Definition grupp. En grupp (G, ) är en mängd G med en binär operator : G G G som uppfyller följande vilkor:
|
|
- Britt-Marie Falk
- för 5 år sedan
- Visningar:
Transkript
1 Grupper
2 Definition grupp En grupp (G, ) är en mängd G med en binär operator : G G G som uppfyller följande vilkor:
3 Definition grupp En grupp (G, ) är en mängd G med en binär operator : G G G som uppfyller följande vilkor: En grupp (G, ) är abelsk eller kommutativ, om den dessutom uppfyller följande villkor:
4 Vad gäller för alla/abelska grupper (G, ) med identitet e och invers g -1 till g?
5 Vad gäller för alla/abelska grupper (G, ) med identitet e och invers g -1 till g?
6 Hitta alla delgrupper av (Z 6, mod 6) Z 6 = {0,1,2,3,4,5}
7 Hitta alla delgrupper av (Z 6, mod 6) Z 6 = {0,1,2,3,4,5} {0} {0,2,4} {0,3}
8 Symmetrisk grupp Den symmetriska gruppen Sym(M) till en mängd M består av alla permutationer av M.
9 Symmetrisk grupp Den symmetriska gruppen Sym(M) till en mängd M består av alla permutationer av M. De symmetriska grupperna till två mängder av samma kardinalität (= antal element) är isomorfa Symmetriska gruppen på n element: S n
10 Symmetrisk grupp Den symmetriska gruppen Sym(M) till en mängd M består av alla permutationer av M. De symmetriska grupperna till två mängder av samma kardinalität (= antal element) är isomorfa Symmetriska gruppen på n element: S n S 1 : M = {1} bara en permutation s (identitetet)
11 Symmetrisk grupp Den symmetriska gruppen Sym(M) till en mängd M består av alla permutationer av M. De symmetriska grupperna till två mängder av samma kardinalität (= antal element) är isomorfa Symmetriska gruppen på n element: S n S 1 : M = {1} bara en permutation s (identitetet) S 2 : M = {2} två permutationer
12 Symmetrisk grupp Den symmetriska gruppen Sym(M) till en mängd M består av alla permutationer av M. De symmetriska grupperna till två mängder av samma kardinalität (= antal element) är isomorfa Symmetriska gruppen på n element: S n S 1 : M = {1} bara en permutation s (identitetet) S 2 : M = {2} två permutationer Tabell notation: xx 1... xx nn ff xx 1 ff xx 1
13 Symmetrisk grupp Den symmetriska gruppen Sym(M) till en mängd M består av alla permutationer av M. De symmetriska grupperna till två mängder av samma kardinalität (= antal element) är isomorfa Symmetriska gruppen på n element: S n S 1 : M = {1} bara en permutation s (identitetet) S 2 : M = {2} två permutationer Tabell notation: xx 1... xx nn S ff xx 1 ff xx 1 2 : och
14 Symmetrisk grupp Den symmetriska gruppen Sym(M) till en mängd M består av alla permutationer av M. De symmetriska grupperna till två mängder av samma kardinalität (= antal element) är isomorfa Symmetriska gruppen på n element: S n S 1 : M = {1} bara en permutation s (identitetet) S 2 : M = {2} två permutationer xx Tabell notation: 1... xx nn S ff xx 1 ff xx 1 2 : och Cykliska notation: skriv varje element som en product av cycler: (x s(x) s 2 (x) s m-1 (x)) där s m (x) = x
15 Symmetrisk grupp Den symmetriska gruppen Sym(M) till en mängd M består av alla permutationer av M. De symmetriska grupperna till två mängder av samma kardinalität (= antal element) är isomorfa Symmetriska gruppen på n element: S n S 1 : M = {1} bara en permutation s (identitetet) S 2 : M = {2} två permutationer xx Tabell notation: 1... xx nn S ff xx 1 ff xx 1 2 : och Cykliska notation: skriv varje element som en product av cycler: (x s(x) s 2 (x) s m-1 (x)) där s m (x) = x S 2 : (1)(2) och (1 2) cyklar av längd ett brukar utelämnas som underförstådda
16 Skriv i cyklisk notation! Lista alla element i S 3 i båda notationerna! Lista alla delgrupper av S 3! Hur manga element har S n? Är S n abelsk?
17
18
19
20 Transposition: (ij) 1 i<j n byta bara element i och j n 2
21 Transposition: (ij) 1 i<j n byta bara element i och j n 2 Kan skriva varje permutation som en sammansättning av transpositioner Till exempel: s = = (1 3 5)(2 4) = (15)(13)(24)
22 Transposition: (ij) 1 i<j n byta bara element i och j n 2 Kan skriva varje permutation som en sammansättning av transpositioner Till exempel: s = = (1 3 5)(2 4) = (15)(13)(24) Antal inversioner för s: N(s) = antal par (x,y) in s med x<y och s(x)>s(y)
23 Transposition: (ij) 1 i<j n byta bara element i och j n 2 Kan skriva varje permutation som en sammansättning av transpositioner Till exempel: s = = (1 3 5)(2 4) = (15)(13)(24) Antal inversioner för s: N(s) = antal par (x,y) in s med x<y och s(x)>s(y) För vår s: (1,4), (1,5), (2,4), (2,5), (3,4), (3,5), (4,5) 7
24 Paritet av en permutation (tecken) sign(s) =(-1) NN(ss) Eller sign(s) =( 1) mm + jämt och udda N(s) = antalet inversioner i s m = antal transpositioner i sammansättningen
25 Paritet av en permutation (tecken) sign(s) =(-1) NN(ss) Eller sign(s) =( 1) mm + jämt och udda N(s) = antalet inversioner i s m = antal transpositioner i sammansättningen Till exempel: s = = (1 3 5)(2 4) = (15)(13)(24) N(s): (1,4), (1,5), (2,4), (2,5), (3,4), (3,5), (4,5) 7 sign(s) = ( 1) 7 = -1 udda
26 Paritet av en permutation (tecken) sign(s) =(-1) NN(ss) Eller sign(s) =( 1) mm + jämt och udda N(s) = antalet inversioner i s m = antal transpositioner i sammansättningen Till exempel: s = = (1 3 5)(2 4) = (15)(13)(24) N(s): (1,4), (1,5), (2,4), (2,5), (3,4), (3,5), (4,5) 7 sign(s) = ( 1) 7 = -1 udda sign(s*t) = sign(s)*sign(t) cyklar med jämt längt har udda paritet cyklar med udda längt har jämt paritet
27 Hitta sign(π 1 ) och sign(π 2 ) Beräkna:
28
29
30 15 puzzle Sam Loyd (1870): 1000 $ till den som kan lösa puzzlet med 14 15
31 Tentaproblem: Diedergruppen D 3 Diedergruppen Dn: symmetriegruppen för en regelbunden n-hörning
32 Tentaproblem: Diedergruppen D 3 Diedergruppen Dn: symmetriegruppen för en regelbunden n-hörning a) Hur manga element har D 3? Beskriv hur elementen i D 3 verkar på en liksidig triangle!
33
34 Tentaproblem: Diedergruppen D 3 Diedergruppen Dn: symmetriegruppen för en regelbunden n-hörning b) Ordningen av ett element g i en grupp är det minsta heltalet n sådant att g n = e (e är enhetselementet). Vilka ordningar har elementen i D 3?
35
36 Tentaproblem: Diedergruppen D 3 Diedergruppen Dn: symmetriegruppen för en regelbunden n-hörning c) Cayleys teorem: Varje ändlig grupp av ordning n är isomorph med en delgrupp till permutationsgruppen Sn Identifiera den delgrupp till D 3 som är isomof med en delgrupp till S 3
37
MINNESANTECKNINGAR FÖR DELTAGARNA I WORKSHOP GRUPPER
MINNESANTECKNINGAR FÖR DELTAGARNA I WORKSHOP GRUPPER SONJA KOVALEVSKYDAGARNA 2008; HANNA USCKA-WEHLOU 0. Praktiska anmärkningar Det finns följande moment i workshop: en föreläsningsdel - jag berättar om
Läs mer2MA105 Algebraiska strukturer I. Per-Anders Svensson
2MA105 Algebraiska strukturer I Per-Anders Svensson Föreläsning 4 Innehåll Bijektiva avbildningar en repetition Permutationsgrupper Permutationer skrivna som produkter av cykler Jämna och udda permutationer
Läs merLäsanvisning till Discrete matematics av Norman Biggs - 5B1118 Diskret matematik
Läsanvisning till Discrete matematics av Norman Biggs - 5B1118 Diskret matematik Mats Boij 18 november 2001 13 Grupper Det trettonde kapitlet behandlar grupper. Att formulera abstrakta begrepp som grupper
Läs merAlgebra och kombinatorik 28/4 och 5/ Föreläsning 9 och 10
Grupper En grupp är ett par (G,*) där G är en mängd och * är en binär operation på G som uppfyller följande villkor: G1 (sluten) x,yϵg så x*yϵg G2 (associativ) x,y,z ϵg (x*y)*z=x*(y*z) G3 (identitet) Det
Läs merLösning till tentamensskrivning på kursen Diskret Matematik, moment B, för D2 och F, SF1631 och SF1630, den 1 juni 2011 kl
Matematiska Institutionen KTH Lösning till tentamensskrivning på kursen Diskret Matematik moment B för D2 och F SF63 och SF63 den juni 2 kl 8.- 3.. Examinator: Olof Heden tel. 7354789. Hjälpmedel: Inga
Läs merGrupper och RSA-kryptering
UPPSALA UNIVERSITET Matematiska institutionen Erik Melin Specialkursen HT07 26 oktober 2007 Grupper och RSA-kryptering Dessa blad utgör skissartade föreläsningsanteckningar kombinerat med övningar. Framställningen
Läs merAlgebra och kryptografi
VK Algebra och kryptografi Tomas Ekholm Niklas Eriksen Magnus Rosenlund Institutionen för matematik, 2002 Grekiska alfabetet alfa A α iota I ι rho P ρ beta B β kappa K κ sigma Σ σ gamma Γ γ lambda Λ λ
Läs merSF2703 Algebra grundkurs Lösningsförslag med bedömningskriterier till tentamen Måndagen den 9 mars 2009
SF2703 Algebra grundkurs Lösningsförslag med bedömningskriterier till tentamen Måndagen den 9 mars 2009 (1) a) Definiera vad som menas med centralisatorn till ett element g i en grupp G. (1) b) Visa att
Läs merIntroduktion till gruppteori Matematisk fysik FTF13, 2017
Introduktion till gruppteori Matematisk fysik FTF13, 2017 gruppaxiomen delgrupp, Abelsk/icke-Abelsk grupp symmetrigrupp (fysik!) permutationsgruppen Cayleys sats cykliska gruppen Cn, diedergruppen Dn ekvivalensrelation,
Läs merLösningsförslag till Tentamen i 5B1118 Diskret matematik 5p 20 december, 2001
Institutionen för matematik, KTH Mats Boij och Niklas Eriksen Lösningsförslag till Tentamen i 5B1118 Diskret matematik 5p 20 december, 2001 1. Låt M = {0, 1, 2,..., 99} och definiera en funktion f : M
Läs merSF2715 Tillämpad kombinatorik Kompletterande material och övningsuppgifter Del IV
SF2715 Tillämpad kombinatorik Kompletterande material och övningsuppgifter Del IV Jakob Jonsson 28 april 2009 Detta häfte innehåller kompletterande material till del IV av kursen SF2715 Tillämpad kombinatorik,
Läs merLösning till tentamensskrivning i Diskret Matematik, SF1610 och 5B1118, torsdagen den 21 oktober 2010, kl
Matematiska Institutionen KTH Lösning till tentamensskrivning i Diskret Matematik, SF6 och 5B8, torsdagen den 2 oktober 2, kl 4-9 Examinator: Olof Heden Hjälpmedel: Inga hjälpmedel är tillåtna på tentamensskrivningen
Läs merLösningsförslag till Tentamen i 5B1118 Diskret matematik 5p 11 april, 2002
Institutionen för matematik, KTH Mats Boij och Niklas Eriksen Lösningsförslag till Tentamen i 5B1118 Diskret matematik 5p 11 april, 2002 1. Bestäm det minsta positiva heltal n sådant att 31n + 13 är delbart
Läs merÖvningshäfte 6: 2. Alla formler är inte oberoende av varandra. Försök att härleda ett par av de formler du fann ur några av de övriga.
GÖTEBORGS UNIVERSITET MATEMATIK 1, MAM100, HT2005 MATEMATISK BASKURS Övningshäfte 6: Syftet med övningen är att utforska strukturen hos talsystemen under addition respektive multiplikation samt sambandet
Läs merMS-A0409 Grundkurs i diskret matematik Sammanfattning, del II
MS-A0409 Grundkurs i diskret matematik Sammanfattning, del II 1 Modulär- eller kongruensaritmetik Euklides algoritm RSA-algoritmen G. Gripenberg Aalto-universitetet 17 oktober 2013 2 Grupper och permutationer
Läs mer. Gruppteori Vi inleder detta kapitel med att deniera de grundläggande begreppen operation, algebraisk struktur, neutralt element, inverterbart element, associativ och kommutativ operation. Grupper Denition.
Läs merPermutationer med paritet
238 Permutationer med paritet Bernt Lindström KTH Stockholm Uppgift. Att studera permutationerna av talen 1 2... n och indelningen i udda och jämna permutationer ur olika aspekter. Permutationer är särskilt
Läs merAlgebra och kryptografi Facit till udda uppgifter
VK Algebra och kryptografi Facit till udda uppgifter Tomas Ekholm Niklas Eriksen Magnus Rosenlund Matematiska institutionen, 2002 48 Grupper. Lösning 1.1. Vi väljer att studera varje element i G H för
Läs merHjalpmedel: Inga hjalpmedel ar tillatna pa tentamensskrivningen. 1. (3p) Los ekvationen 13x + 18 = 13 i ringen Z 64.
Matematiska Institutionen KTH Losning till tentamensskrivning i Diskret Matematik, SF och B8, torsdagen den oktober, kl.-.. Examinator Olof Heden. Hjalpmedel Inga hjalpmedel ar tillatna pa tentamensskrivningen.
Läs merFakulteten för teknik och naturvetenskap. Johan Jonsson. Ändliga grupper. Finite groups. Matematik C-uppsats
Fakulteten för teknik och naturvetenskap Johan Jonsson Ändliga grupper Finite groups Matematik C-uppsats Datum: 2007-03-21 Handledare: Håkan Granath Examinator: Thomas Martinsson Karlstads universitet
Läs merLite additioner till Föreläsningsanteckningarna. 1 Tillägg till kapitel 1.
Lite additioner till Föreläsningsanteckningarna. Följande additioner har gjorts till anteckningarna men ligger ändå som ett separat dokument för er som redan har skrivit ut anteckningarna och inte vill
Läs merEfternamn förnamn pnr årskurs
KTH Matematik Olof Heden Σ p G/U bonus Efternamn förnamn pnr årskurs Kontrollskrivning 3A, den 2 oktber 2013, kl 11.00-12.00 i SF1610 Diskret matematik för CINTE och CMETE. Inga hjälpmedel tillåtna. Minst
Läs merEn lösning till ordproblemet för Coxetergrupper
DEGREE PROJECT IN TEKNIK, FIRST CYCLE, 15 CREDITS STOCKHOLM, SWEDEN 2019 En lösning till ordproblemet för Coxetergrupper EMANUEL STRÖM FILIP RYBLAD KTH ROYAL INSTITUTE OF TECHNOLOGY SKOLAN FÖR TEKNIKVETENSKAP
Läs merMS-A0409 Grundkurs i diskret matematik Appendix, del II
MS-A0409 Grundkurs i diskret matematik Appendix, del II G. Gripenberg Aalto-universitetet 17 oktober 2013 G. Gripenberg (Aalto-universitetet) MS-A0409 Grundkurs i diskret matematikappendix, del II 17 oktober
Läs merSF2703 Algebra grundkurs Lösningsförslag med bedömningskriterier till tentamen Fredagen den 5 juni 2009
SF2703 Algebra grundkurs Lösningsförslag med bedömningskriterier till tentamen Fredagen den 5 juni 2009 (1) a) Definiera vad som menas med en grupphomomorfi. (1) b) Visa att exponentialfunktionen, exp
Läs merLösning till tentamensskrivning i Diskret Matematik för CINTE, CL2 och Media 1, SF1610 och 5B1118, onsdagen den 17 augusti 2011, kl
Matematiska Institutionen KTH Lösning till tentamensskrivning i Diskret Matematik för CINTE, CL och Media, SF60 och 5B8, onsdagen den 7 augusti 0, kl 4.00-9.00. Examinator: Olof Heden Hjälpmedel: Inga
Läs merMS-A0409 Grundkurs i diskret matematik II
MS-A0409 Grundkurs i diskret matematik II G. Gripenberg Aalto-universitetet 23 september 20 G. Gripenberg Aalto-universitetet) MS-A0409 Grundkurs i diskret matematik II 23 september 20 / G. Gripenberg
Läs merLösningar till Algebra och kombinatorik
Lösningar till Algebra och kombinatorik 090520 1. Av a 0 = 0, a 1 = 1 och rekursionsformeln får vi successivt att a 2 = 1 4 a 1 a 0 + 3 2 = 1 4 1 0 + 32 = 4, a 3 = 1 4 a 2 a 1 + 3 2 = 1 4 4 1 + 32 = 9,
Läs merDefinitionsmängd, urbild, domän
5B1493, lekt 5, HT06 Funktioner Definition av begreppet Definition: Låt X och Y vara två mängder. En funktion f av typ X Y är detsamma som en delmängd av X Y, sådan att 1. Om (x, y) och (x, z) f, så är
Läs merMatematik, KTH Diskret matematik för D3, ht 2014 B.Ek. Några extra exempel
Matematik, KTH Diskret matematik för D3, ht 2014 B.Ek Övning 1, må 8 september Några extra exempel 1. Minns fibonaccitalen F n : 0, 1, 1, 2, 3, 5, 8, 13,..., rekursivt definierade av { F 0 = 0, F 1 = 1.
Läs merf(x) = x 1 g(x) = x 2 2x + 3.
Kapitel 1 Uppgifter 1 Heltal 2 Mängder och funktioner 2.1 Betrakta funktionerna f : Z Z och g : Z Z som ges av f(x) = x 1 och Visa att a fg gf; g(x) = x 2 2x + 3. b det finns ett x Z sådant att fg(x) =
Läs merLösningar för tenta i TMV200 Diskret matematik kl. 14:00 18: Svar: Ja, det gäller, vilket kan visas på flera sätt (se nedan).
Lösningar för tenta i TMV200 Diskret matematik 208-0-2 kl. 4:00 8:00. Ja, det gäller, vilket kan visas på flera sätt (se nedan). Alternativ (induktionsbevis): Vi inför predikatet P (n) : 2 + 2 3 + + n(n
Läs merINLEDNING TILL KOMMUTATIV ALGEBRA. J. Brzezinski
INLEDNING TILL KOMMUTATIV ALGEBRA J. Brzezinski MATEMATISKA VETENSKAPER CHALMERS TEKNISKA HÖGSKOLA GÖTEBORGS UNIVERSITET GÖTEBORG 2004 FÖRORD Dessa föreläsningsanteckningar är en del av en något omarbetad
Läs merOm relationer och algebraiska
Om relationer och algebraiska strukturer Anders Källén MatematikCentrum LTH anderskallen@gmail.com Sammanfattning Även i analysen behöver man en del algebraiska begrepp. I den här artikeln definierar vi
Läs merMS-A0409 Grundkurs i diskret matematik II
MS-A0409 Grundkurs i diskret matematik II G. Gripenberg Aalto-universitetet 23 september 2015 G. Gripenberg (Aalto-universitetet) MS-A0409 Grundkurs i diskret matematik II 23 september 2015 1 / 1 G. Gripenberg
Läs merHuge, hus 1,2,3 BULLERBERÄKNING. Ekvivalent ljudnivå KVARTER 1 AVSER PLAN 1. Huge Fastigheter VÄG- OCH SPÅRTRAFIK SKALA FÖRKLARINGAR
AVSER PLAN 1 REV # ÄNDRINGEN AVSER SIGN AVSER PLAN 2. REV # ÄNDRINGEN AVSER SIGN AVSER PLAN 3,4,5. REV # ÄNDRINGEN AVSER SIGN AVSER PLAN 6. REV # ÄNDRINGEN AVSER SIGN AVSER PLAN 7. REV # ÄNDRINGEN AVSER
Läs merÄndliga kroppar. Anna Boman. U.U.D.M. Project Report 2016:12. Department of Mathematics Uppsala University
U.U.D.M. Project Report 2016:12 Ändliga kroppar Anna Boman Examensarbete i matematik, 15 hp Handledare: Gunnar Berg Examinator: Veronica Crispin Quinonez Juni 2016 Department of Mathematics Uppsala University
Läs merMatematik för språkteknologer
1 / 27 Matematik för språkteknologer 2.3 (Relationer och funktioner) Mats Dahllöf Institutionen för lingvistik och filologi Februari 2014 2 / 27 Dagens nya punkter Relationer Definitioner Egenskaper hos
Läs merALGEBRAISKA STRUKTURER. Juliusz Brzezinski
ALGEBRAISKA STRUKTURER Juliusz Brzezinski MATEMATISKA VETENSKAPER CHALMERS TEKNISKA HÖGSKOLA OCH GÖTEBORGS UNIVERSITET GÖTEBORG 2005 FÖRORD Detta kompendium täcker innehållet i kursen Algebraiska strukturer,
Läs merOm gruppers verkan på
Matematik, KTH Bengt Ek April 20 preliminär version, ännu lite ofullständig Material till kursen SF662, Diskret matematik för CL: Om gruppers verkan på mängder Inledning. Som en tillämpning av den gruppteori
Läs merTILLÄMPADE DISKRETA STRUKTURER. Juliusz Brzezinski och Jan Stevens
TILLÄMPADE DISKRETA STRUKTURER Juliusz Brzezinski och Jan Stevens MATEMATIK CHALMERS TEKNISKA HÖGSKOLA GÖTEBORGS UNIVERSITET GÖTEBORG 2001 FÖRORD Termen Diskret matematik täcker ett mycket brett spektrum
Läs merKTHs Matematiska Cirkel. Gruppteori. Joakim Arnlind Andreas Enblom
KTHs Matematiska Cirkel Gruppteori Joakim Arnlind Andreas Enblom Institutionen för matematik, 2006 Finansierat av Marianne och Marcus Wallenbergs Stiftelse Innehåll 1 Mängdlära 1 1.1 Mängder...............................
Läs merf(x) = x 1 g(x) = x 2 2x + 3.
Kapitel 1 Uppgifter 1 Heltal 2 Mängder och funktioner 2.1 Betrakta funktionerna f : Z Z och g : Z Z som ges av f(x) = x 1 och Visa att g(x) = x 2 2x + 3. a fg gf. b det finns ett x Z sådant att fg(x) =
Läs merEN KONCIS INTRODUKTION TILL RINGTEORI
EN KONCIS INTRODUKTION TILL RINGTEORI DANIEL LARSSON Sammanfattning. En kort introduktion till ringteori. Innehåll 1. Inledning 1 2. Definition 1 2.1. Heltalsdomäner 3 3. Exempel, kommutativa ringar 4
Läs merTentamensskrivning i Diskret Matematik för CINTE och CMETE, SF1610, onsdagen den 20 augusti 2014, kl
1 Matematiska Institutionen KTH Tentamensskrivning i Diskret Matematik för CINTE och CMETE, SF1610, onsdagen den 20 augusti 2014, kl 14.00-19.00. Examinator: Olof Heden Hjälpmedel: Inga hjälpmedel är tillåtna
Läs merPÓLYAS ENUMERATIONSTEORI FREDRIK CUMLIN
PÓLYAS ENUMERATIONSTEORI FREDRIK CUMLIN 2 FREDRIK CUMLIN Abstract. This paper will cover some of the ideas behind counting colourings of geometric objects under the equivalence of symmetry. It will go
Läs merAbstrakt algebra för gymnasister
Abstrakt algebra för gymnasister Veronica Crispin Quinonez Sammanfattning. Denna text är föreläsningsanteckningar från föredraget Abstrakt algebra som hölls under Kleindagarna på Institutet Mittag-Leffler
Läs merALGEBRA. J. Brzezinski
LINJÄR OCH MULTILINJÄR ALGEBRA J. Brzezinski MATEMATISKA VETENSKAPER CHALMERS TEKNISKA HÖGSKOLA GÖTEBORGS UNIVERSITET GÖTEBORG 2004 FÖRORD Linjär algebra, vars huvuduppgift är att studera linjära rum
Läs mer1. (3p) Ett RSA-krypto har parametrarna n = 77 och e = 37. Dekryptera meddelandet 3, dvs bestäm D(3). 60 = = =
Matematiska Institutionen KTH Lösningar till tentamensskrivning på kursen Diskret Matematik, moment B, för D2 och F, SF63 och SF630, den 20 maj 2009 kl 08.00-3.00. Hjälpmedel: Inga hjälpmedel är tillåtna
Läs merSJÄLVSTÄNDIGA ARBETEN I MATEMATIK
SJÄLVSTÄNDIGA ARBETEN I MATEMATIK MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET En Introduktion till Pólyas Enumerationssats av Susanne Perneby 2010 - No 9 MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET,
Läs merNorm och QR-faktorisering
Norm och QR-faktorisering Skalärprodukten på C n (R n ) hänger ihop med några viktiga klasser av matriser. För en komplex matris A betecknar vi med A H det Hermitiska konjugatet till A, dvs A H = A T.
Läs merDEL I. Matematiska Institutionen KTH
Matematiska Institutionen KTH Lösning till tentamensskrivning på kursen Diskret Matematik, moment B, för D2 och F, SF63 och SF63, den 25 maj 2 kl 8.-3.. Hjälpmedel: Inga hjälpmedel är tillåtna på tentamensskrivningen.
Läs mer, S(6, 2). = = = =
1 Matematiska Institutionen KTH Lösningar till tentamensskrivning på kursen Diskret Matematik, moment A, för D2 och F, SF161 och SF160, den 17 april 2010 kl 09.00-14.00. Examinator: Olof Heden. DEL I 1.
Läs merLösningsförslag till övningsuppgifter, del II
Lösningsförslag till övningsuppgifter del II Obs! Preliminär version! Ö.1. För varje delare d till n låt A d var mängden av element a sådana att gcd(a n = d. Partitionen ges av {A d : d delar n}. n = 6:
Läs merEftertryck förbjudes
",, EXEMPELSAMLING TILL P ABYGGNADSKURS ALGEBRA I Copyright: Matematiska institutionen Stockholms universitet 1974 Eftertryck förbjudes -2-.Följande stand'ardbeteckningar har använts: z = heltalen ~ =
Läs merSjälvkoll: Ser du att de två uttrycken är ekvivalenta?
ANTECKNINGAR TILL RÄKNEÖVNING 1 & - LINJÄR ALGEBRA För att verkligen kunna förstå och tillämpa kvantmekaniken så måste vi veta något om den matematik som ligger till grund för formuleringen av vågfunktionen
Läs merDiskret matematik: Övningstentamen 4
Diskret matematik: Övningstentamen 22. Beskriv alla relationer, som är såväl ekvivalensrelationer som partiella ordningar. Är någon välbekant relation sådan? 23. Ange alla heltalslösningar till ekvationen
Läs merFöreläsningsanteckningar Linjär Algebra II Lärarlyftet
Föreläsningsanteckningar Linjär Algebra II Lärarlyftet Per Alexandersson Föreläsning I Timme I: Repetition av matriser, linjära ekvationssystem Linjärt ekvationssystem: x + y + z 3w = 3 2x + y + z 4w =
Läs merKort om linjär algebra. Lars Svensson och Oscar Mickelin
Kort om linjär algebra Lars Svensson och Oscar Mickelin 24 juli 2014 Innehåll 1 Förord 1 2 Grundläggande denitioner 2 2.1 Binära kompositioner.................................. 2 2.2 Moduler över ringar..................................
Läs merTopologi och geometri för allmän relativitetsteori
Topologi och geometri för allmän relativitetsteori En introduktion till matematiska metoder för modern fysik Institutionen för Fundamental Fysik, Chalmers Handledare: Per Salomonson Examinator: Christian
Läs merMatrisexponentialfunktionen
U.U.D.M. Project Report 206:2 Matrisexponentialfunktionen Neda Farzaneh Examensarbete i matematik, 5 hp Handledare: Martin Herschend Examinator: Jörgen Östensson Juni 206 Department of Mathematics Uppsala
Läs merSJÄLVSTÄNDIGA ARBETEN I MATEMATIK
SJÄLVSTÄNDIGA ARBETEN I MATEMATIK MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET Ett försök att generalisera konjugatregeln av Ulrika Söderberg 2016 - No 17 MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET,
Läs merLösning till tentamensskrivning i Diskret Matematik för CINTE och CMETE, SF1610 och 5B1118, tisdagen den 7 januari 2014, kl
1 Matematiska Institutionen KTH Lösning till tentamensskrivning i Diskret Matematik för CINTE och CMETE, SF1610 och 5B1118, tisdagen den 7 januari 2014, kl 14.00-19.00. Examinator: Olof Heden Hjälpmedel:
Läs merFöreläsning 8 i kursen Ma III, #IX1305, HT 07. (Fjärde föreläsningen av Bo Åhlander)
Föreläsning 8 i kursen Ma III, #IX1305, HT 07. (Fjärde föreläsningen av Bo Åhlander) Böiers 5.3 Relationer. Vi har definierat en funktion f: A B som en regel som kopplar ihop ett element a A, med ett element
Läs merÖvningshäfte 3: Funktioner och relationer
GÖTEBORGS UNIVERSITET MATEMATIK 1, MAM100, HT2014 INLEDANDE ALGEBRA Övningshäfte 3: Funktioner och relationer Övning H Syftet är att utforska ett av matematikens viktigaste begrepp: funktionen. Du har
Läs merBinära kvadratiska former
U.U.D.M. Project Report 2016:14 Binära kvadratiska former Vasam Mazraeh Examensarbete i matematik, 15 hp Handledare: Andreas Strömbergsson Examinator: Veronica Crispin Quinonez Juni 2016 Department of
Läs merLäsanvisning till Discrete matematics av Norman Biggs - 5B1118 Diskret matematik
Läsanvisning till Discrete matematics av Norman Biggs - 5B1118 Diskret matematik Mats Boij 18 november 2001 15 Ringar, kroppar och polynom Det fjortonde kapitlet behandlar ringar. En ring har till skillnad
Läs merLÖSNINGAR TILL UPPGIFTER TILL RÄKNEÖVNING 1
STOCKHOLMS UNIVERSITET MATEMATISKA INSTITUTIONEN Linjär algebra II LÖSNINGAR TILL UPPGIFTER TILL RÄKNEÖVNING Lös ekvationssystemet x + y + z 9 x + 4y 3z 3x + 6z 5z med hjälp av Gausselimination Lösning:
Läs merI kursen i endimensionell analys är mängden av reella tal (eng. real number), R, fundamental.
Lunds tekniska högskola Datavetenskap Lennart ndersson Föreläsningsanteckningar EDF10 4 Mängder 4.1 Motivering Mängden är den mest grundläggande diskreta strukturen. Nästan alla matematiska begrepp går
Läs merMoment 6.1, 6.2 Viktiga exempel Övningsuppgifter T6.1-T6.6
Moment 6., 6. Viktiga exempel 6.-6. Övningsuppgifter T6.-T6.6 Matriser Definition. En matris är ett schema med m rader och n kolonner eller kolumner, som vi kallar dem i datalogin innehållande m n element.
Läs mer1 Allmänt om vektorer och vektorvärda funktioner
1 llmänt om vektorer och vektorvärda funktioner 1.1 Vektorer och skalärer Inom fysiken gör vi skillnad på skalära och vektoriella storheter. Det som kännetecknar skalära storheter är att de har både storlek
Läs merFunktioner och kombinatoriska tillämpningar. Mars
Mars 27 2006 Lådprincip Om kn + 1 eller fler kulor skall läggas i n lådor då måste någon låda innehålla minst k + 1 kulor. Exempel I en liksidig triangel med sidan 1 väljes 5 punkter. Visa att det finns
Läs merAlgebra och kombinatorik 10/ Föreläsning 4. Låt X vara en ändlig mängd. En permutation av X är en bijektiv funktion X X. Sats: S n =n!
Permutationer Låt X vara en ändlig mängd. En permutation av X är en bijektiv funktion X X. Mängden permutationer av N n för n N är S n (S 0 är mängden av permutationer av ) Sats: S n =n! Ex S 3 =3! Låt
Läs merFFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar
FFM234, Klassisk fysik och vektorfält - Föreläsningsanteckningar Christian Forssén, Institutionen för fysik, Chalmers, Göteborg, Sverige Sep 14, 2018 5. Indexnotation Precis som vi har räkneregler för
Läs merOlof Nilsson Na3a Handledare, Gunilla Edman. Rubiks Kub - en matematisk studie
Spyken Olof Nilsson Na3a Handledare, Gunilla Edman 270516 Rubiks Kub - en matematisk studie Abstract The pieces on a Rubik s cube can be arranged in a staggering 43 quintillion number of ways. Enough to
Läs merNumerisk Analys, MMG410. Exercises 2. 1/33
Numerisk Analys, MMG410. Exercises 2. 1/33 1. A är en kvadratisk matris vars alla radsummor är noll. Visa att A är singulär. Låt e vara vektorn av ettor. Då är Ae = 0 A har icke-trivialt nollrum. 2/33
Läs merDE 17 TAPETGRUPPERNA
DE 7 TAPETGRUPPERNA Innehåll. Inledning. Matrisgrupper 3.. Isometrier 3.. Linjära matrisgrupper 3.3. Rotation och spegling 5 3. Den euklidiska gruppen 8 3.. Direkta och semidirekta produkter 8 3.. Sammansättning
Läs merMatriser. En m n-matris A har följande form. Vi skriver också A = (a ij ) m n. m n kallas för A:s storlek. 0 1, 0 0. Exempel 1
Matriser En m n-matris A har följande form a 11... a 1n A =.., a ij R. a m1... a mn Vi skriver också A = (a ij ) m n. m n kallas för A:s storlek. Exempel 1 1 0 0 1, 0 0 ( 1 3 ) 2, ( 7 1 2 3 2, 1 3, 2 1
Läs merσ 1 = (531)(64782), τ 1 = (18)(27)(36)(45), τ 1 σ 1 = (423871)(56).
MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik Examinator: Övningstenta i Algebra och Kombinatorik 7,5 hp 2015-11-24 Exempel på hur tentan skulle kunna se ut om alla uppgifter var från
Läs merSAMMAFATTNINGAR AV VISSA FÖRELÄSNINGAR
SAMMAFATTNINGAR AV VISSA FÖRELÄSNINGAR 1. Föreläsning 1 Se litet blad om mängdlära på kurshemsidan. Talsystemen N, Z, Q, R. Mängder och symboler. Lite logik. Slutligen gick vi igenom potenslagarna. Eftersom
Läs merBisektionsalgoritmen. Kapitel Kvadratroten ur 2
Kapitel 4 Bisektionsalgoritmen Vi ska konstruera lösningar till algebraiska ekvationer av formen f(x) = 0 med hjälp av bisektionsalgoritmen (intervallhalveringsmetoden). På samma gång ska vi se hur man
Läs merLars-Daniel Öhman Lördag 2 maj 2015 Skrivtid: 9:00 15:00 Hjälpmedel: Miniräknare, lock till miniräknare
Umeå universitet Tentamen i matematik Institutionen för matematik Introduktion till och matematisk statistik diskret matematik Lars-Daniel Öhman Lördag 2 maj 2015 Skrivtid: 9:00 15:00 Hjälpmedel: Miniräknare,
Läs mer3. Bestäm med hjälpa av Euklides algoritm största gemensamma delaren till
UPPSALA UNIVERSITET Matematiska institutionen Isac Hedén, isac@math.uu.se Prov i matematik Vi räknar ett urval av dessa uppgifter vid vart och ett av de tio lektionstillfällena. På kurshemsidan framgår
Läs merMatematiska Institutionen KTH. Lösningar till några övningar inför lappskrivning nummer 7, Diskret matematik för D2 och F, vt08.
1 Matematiska Institutionen KTH Lösningar till några övningar inför lappskrivning nummer 7, Diskret matematik för D2 och F, vt08. 1. Betrakat gruppen G = (Z 19 \ {0}, ). (a) Visa att G är en cyklisk grupp.
Läs merAlgebra och Diskret Matematik A (svenska)
MITTUNIVERSITETET TFM Tentamen 2005 MAAA99 Algebra och Diskret Matematik A (svenska) Skrivtid: 5 timmar Datum: 2 november 2005 Denna tenta omfattar 8 frågor, där varje fråga kan ge 3 poäng. Maximalt poängantal
Läs merGruppteori. Ilyas Ahmed och Qusay Naji. 23 maj Tack till professor Dan Laksov I samarbete med Kungilga Tekniska Högskolan (KTH)
Gruppteori Ilyas Ahmed och Qusay Naji 23 maj 2007 Tack till professor Dan Laksov I samarbete med Kungilga Tekniska Högskolan (KTH) 1 Contents 1 INTRODUKTION 3 1.1 Tacksägelse............................
Läs merTillämpad statistik (A5), HT15 Föreläsning 6: Några övriga urvalsmetoder
Tillämpad statistik (A5), HT15 Föreläsning 6: Några övriga smetoder Ronnie Pingel Statistiska institutionen Senast uppdaterad: 2015-11-11 Några övriga smetoder OSU-UÅ (med eller utan stratifiering) förutsätter
Läs mer8. Naturlig härledning och predikatlogik
Objektorienterad modellering och diskreta strukturer 8. Naturlig härledning och predikatlogik Sven Gestegård Robertz Datavetenskap, LTH 2013 Outline 1 Inledning 2 Inferensregler 3 Predikatlogik 8. Naturlig
Läs merSignaler, information & bilder, föreläsning 12
Signaler, inormation & bilder, öreläsning Michael Felsberg Computer Vision Laboratory epartment o Electrical Engineering michael.elsberg@liu.se Översikt signalbehandling (bildbehandling) en digitala bilden,
Läs merEXAMENSARBETEN I MATEMATIK
EXAMENSARBETEN I MATEMATIK MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET AKS-algoritmen för att bestämma om ett tal är ett primtal eller inte av Per Westerlund 2005 - No 14 MATEMATISKA INSTITUTIONEN,
Läs merx b r + x 2 dx lim r a
Elementa Årgång, 1969 Årgång, 1969 Första häftet 697 Låt b vara en konstant, 1 < b < 1 Bestäm konstanten a så att lim r a r + existerar och är skilt från och o x b r + x dx 698 Ändligt många intervall
Läs merKänguru Student (gymnasiet åk 2 och 3) sida 1 / 6
Känguru Student (gymnasiet åk 2 och 3) sida 1 / 6 NAMN KLASS/GRUPP Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Lämna rutan tom om du inte vill besvara
Läs merLösningar till udda övningsuppgifter
Lösningar till udda övningsuppgifter Övning 1.1. (i) {, } (ii) {0, 1,, 3, 4} (iii) {0,, 4, 6, 8} Övning 1.3. Påståendena är (i), (iii) och (v), varav (iii) och (v) är sanna. Övning 1.5. andra. (i) Nej.
Läs merEN KONCIS INTRODUKTION TILL GRUPPTEORI
EN KONCIS INTRODUKTION TILL GRUPPTEORI DANIEL LARSSON Sammanfattning. En kort introduktion till gruppteori. Innehåll 1. Binär operation, slutenhet, grupper 1 2. Exempel, abelska grupper 2 3. Exempel, icke-abelska
Läs merJongleringsteori. Hans Lundmark, MAI. TATA40 Matematiska utblickar (sept 2017)
Jongleringsteori Hans Lundmark, MAI TATA40 Matematiska utblickar (sept 2017) Siteswap Matematisk modell & notation för jongleringsmönster. (Vissa aspekter av vissa typer av mönster.) Utvecklades på 1980-talet.
Läs merMITTUNIVERSITETET TFM. Tentamen Algebra och Diskret Matematik A (svenska) Skrivtid: 5 timmar. Datum: 9 januari 2007
MITTUNIVERSITETET TFM Tentamen 2007 MAAA99 Algebra och Diskret Matematik A (svenska) Skrivtid: 5 timmar Datum: 9 januari 2007 Denna tenta omfattar 8 frågor, där varje fråga kan ge 3 poäng. Maximalt poängantal
Läs merÖvningar. c) Om någon vektor i R n kan skrivas som linjär kombination av v 1,..., v m på precis ett sätt så. m = n.
Övningar Linjära rum 1 Låt v 1,, v m vara vektorer i R n Ge bevis eller motexempel till följande påståenden Satser ur boken får användas a) Om varje vektor i R n kan skrivas som linjär kombination av v
Läs merVi börjar med en viktig definition som inte finns i avsnitt 3.4 i [EG], den formella definitionen av kongruens modulo n:
MAAA26 Diskret Matematik för Yrkeshögskoleutbildning-IT Block 6 BLOCK INNEHÅLL Referenser Modulär aritmetik. Inledning 1. Kongruens modulo n 2. Z n -- heltalen modulo n 3. Ekvationer modulo n 4. Övningsuppgifter
Läs merLösningsförslag till tentamensskrivning i SF1610 Diskret Matematik för CINTE 30 maj 2018, kl
1 Matematiska Institutionen KTH Lösningsförslag till tentamensskrivning i SF1610 Diskret Matematik för CINTE 30 maj 2018, kl 08.00 13.00. Examinator: Petter Brändén Kursansvarig: Olof Sisask Hjälpmedel:
Läs merÄndliga projektiva plan
Ändliga projektiva plan Examensarbete för kandidatexamen i matematik vid Göteborgs universitet Bogdan Dobondi Malin Nilsson Institutionen för matematiska vetenskaper Chalmers tekniska högskola Göteborgs
Läs mer