1 ϵh Om G är ändlig är S2 en konsekvens av S1 Bevisskiss: Kom ihåg, vi har fyra gruppaxiom G1(sluten) G2(associativ) G3(identitet) G4(invers) S1 motsvarar G1 G2 får vi gratis G3 får vi genom att kombinera S2 xϵh x -1 ϵh och S1 1=xx -1 ϵh G4 motsvarar S2 Om G är ändlig är gäller följande: Låt xϵh Välj n s.a x n =1 (ändlig) Då är x n-1 invers till x. Men x n-1 ϵh om S1 gäller. Isomorfi mellan grupper Def: Def: Låt (G,*) och (H, o ) vara grupper. En avbildning f: G H kallas för en (grupp-)homomorfi om f(x*y)=f(x) o f(y) för alla x,y ϵg. Om f är bijektiv kallas f en (grupp-)isomorfi Grupperna G och H kallas isomorfa om det existerar en gruppisomorfi G H Exempel: Låt G=GLn(R) vara en grupp av inverterbara nxn-matriser med element i R. Då är det. G R\{0} en gruppisomorfi eftersom det(ab)=det(a)det(b) Obs! Ovanstående avbildning (d.v.s. det.) är inte bijektiv om n>1 Ex det( ) = det ( ) Exempel: Avbildningen sgn: S n {1,-1} är en grupphomomorfi. Detta är en isomorfi om n=2 (annars inte) Def: Låt (G,*) och (H,*) vara grupper. Då här mängden GxH={(g,h) gϵg, hϵh} en gruppstruktur given av (g 1,h 1). ( g 2,h 2)=( g 1,g 2, h 1,h 2) Övning. Visa att detta är en grupp. Gruppen GxH kallas den direkta produkten av G och H. Exempel: Gruppen G=Z 2xZ 2 är isomorf med delgruppen H={id,(12),(34),(12)(34)} till S 4. Vi har en isomorf f: G H given av f ((0,0))=id f ((1,0))=(1 2) f ((0,1))=(3 4) f ((1,1))=(1 2)(3 4) (Z 2xZ 2 ={0,1}=Mängden av par av element i Z 2 =(00)(01)(10)(11) 4
5 Sidoklasser Def: Låt G vara en grupp och H G en delgrupp. Den vänstra sidoklassen till gϵg m.a.p H definieras som gh:={gh hϵh}. På motsvarande sätt definieras den högra sidoklassen som Hg:={hg hϵh}. Sats: Låt H G vara grupper. Mängden G är en disjunkt union av vänstra sidoklasser gh gϵg. Om G är en ändlig grupp gäller H = gh för alla gϵg Exempel: G=S 3 och H={id,(12)} De vänstra sidoklasserna är idh={id,(12)} (12)H= {(12), id}=idh (13)H= {(13),(13)(12)=(123)} (23)H= {(23),(23)(12)=(132)} (123)H= {(123),(123)(12)=(13)}=(13)H (132)H= {(132),(132)(12)=(23)}=(23)H De högra sidoklasserna är Hid={id,(12)} H(13)={(13),(132)} H(23)={(23),(123)} Följdsats om H G är ändliga grupper gäller att H delar G Vi har partitionering G=idH Additionsprincipen ger G = idh + g1h + + grh = H + H + H =(r-1) H alltså delar H G Cykliska grupper Def: En grupp sägs vara cyklisk om den innehåller ett element xϵg där varje medlem av G är en potens av x. Elementet x sägs generera G och vi skriver G= x. x = {x n nϵz} är en delgrupp till G. Om x =G så kallas G för cyklisk. C (typisk sådan grupp) ={.. x -3,x -2, x -1, 1, x 1, x 2, x 3 } Sats: Låt C vara en cyklisk grupp genererad av x. Då är f: Z n C; n x n en isomorfi om C =n. Om C är oändlig så är f: Z C; n x n en isomorfi Notera: Ordningen för ett element xϵg är lika med ordningen för x. Speciellt gäller att ordningen för x delar ordningen för G (enligt Lagranges sats) Exempel: Gruppen S 3 innehåller element av ordning 1,2 och 3 (alla delar 6= S 3 ) 5
6 Bevisskiss av Lagranges sats 1) inför en ekvivalensrelation på G så att ekvivalensklasserna är sidoklasserna. 2) Konstruera en bijektiv funktion ᴦ g: H gh för alla gϵg h gh Antag att gh 1=gh 2. Då är h 1=h 2, så är ᴦ g injektiv. Suvjektiv följer av definitionen av gh. 1) x y h H så att x = yh Reflexiv: x x eftersom x = xid och id H Symmetrisk: Antag att x y. Alltså x = gh h H. Då gäller att y = xh 1 så y x eftersom h 1 H Transitiv: Antag att x y, y z x = yh, y = zh 2. Detta ger x = h 2 h 1 H så x z 6
Läsanvisning till Discrete matematics av Norman Biggs - 5B1118 Diskret matematik
Läsanvisning till Discrete matematics av Norman Biggs - 5B1118 Diskret matematik Mats Boij 18 november 2001 13 Grupper Det trettonde kapitlet behandlar grupper. Att formulera abstrakta begrepp som grupper
Läs merGrupper och RSA-kryptering
UPPSALA UNIVERSITET Matematiska institutionen Erik Melin Specialkursen HT07 26 oktober 2007 Grupper och RSA-kryptering Dessa blad utgör skissartade föreläsningsanteckningar kombinerat med övningar. Framställningen
Läs merÖvningshäfte 3: Funktioner och relationer
GÖTEBORGS UNIVERSITET MATEMATIK 1, MAM100, HT2014 INLEDANDE ALGEBRA Övningshäfte 3: Funktioner och relationer Övning H Syftet är att utforska ett av matematikens viktigaste begrepp: funktionen. Du har
Läs merÖvningshäfte 6: 2. Alla formler är inte oberoende av varandra. Försök att härleda ett par av de formler du fann ur några av de övriga.
GÖTEBORGS UNIVERSITET MATEMATIK 1, MAM100, HT2005 MATEMATISK BASKURS Övningshäfte 6: Syftet med övningen är att utforska strukturen hos talsystemen under addition respektive multiplikation samt sambandet
Läs merLösning till tentamensskrivning på kursen Diskret Matematik, moment B, för D2 och F, SF1631 och SF1630, den 1 juni 2011 kl
Matematiska Institutionen KTH Lösning till tentamensskrivning på kursen Diskret Matematik moment B för D2 och F SF63 och SF63 den juni 2 kl 8.- 3.. Examinator: Olof Heden tel. 7354789. Hjälpmedel: Inga
Läs merOm relationer och algebraiska
Om relationer och algebraiska strukturer Anders Källén MatematikCentrum LTH anderskallen@gmail.com Sammanfattning Även i analysen behöver man en del algebraiska begrepp. I den här artikeln definierar vi
Läs mer1. (3p) Ett RSA-krypto har parametrarna n = 77 och e = 37. Dekryptera meddelandet 3, dvs bestäm D(3). 60 = = =
Matematiska Institutionen KTH Lösningar till tentamensskrivning på kursen Diskret Matematik, moment B, för D2 och F, SF63 och SF630, den 20 maj 2009 kl 08.00-3.00. Hjälpmedel: Inga hjälpmedel är tillåtna
Läs merAlgebra och kryptografi
VK Algebra och kryptografi Tomas Ekholm Niklas Eriksen Magnus Rosenlund Institutionen för matematik, 2002 Grekiska alfabetet alfa A α iota I ι rho P ρ beta B β kappa K κ sigma Σ σ gamma Γ γ lambda Λ λ
Läs merMS-A0409 Grundkurs i diskret matematik Sammanfattning, del II
MS-A0409 Grundkurs i diskret matematik Sammanfattning, del II 1 Modulär- eller kongruensaritmetik Euklides algoritm RSA-algoritmen G. Gripenberg Aalto-universitetet 17 oktober 2013 2 Grupper och permutationer
Läs merSF2703 Algebra grundkurs Lösningsförslag med bedömningskriterier till tentamen Fredagen den 5 juni 2009
SF2703 Algebra grundkurs Lösningsförslag med bedömningskriterier till tentamen Fredagen den 5 juni 2009 (1) a) Definiera vad som menas med en grupphomomorfi. (1) b) Visa att exponentialfunktionen, exp
Läs merTILLÄMPADE DISKRETA STRUKTURER. Juliusz Brzezinski och Jan Stevens
TILLÄMPADE DISKRETA STRUKTURER Juliusz Brzezinski och Jan Stevens MATEMATIK CHALMERS TEKNISKA HÖGSKOLA GÖTEBORGS UNIVERSITET GÖTEBORG 2001 FÖRORD Termen Diskret matematik täcker ett mycket brett spektrum
Läs merDefinitionsmängd, urbild, domän
5B1493, lekt 5, HT06 Funktioner Definition av begreppet Definition: Låt X och Y vara två mängder. En funktion f av typ X Y är detsamma som en delmängd av X Y, sådan att 1. Om (x, y) och (x, z) f, så är
Läs merDEL I. Matematiska Institutionen KTH
Matematiska Institutionen KTH Lösning till tentamensskrivning på kursen Diskret Matematik, moment B, för D2 och F, SF63 och SF63, den 25 maj 2 kl 8.-3.. Hjälpmedel: Inga hjälpmedel är tillåtna på tentamensskrivningen.
Läs merEfternamn förnamn pnr årskurs
KTH Matematik Olof Heden Σ p G/U bonus Efternamn förnamn pnr årskurs Kontrollskrivning 3A, den 2 oktber 2013, kl 11.00-12.00 i SF1610 Diskret matematik för CINTE och CMETE. Inga hjälpmedel tillåtna. Minst
Läs merAlgebra och kryptografi Facit till udda uppgifter
VK Algebra och kryptografi Facit till udda uppgifter Tomas Ekholm Niklas Eriksen Magnus Rosenlund Matematiska institutionen, 2002 48 Grupper. Lösning 1.1. Vi väljer att studera varje element i G H för
Läs merEN KONCIS INTRODUKTION TILL GRUPPTEORI
EN KONCIS INTRODUKTION TILL GRUPPTEORI DANIEL LARSSON Sammanfattning. En kort introduktion till gruppteori. Innehåll 1. Binär operation, slutenhet, grupper 1 2. Exempel, abelska grupper 2 3. Exempel, icke-abelska
Läs merALGEBRAISKA STRUKTURER. Juliusz Brzezinski
ALGEBRAISKA STRUKTURER Juliusz Brzezinski MATEMATISKA VETENSKAPER CHALMERS TEKNISKA HÖGSKOLA OCH GÖTEBORGS UNIVERSITET GÖTEBORG 2005 FÖRORD Detta kompendium täcker innehållet i kursen Algebraiska strukturer,
Läs merAbstrakt algebra för gymnasister
Abstrakt algebra för gymnasister Veronica Crispin Quinonez Sammanfattning. Denna text är föreläsningsanteckningar från föredraget Abstrakt algebra som hölls under Kleindagarna på Institutet Mittag-Leffler
Läs merMINNESANTECKNINGAR FÖR DELTAGARNA I WORKSHOP GRUPPER
MINNESANTECKNINGAR FÖR DELTAGARNA I WORKSHOP GRUPPER SONJA KOVALEVSKYDAGARNA 2008; HANNA USCKA-WEHLOU 0. Praktiska anmärkningar Det finns följande moment i workshop: en föreläsningsdel - jag berättar om
Läs merEXAMENSARBETEN I MATEMATIK
EXAMENSARBETEN I MATEMATIK MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET AKS-algoritmen för att bestämma om ett tal är ett primtal eller inte av Per Westerlund 2005 - No 14 MATEMATISKA INSTITUTIONEN,
Läs merFöreläsning 8 i kursen Ma III, #IX1305, HT 07. (Fjärde föreläsningen av Bo Åhlander)
Föreläsning 8 i kursen Ma III, #IX1305, HT 07. (Fjärde föreläsningen av Bo Åhlander) Böiers 5.3 Relationer. Vi har definierat en funktion f: A B som en regel som kopplar ihop ett element a A, med ett element
Läs merMS-A0409 Grundkurs i diskret matematik Appendix, del II
MS-A0409 Grundkurs i diskret matematik Appendix, del II G. Gripenberg Aalto-universitetet 17 oktober 2013 G. Gripenberg (Aalto-universitetet) MS-A0409 Grundkurs i diskret matematikappendix, del II 17 oktober
Läs merEn lösning till ordproblemet för Coxetergrupper
DEGREE PROJECT IN TEKNIK, FIRST CYCLE, 15 CREDITS STOCKHOLM, SWEDEN 2019 En lösning till ordproblemet för Coxetergrupper EMANUEL STRÖM FILIP RYBLAD KTH ROYAL INSTITUTE OF TECHNOLOGY SKOLAN FÖR TEKNIKVETENSKAP
Läs merMatematiska Institutionen KTH. Lösning till några övningar inför lappskrivning nummer 5, Diskret matematik för D2 och F, vt09.
1 Matematiska Institutionen KTH Lösning till några övningar inför lappskrivning nummer 5, Diskret matematik för D2 och F, vt09. 1. Betrakat gruppen G = (Z 19 \ {0}, ). (a) Visa att G är en cyklisk grupp.
Läs merLösning av tentamensskrivning i Diskret Matematik för CINTE och CMETE, SF1610, tisdagen den 27 maj 2014, kl
1 Matematiska Institutionen KTH Lösning av tentamensskrivning i Diskret Matematik för CINTE och CMETE, SF1610, tisdagen den 27 maj 2014, kl 14.00-19.00. Examinator: Olof Heden Hjälpmedel: Inga hjälpmedel
Läs merKap. 8 Relationer och funktioner
Begrepp och egenskaper: Kap. 8 elationer och funktioner relation, relationsgraf och matris, sammansatt relation reflexivitet, symmetri, anti-symmetri, transitivitet ekvivalensrelation, partialordning,
Läs merTentamensskrivning i Diskret Matematik för CINTE och CMETE, SF1610, onsdagen den 20 augusti 2014, kl
1 Matematiska Institutionen KTH Tentamensskrivning i Diskret Matematik för CINTE och CMETE, SF1610, onsdagen den 20 augusti 2014, kl 14.00-19.00. Examinator: Olof Heden Hjälpmedel: Inga hjälpmedel är tillåtna
Läs merDefinition Låt n vara ett positivt heltal. Heltalen a och b sägs vara kongruenta modulo n om n är en faktor i a-b eller med andra ord om. n (a-b).
Block 4 Algebra och Diskret Matematik A BLOCK INNEHÅLL Referenser Inledning 1. Kongruens modulo n 2. Z n -- heltalen modulo n 3. Ekvationer modulo n 4. Relationer 5. Funktioner Golv och tak funktionerna
Läs merExplorativ övning 9 RELATIONER OCH FUNKTIONER
Explorativ övning 9 RELATIONER OCH FUNKTIONER Övningens syfte är att bekanta sig med begreppet relation på en mängd M. Begreppet relation i matematiska sammanhang anknyter till betydelsen av samma ord
Läs merAlgebra och Diskret Matematik A (svenska)
MITTUNIVERSITETET TFM Tentamen 2005 MAAA99 Algebra och Diskret Matematik A (svenska) Skrivtid: 5 timmar Datum: 2 november 2005 Denna tenta omfattar 8 frågor, där varje fråga kan ge 3 poäng. Maximalt poängantal
Läs merLMA033/LMA515. Fredrik Lindgren. 4 september 2013
LMA033/LMA515 Fredrik Lindgren Matematiska vetenskaper Chalmers tekniska högskola och Göteborgs universitet 4 september 2013 F. Lindgren (Chalmers&GU) Matematik 4 september 2013 1 / 25 Outline 1 Föreläsning
Läs merÄndliga kroppar. Anna Boman. U.U.D.M. Project Report 2016:12. Department of Mathematics Uppsala University
U.U.D.M. Project Report 2016:12 Ändliga kroppar Anna Boman Examensarbete i matematik, 15 hp Handledare: Gunnar Berg Examinator: Veronica Crispin Quinonez Juni 2016 Department of Mathematics Uppsala University
Läs merLite additioner till Föreläsningsanteckningarna. 1 Tillägg till kapitel 1.
Lite additioner till Föreläsningsanteckningarna. Följande additioner har gjorts till anteckningarna men ligger ändå som ett separat dokument för er som redan har skrivit ut anteckningarna och inte vill
Läs merEN KONCIS INTRODUKTION TILL RINGTEORI
EN KONCIS INTRODUKTION TILL RINGTEORI DANIEL LARSSON Sammanfattning. En kort introduktion till ringteori. Innehåll 1. Inledning 1 2. Definition 1 2.1. Heltalsdomäner 3 3. Exempel, kommutativa ringar 4
Läs mer2MA105 Algebraiska strukturer I. Per-Anders Svensson
2MA105 Algebraiska strukturer I Per-Anders Svensson Föreläsning 4 Innehåll Bijektiva avbildningar en repetition Permutationsgrupper Permutationer skrivna som produkter av cykler Jämna och udda permutationer
Läs merMS-A0409 Grundkurs i diskret matematik II
MS-A0409 Grundkurs i diskret matematik II G. Gripenberg Aalto-universitetet 23 september 20 G. Gripenberg Aalto-universitetet) MS-A0409 Grundkurs i diskret matematik II 23 september 20 / G. Gripenberg
Läs merNågra satser ur talteorin
Några satser ur talteorin LCB 997/2000 Fermats, Eulers och Wilsons satser Vi skall studera några klassiska satser i talteori, vilka är av betydelse bland annat i kodningsteknik och kryptoteknik. De kan
Läs merSF2703 Algebra grundkurs Lösningsförslag med bedömningskriterier till tentamen Måndagen den 9 mars 2009
SF2703 Algebra grundkurs Lösningsförslag med bedömningskriterier till tentamen Måndagen den 9 mars 2009 (1) a) Definiera vad som menas med centralisatorn till ett element g i en grupp G. (1) b) Visa att
Läs merDiofantiska ekvationer
Uppsala Universitet Matematiska institutionen Isac Hedén isac distans@math.uu.se Algebra I, 5 hp Vecka 19. Diofantiska ekvationer Vi börjar med en observation som rör den största gemensamma delaren till
Läs merVi börjar med en viktig definition som inte finns i avsnitt 3.4 i [EG], den formella definitionen av kongruens modulo n:
MAAA26 Diskret Matematik för Yrkeshögskoleutbildning-IT Block 6 BLOCK INNEHÅLL Referenser Modulär aritmetik. Inledning 1. Kongruens modulo n 2. Z n -- heltalen modulo n 3. Ekvationer modulo n 4. Övningsuppgifter
Läs mer1. (3p) Ett RSA-krypto har de offentliga nycklarna n = 33 och e = 7. Dekryptera meddelandet 5. a b c d e. a a b c d e
1 Lösning till MODELLTENTA DISKRET MATEMATIK moment B FÖR D2 och F, SF1631 resp SF1630. DEL I 1. (3p) Ett RSA-krypto har de offentliga nycklarna n = 33 och e = 7. Dekryptera meddelandet 5. Lösning: Vi
Läs merMA2047 Algebra och diskret matematik
MA2047 Algebra och diskret matematik Något om funktioner och relationer Mikael Hindgren 1 oktober 2018 Funktionsbegreppet Exempel 1 f (x) = x 2 + 1, g(x) = x 3 och y = sin x är funktioner. Exempel 2 Kan
Läs merKinesiska restsatsen
Matematik, KTH Bengt Ek juli 2017 Material till kurserna SF1679 och SF1688, Diskret matematik: Kinesiska restsatsen Vi vet att för varje m Z + och varje a Z, ges alla x Z som uppfyller x a (mod m) av x
Läs merRelationer och funktioner
Relationer och funktioner Joakim Nivre Uppsala universitet Institutionen för lingvistik och filologi Översikt Relationer: Binära relationer på mängder Mängd-, graf- och matrisnotation Egenskaper hos relationer
Läs mer14 september, Föreläsning 5. Tillämpad linjär algebra
14 september, 2016 Föreläsning 5 Tillämpad linjär algebra Innehåll Matriser Algebraiska operationer med matriser Definition av inversen av en matris Förra gången: Linjära ekvationer och dess lösningar
Läs merFakulteten för teknik och naturvetenskap. Johan Jonsson. Ändliga grupper. Finite groups. Matematik C-uppsats
Fakulteten för teknik och naturvetenskap Johan Jonsson Ändliga grupper Finite groups Matematik C-uppsats Datum: 2007-03-21 Handledare: Håkan Granath Examinator: Thomas Martinsson Karlstads universitet
Läs mer15 september, Föreläsning 5. Tillämpad linjär algebra
5 september, 5 Föreläsning 5 Tillämpad linjär algebra Innehåll Matriser Algebraiska operationer med matriser Definition och beräkning av inversen av en matris Förra gången: Linjära ekvationer och dess
Läs merMer om faktorisering
Matematik, KTH Bengt Ek november 2013 Material till kursen SF1662, Diskret matematik för CL1: Mer om faktorisering Inledning. Är alla ringar som Z? De första matematiska objekt vi studerade i den här kursen
Läs merFöreläsningsanteckningar Linjär Algebra II Lärarlyftet
Föreläsningsanteckningar Linjär Algebra II Lärarlyftet Per Alexandersson Föreläsning I Timme I: Repetition av matriser, linjära ekvationssystem Linjärt ekvationssystem: x + y + z 3w = 3 2x + y + z 4w =
Läs merMatematiska Institutionen KTH. Lösningar till några övningar inför lappskrivning nummer 7, Diskret matematik för D2 och F, vt08.
1 Matematiska Institutionen KTH Lösningar till några övningar inför lappskrivning nummer 7, Diskret matematik för D2 och F, vt08. 1. Betrakat gruppen G = (Z 19 \ {0}, ). (a) Visa att G är en cyklisk grupp.
Läs merDefinition grupp. En grupp (G, ) är en mängd G med en binär operator : G G G som uppfyller följande vilkor:
Grupper Definition grupp En grupp (G, ) är en mängd G med en binär operator : G G G som uppfyller följande vilkor: Definition grupp En grupp (G, ) är en mängd G med en binär operator : G G G som uppfyller
Läs merOm gruppers verkan på
Matematik, KTH Bengt Ek April 20 preliminär version, ännu lite ofullständig Material till kursen SF662, Diskret matematik för CL: Om gruppers verkan på mängder Inledning. Som en tillämpning av den gruppteori
Läs merOm modeller och teorier
Matematik, KTH Bengt Ek december 2017 Material till kursen SF1679, Diskret matematik: Om modeller och teorier Hittills i kursen har vi studerat flera olika typer av matematiska strukturer, bl.a. (partial)ordnade
Läs merMängder, funktioner och naturliga tal
Lådprincipen Följande sats framstår som en fullständig självklarhet: Sats (Lådprincipen (pigeon hole principle)). Låt n > m vara naturliga tal. Fördelar man n föremål i m lådor, så kommer åtminstone en
Läs merMängder och kardinalitet
UPPSALA UNIVERSITET Matematiska institutionen Erik Melin Specialkursen HT07 28 september 2007 Mängder och kardinalitet Dessa blad utgör skissartade föreläsningsanteckningar kombinerat med övningar. Framställningen
Läs mer3. Bestäm med hjälpa av Euklides algoritm största gemensamma delaren till
UPPSALA UNIVERSITET Matematiska institutionen Isac Hedén, isac@math.uu.se Prov i matematik Vi räknar ett urval av dessa uppgifter vid vart och ett av de tio lektionstillfällena. På kurshemsidan framgår
Läs merLösningar till Algebra och kombinatorik
Lösningar till Algebra och kombinatorik 090520 1. Av a 0 = 0, a 1 = 1 och rekursionsformeln får vi successivt att a 2 = 1 4 a 1 a 0 + 3 2 = 1 4 1 0 + 32 = 4, a 3 = 1 4 a 2 a 1 + 3 2 = 1 4 4 1 + 32 = 9,
Läs merMatematik för språkteknologer
1 / 27 Matematik för språkteknologer 2.3 (Relationer och funktioner) Mats Dahllöf Institutionen för lingvistik och filologi Februari 2014 2 / 27 Dagens nya punkter Relationer Definitioner Egenskaper hos
Läs merLösningsförslag till Tentamen i 5B1118 Diskret matematik 5p 20 december, 2001
Institutionen för matematik, KTH Mats Boij och Niklas Eriksen Lösningsförslag till Tentamen i 5B1118 Diskret matematik 5p 20 december, 2001 1. Låt M = {0, 1, 2,..., 99} och definiera en funktion f : M
Läs merRelationer. 1. Relationer. UPPSALA UNIVERSITET Matematiska institutionen Erik Melin. Specialkursen HT07 23 oktober 2007
UPPSALA UNIVERSITET Matematiska institutionen Erik Melin Specialkursen HT07 23 oktober 2007 Relationer Dessa blad utgör skissartade föreläsningsanteckningar kombinerat med övningar. Framställningen är
Läs merHELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI
HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Tiedekunta/Osasto Fakultet/Sektion Faculty Laitos Institution Department Matematisk-naturvetenskapliga Tekijä Författare Author Ilkka
Läs mer. Gruppteori Vi inleder detta kapitel med att deniera de grundläggande begreppen operation, algebraisk struktur, neutralt element, inverterbart element, associativ och kommutativ operation. Grupper Denition.
Läs merGausselimination fungerar alltid, till skillnad från mer speciella metoder.
LINJÄRA EKVATIONSSYSTEM, GAUSSELIMINATION. MATRISER. Läs avsnitten 4.-4.. Lös övningarna 4.ace, 4.2acef, 4., 4.5-4.7, 4.9b, 4. och 4.abcfi. Läsanvisningar Avsnitt 4. Det här avsnittet handlar om Gauss-elimination,
Läs merMS-A0409 Grundkurs i diskret matematik II
MS-A0409 Grundkurs i diskret matematik II G. Gripenberg Aalto-universitetet 23 september 2015 G. Gripenberg (Aalto-universitetet) MS-A0409 Grundkurs i diskret matematik II 23 september 2015 1 / 1 G. Gripenberg
Läs merMatriser. En m n-matris A har följande form. Vi skriver också A = (a ij ) m n. m n kallas för A:s storlek. 0 1, 0 0. Exempel 1
Matriser En m n-matris A har följande form a 11... a 1n A =.., a ij R. a m1... a mn Vi skriver också A = (a ij ) m n. m n kallas för A:s storlek. Exempel 1 1 0 0 1, 0 0 ( 1 3 ) 2, ( 7 1 2 3 2, 1 3, 2 1
Läs merCarl Olsson Carl Olsson Linjär Algebra / 18
Linjär Algebra: Föreläsn 1 Carl Olsson 2018-03-19 Carl Olsson Linjär Algebra 2018-03-19 1 / 18 Kursinformation Kurschef Carl Olsson arbetsrum: MH:435 tel: 046-2228565 epost: calle@maths.lth.se Carl Olsson
Läs merLinjär Algebra M/TD Läsvecka 2
Linjär Algebra M/TD Läsvecka 2 Omfattning och Innehåll 2.1 Matrisoperationer: addition av matriser, multiplikation av matris med skalär, multiplikation av matriser. 2.2-2.3 Matrisinvers, karakterisering
Läs merLösningsförslag till tentamensskrivning i SF1610 Diskret Matematik för CINTE 30 maj 2018, kl
1 Matematiska Institutionen KTH Lösningsförslag till tentamensskrivning i SF1610 Diskret Matematik för CINTE 30 maj 2018, kl 08.00 13.00. Examinator: Petter Brändén Kursansvarig: Olof Sisask Hjälpmedel:
Läs merAlgebra och kombinatorik 10/ Föreläsning 4. Låt X vara en ändlig mängd. En permutation av X är en bijektiv funktion X X. Sats: S n =n!
Permutationer Låt X vara en ändlig mängd. En permutation av X är en bijektiv funktion X X. Mängden permutationer av N n för n N är S n (S 0 är mängden av permutationer av ) Sats: S n =n! Ex S 3 =3! Låt
Läs merLösning till tentamensskrivning i Diskret Matematik för CINTE och CMETE, m fl, SF1610, tisdagen den 2 juni 2015, kl
1 Matematiska Institutionen KTH Lösning till tentamensskrivning i Diskret Matematik för CINTE och CMETE, m fl, SF1610, tisdagen den juni 015, kl 1.00-19.00. Examinator: Olof Heden Hjälpmedel: Inga hjälpmedel
Läs merFöreläsningsanteckningar och övningar till logik mängdlära
Inledande matematisk analys tma970, 010, logik, mängdlära Föreläsningsanteckningar och övningar till logik mängdlära Dessa öreläsningsanteckningar kompletterar mycket kortattat kap 0 och appendix B i Persson/Böiers,
Läs merInnehåll. 1 Linjärt ekvationssystem (ES) 5. 2 Grundläggande algebra 13
LINJÄR ALGEBRA Innehåll Linjärt ekvationssstem (ES) 5 Grundläggande algebra 3 3 Matrisalgebra 5 3 Addition av matriser 5 3 Multiplikation mellan matriser 7 33 Enhetsmatris 34 Invers matris 34 Nollmatris
Läs merGrundidén är att våra intuitiva rationella tal (bråk) alltid kan fås som lösningar till ekvationer av typen α ξ = β, där α och β är tal Z och α 0.
5B2710, lekt 4, HT07 Konstruktion av de rationella talen Q (AEE 2.3) Grundidén är att våra intuitiva rationella tal (bråk) alltid kan fås som lösningar till ekvationer av typen α ξ = β, där α och β är
Läs merDE 17 TAPETGRUPPERNA
DE 7 TAPETGRUPPERNA Innehåll. Inledning. Matrisgrupper 3.. Isometrier 3.. Linjära matrisgrupper 3.3. Rotation och spegling 5 3. Den euklidiska gruppen 8 3.. Direkta och semidirekta produkter 8 3.. Sammansättning
Läs merDEL I. Matematiska Institutionen KTH
1 Matematiska Institutionen KTH Lösning till tentamensskrivning i Diskret Matematik för CINTE, CL2 och Media 1, SF1610 och 5B1118, tisdagen den 21 oktober 2008, kl 08.00-13.00. Examinator: Olof Heden.
Läs merEftertryck förbjudes
",, EXEMPELSAMLING TILL P ABYGGNADSKURS ALGEBRA I Copyright: Matematiska institutionen Stockholms universitet 1974 Eftertryck förbjudes -2-.Följande stand'ardbeteckningar har använts: z = heltalen ~ =
Läs merLösningsförslag till Tentamen i 5B1118 Diskret matematik 5p 11 april, 2002
Institutionen för matematik, KTH Mats Boij och Niklas Eriksen Lösningsförslag till Tentamen i 5B1118 Diskret matematik 5p 11 april, 2002 1. Bestäm det minsta positiva heltal n sådant att 31n + 13 är delbart
Läs merDiskret matematik: Övningstentamen 1
Diskret matematik: Övningstentamen 1 1. Bevisa att de reella talen är en icke-uppräknelig mängd.. För två mängder av positiva heltal A och B skriver vi A C B, om det är så att A innehåller ett heltal som
Läs merAlgebra och Diskret Matematik A (svenska)
MITTUNIVERSITETET TFM Tentamen 2007 MAAA99 Algebra och Diskret Matematik A (svenska) Skrivtid: 5 timmar Datum: 7 juni 2007 Denna tenta omfattar 8 frågor, där varje fråga kan ge 3 poäng. Maximalt poängantal
Läs merHemuppgifter till fredagen den 16 september Exercises to Friday, September 16
Introduction to Semigroups Hemuppgifter till fredagen den 16 september Exercises to Friday, September 16 Övningsuppgifterna lämnas in senast onsdagen 14.9. till David Stenlund, per e-post dstenlun@abo.fi
Läs merc d Z = och W = b a d c för några reella tal a, b, c och d. Vi har att a + c (b + d) b + d a + c ac bd ( ad bc)
1 Komplexa tal 11 De reella talen De reella talen skriver betecknas ofta med symbolen R Vi vill inte definiera de reella talen här, men vi noterar att för varje tal a och b har vi att a + b och att ab
Läs merBinära kvadratiska former
U.U.D.M. Project Report 2016:14 Binära kvadratiska former Vasam Mazraeh Examensarbete i matematik, 15 hp Handledare: Andreas Strömbergsson Examinator: Veronica Crispin Quinonez Juni 2016 Department of
Läs merLösningar till utvalda uppgifter i kapitel 3
Lösningar till utvalda uppgifter i kapitel 3 3.37 (a) Att ` ' är reexiv, antisymmetrisk och transitiv följer direkt av att `den vanliga' är det på N och Z. (b) Följden m n = ( n, n) där n = 0, 1, 2,...
Läs merÄndliga projektiva plan
Ändliga projektiva plan Examensarbete för kandidatexamen i matematik vid Göteborgs universitet Bogdan Dobondi Malin Nilsson Institutionen för matematiska vetenskaper Chalmers tekniska högskola Göteborgs
Läs merOm ordinaltal och kardinaltal
Matematik, KTH Bengt Ek december 2017 Material till kursen SF1679, Diskret matematik: Om ordinaltal och kardinaltal (Ännu ofullständig version) Mängdteorin kan ses som grunden för all matematik Här skall
Läs merHemuppgifter till fredagen den 16 september Exercises to Friday, September 16
Introduction to Semigroups Hemuppgifter till fredagen den 16 september Exercises to Friday, September 16 Övningsuppgifterna lämnas in senast onsdagen 14.9. till David Stenlund, per e-post den 16 september.
Läs merTentamen i TDDC75 Diskreta strukturer , lösningsförslag
Tentamen i TDDC75 Diskreta strukturer 2018-10-23, lösningsförslag 1 1. (a) Sanningstabell för uttrycken p q r p q p r r q r p q 0 0 0 1 0 1 1 1 0 0 1 1 1 0 1 1 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 0 1 0 0 0 1
Läs merTal och polynom. Johan Wild
Tal och polynom Johan Wild 14 augusti 2008 Innehåll 1 Inledning 3 2 Att gå mellan olika typer av tal 3 3 De hela talen och polynom 4 3.1 Polynom........................... 4 3.2 Räkning med polynom...................
Läs merMATRISTEORI. Pelle Pettersson MATRISER. En matris är ett rektangulärt schema med tal, reella eller komplexa, vilka kallas matrisens
MATRISTEORI Pelle Pettersson ALLMÄN MATRISKUNSKAP MATRISER En matris är ett rektangulärt schema med tal, reella eller komplexa, vilka kallas matrisens element Exempel Matrisen 2 3 4 5 6 har två rader och
Läs merDagens program. Linjära ekvationssystem och matriser
Dagens program Matriser Räkneoperationer och räknelagar Linjära ekvationssystem och matriser Matrisform av ekvationssystem Elementära radoperationer Trappstegsmatriser, rang och lösningsstruktur Matrisinvers,
Läs merLäsanvisning till Discrete matematics av Norman Biggs - 5B1118 Diskret matematik
Läsanvisning till Discrete matematics av Norman Biggs - 5B1118 Diskret matematik Mats Boij 18 november 2001 15 Ringar, kroppar och polynom Det fjortonde kapitlet behandlar ringar. En ring har till skillnad
Läs merUppgifter i TDDC75: Diskreta strukturer Kapitel 8 Ordning och oändlighet
Uppgifter i TDDC75: Diskreta strukturer Kapitel 8 Ordning och oändlighet Mikael Asplund 19 oktober 2016 Uppgifter 1. Avgör om följande relationer utgör partialordningar. Motivera varför eller varför inte.
Läs merDiskret matematik: Övningstentamen 4
Diskret matematik: Övningstentamen 22. Beskriv alla relationer, som är såväl ekvivalensrelationer som partiella ordningar. Är någon välbekant relation sådan? 23. Ange alla heltalslösningar till ekvationen
Läs merSJÄLVSTÄNDIGA ARBETEN I MATEMATIK
SJÄLVSTÄNDIGA ARBETEN I MATEMATIK MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET Från positiva heltal till reella tal av Sara Olsson 2017 - No 13 MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET, 106
Läs merKTHs Matematiska Cirkel. Gruppteori. Joakim Arnlind Andreas Enblom
KTHs Matematiska Cirkel Gruppteori Joakim Arnlind Andreas Enblom Institutionen för matematik, 2006 Finansierat av Marianne och Marcus Wallenbergs Stiftelse Innehåll 1 Mängdlära 1 1.1 Mängder...............................
Läs merLösningsförslag till Tentamen i 5B1118 Diskret matematik 5p 22 augusti, 2001
Institutionen för matematik, KTH Mats Boij Lösningsförslag till Tentamen i 5B1118 Diskret matematik 5p 22 augusti, 2001 1. Ange kvot och rest vid division av 5BE med 1F där båda talen är angivna i hexadecimal
Läs merKapitel 4. Funktioner. 4.1 Definitioner
Kapitel 4 Funktioner I det här kapitlet kommer vi att undersöka funktionsbegreppet. I de första sektionerna genomgås definitionen av begreppet funktion och vissa egenskaper som funktioner har. I slutet
Läs merSpecialkurs i matematik 2007
Matematiska institutionen Specialkurs i matematik 2007 Föreläsningsanteckningar och övningar UPPSALA UNIVERSITET Matematiska institutionen Erik Melin Specialkursen HT07 28 september 2007 Mängder och kardinalitet
Läs merMatrisexponentialfunktionen
U.U.D.M. Project Report 206:2 Matrisexponentialfunktionen Neda Farzaneh Examensarbete i matematik, 5 hp Handledare: Martin Herschend Examinator: Jörgen Östensson Juni 206 Department of Mathematics Uppsala
Läs merLösning till tentamensskrivning i Diskret Matematik, SF1610 och 5B1118, torsdagen den 21 oktober 2010, kl
Matematiska Institutionen KTH Lösning till tentamensskrivning i Diskret Matematik, SF6 och 5B8, torsdagen den 2 oktober 2, kl 4-9 Examinator: Olof Heden Hjälpmedel: Inga hjälpmedel är tillåtna på tentamensskrivningen
Läs mer