Relationer och funktioner
|
|
- Marianne Lindberg
- för 6 år sedan
- Visningar:
Transkript
1 MAAA26 Diskret Matematik för Yrkeshögskoleutbildning-IT Block 11 BLOCK INNEHÅLL Referenser Inledning 1. Relationer 2. Funktioner 3. Övningsuppgifter Assignment 11 & 12 Referenser Relationer och funktioner [D] avsnitt 1.8; [EG] avsnitt 8.1, 8.2 (ej 8.2.3) samt nedanstående text Nyckelord Relationer på en mängd, relationer mellan två mängder. Egenskaper hos relationer på en mängd: reflexivitet, symmetri, anti-symmetri, transitivitet. Ekvivalensrelationer och partialordninger. Totalordninger. Funktioner. Injektive, surjektive, bijektive funktioner. Inledning I detta block skall vi studera relationer på mängder, och vi skall se hur några speciella relationer kan användas för att dela upp, partitionera, en mängd i delmängder, så att man kan urskilja några strukturella egenskaper hos mängden. Slutligen skall vi se på funktioner, ett område som du känner igen från gymnasietiden. 1. Relationer Vi skall nu studera relationer på mängder. I princip kan man säga att en relation på en mängd X, är ett sätt att beskriva ett samband mellan elementen i X. Låt M vara mängden av alla personer i världen, då kan vi definiera relationen R på M genom att låta person x vara relaterad till person y om och endast om x är född samma månad som y. Om x är relaterad till y under relationen R skriver vi Låt M vara mängden av alla personer i världen, då kan vi definiera andra relationer på M. T.ex. xr 1 y om och endast om x har samma kön som y. xr 2 y om och endast om x är yngre än y. xr 3 y om och endast om x är syster till y. xr 4 y om och endast om x känner y. xry Page 1 of 6
2 xr 5 y om och endast om x förstår det språk som y talar. Låt vara mängden av heltalen, då är följande relationer på : xr 1 y om och endast om x < y. xr 2 y om och endast om y är en faktor i x. xr 3 y om och endast om x y (mod 5). Mer formellt, definierar vi en relation R på en mängd S att vara en delmängd till den kartesiska produkten X X. Det ordnade paret (x,y) R om och endast om xry. Betrakta relationen R på S={1,2,3} definierad genom xry om och endast om x y. Då har vi att 1R1, 2R1, 3R1, 2R2, 3R2 och 3R3 eftersom 1 1, 2 1, 3 1, 2 2, 3 2 och 3 3. R kan också beskrivas som en delmängd av S S, nämligen Man kan ochså rita en bild som beskriver relationen: R={(1,1), (2,1), (3,1), (2,2), (3,2), (3,3)}. Detta kallas för digrafen för relationen relationsgrafen. på S={1,2,3}. I [EG] betecknas digrafen för en relation också Nu skall du läsa [EG] avsnitt 8.1. Börja med introduktionen s. 232 och delavsnitt En relations digraf beskrivas på s Delavsnitt läsas senare och delavsnitt läsas kursivt. Vi kan klassificera relationer utifrån egenskaper. En relation R på X sägs vara reflexiv om för alla x X det gäller att (x,x) R; symmetrisk om för alla x, y X det gäller att om (x,y) R så är även (y,x) R; anti-symmetrisk om för alla x, y X det gäller att om (x,y) R och x y så är (y,x) R; transitiv om för alla x, y, z X det gäller att om (x,y) R och (y,z) R så är även (x,z) R. Var och en av dessa egenskaper kan kontrolleras genom att studera relationens digraf: Om relationen är reflexiv, finns det en loop vid varje hörn i digrafen. Page 2 of 6
3 Notera att relationen ovan. på S={1,2,3} är reflexiv eftersom det finns en loop vid alla hörn 1, 2 and 3 i digrafen vi ritade Om relationen är symmetrisk, så gäller att om det finns en pil från hörn x till hörn y i relationens digraf, så skall det också finnas en pil från y tillbaka till x. Notera att relationen på S={1,2,3} inte är symmetrisk, eftersom det finns en pil från hörn 2 till hörn 1 i relationens digraf, men ingen pil från hörn 1 till hörn 2. Om relationen är transitiv, gäller att om det går en pil mellan x och y i relationens digraf och en pil mellan y och z, så skall det finnas en pil mellan x och z. Notera därmed att relationen på S={1,2,3} är transitiv. Om relationen är anti-symmetrisk, gäller att om det finns en pil mellan x och y i relationens digraf, så skall det inte finnas någon pil från y tillbaka till x, såvida inte x=y. Notera därför att relationen på S={1,2,3} från ovan är antisymmetrisk. Observera att för att kontrollera om någon av dessa egenskaper gäller för en relation, räcker det inte att kontrollera att egenskapen uppfylls för några speciella val av x, y och z, utan egenskapen måste gälla för alla möjliga val av x, y och z. Tag till exempel, relationen på S={1,2,3} från ovan, vi ser klart att det går en pil från x=1 till y=1, så naturligtvis går samma pil tillbaka från y=1 till x=1, men relationen är inte symmetrisk för det, eftersom vi upptäckte att det går en pil från hörn x=2 till hörn y=1, men det finns ingen pil från hörn y=1 tillbaka till hörn x=2. Läs nu delavsnitt i [EG]. Relationer på en mängd X kan användas vid försök att ordna elementen på rad. En partialordning på en mängd X är en relation på X som är reflexiv, antisymmetrisk och transitiv. Relationen på S={1,2,3} ovan är därför en partialordning. Av namnet finns en antydan om att man bara delvis (partiellt) lyckas ordna elementen på en rad med en partialordning och detta kan vara fallet. Två element i X behöver inte vara "jämförbara" med en partialordning. En totalordning (också kallat en fullständig ordning) på en mängd X är en partialordning i vilken varje par av element i X är jämförbara. Relationen on S={1,2,3} ovan är därför även en fullständig ordning. Ett tredje namn på en fullständig ordning som också används är linjär ordning vilket belyser att elementen ordnas på linje med denna relation. Läs nu delavsnitt i [EG]. En relation R på en mängd X som är reflexiv, symmetrisk och transitiv kallas en ekvivalensrelation. Page 3 of 6
4 Relationen R på definierad som (x,y) R om x y (mod n) är en ekvivalensrelation (Kontrollera detta! Dvs. kontrollera att R är reflexiv, symmetrisk och transitiv). Tidigare såg vi att tal som är kongruenta bildar kongruensklasser och att mängden av kongruensklasser är en partition av. Mer allmänt bildar element i X som är ekvivalenta (d.v.s. de element som är relaterade med ekvivalensrelationen R) ekvivalensklasser och mängden av dessa ekvivalensklasser är en partition av X. Låt oss definiera en relation R på genom (x,y) R om x 2 =y 2. Våra uppgifter är (a) att visa att R är en ekvivalensrelation och (b) att beskriva ekvivalensklasserna. För (a): För alla heltal x så gäller att x 2 = x 2 och (x,x) R så R är reflexiv. Antag att x och y är heltal och (x,y) R. Att paret tillhör R betyder att x 2 = y 2. Detta är detsamma som att y 2 = x 2 vilket betyder att (y,x) R. Talen x och y valdes godtyckligt med egenskapen att (x,y) R så vi kan dra slutsatsen att R är symmetrisk. Om x, y och z är heltal sådana att x 2 = y 2 och y 2 = z 2 så innebär det att x 2 = z 2. Detta uttalande är precis det samma som att säga att relation R är transitiv. För (b): Ekvivalensklassen med elementet n är [n]={x (x,n) R} = {x x 2 = n 2 } = {x (x+n)(x-n) = 0} = {n, -n}. Den sista likheten av det faktum att produkten (x+n)(x-n) är 0 precis då faktorn (x+n) eller (x-n) är 0. Partitionen av med ekvivalensklasserna till denna ekvivalensrelation R blir alltså {{0}, {-1,1}, {-2,2}, {-3,3}, {-4,4},...}. 2. Funktioner Fram till nu har vi bara studerat relationer på én mängd. Det är också möjligt att definiera en relation som beskriver sammanhang mellan element som tillhör två olika mängder X och Y. Minns att en relation på en mängd formellt kan definieras som en delmängd till den kartesiska produkten X X. På samma sätt kommer en relation från en mängd X till en mängd Y att vara en delmängd till den kartesiska produkten X Y. Läs nu avsnitt i [EG], som beskriver relationer mellan två mängder istället för relationer på én mängd. Läs nu avsnitt 8.2 i [EG]. En funktion f från X till Y är en relation från X till Y med egenskaperna att 1. definitionsmängden (engelska: domain) är hela X, 2. om (x,y) f och (x,z) f så är y = z. Y är funktionens målmängd (också kallat bildmängd) (engelska: codomain). Egenskaperna tillåter oss att prata om värdet y Y av funktionen i x X. Det vill säga att varje x X återfinns som förstakoordinat i precis ett ordnat par i relationen. Vanligt är att skriva y = f(x) istället för (x,y) f för att ytterliggare illustrera att funktionen f har värdet y i x. Man kan tänka på en funktion f från X till Y som en maskin som har "x-värden" som indata och "y-värden" som utdata. För varje indatavärde kastar maskinen ut precis ett utdatavärde. Mängden av alla utdatavärden kallas för funktionens värdemängd (engelska: range). Med X={1, 2, 3} och Y={a, b, c} är f = {(1,a), (2,b), (3,b)} en funktion från definitionsmängden X till bildmängden Y, f:s värdemängd är {a, b}. Däremot är inte g = {(1,a), (2,b), (3,b), (3,c)} en funktion från X till Y. Relationen g har som definitionsmängd hela X men andra egenskapen ovan är inte uppfylld eftersom båda (3,b) g och (3,c) g. Page 4 of 6
5 Regeln att till varje reellt tal multiplicera detta med 5 och sedan addera 2 kan ses som en funktion f från till definierad med y = f(x) = 5x + 2. Istället för att ge sig på att rita denna relations digraf kan man som illustration ange denna funktions graf i det kartesiska koordinatsystemet av och. Denna uppgift skulle också kunna formuleras som "rita funktionen y = 5x+2 i xy-planet" där namnet på funktionen har uteslutits och där det är underförstått att xyplanet är det kartesiska koordinatplanet av och. Begreppen injektiv och surjektiv Att räkna de femton kakorna på ett brödfat är detsamma som att definiera en funktion f från mängden {1, 2, 3,...,15} till mängden {x x är en kaka på brödfatet} som är injektiv (varje kaka räknas bara en gång) och surjektiv (varje kaka räknas). Även om detta exempel illustrerar betydelsen av orden injektiv och surjektiv kan detta exempel kanske missförstås. Definitionen av begreppen "ett till ett" eller injektiv och "på" eller surjektiv för en funktion hittar man på sidorna En funktion som är både injektiv och surjektiv sägs vara bijektiv. 3. Övningsuppgifter Övningsuppgifter från [D] avsnitt 1.8: 1.49, 1.51, Övningsuppgifter från [EG] kapitel 8: 8.1, 8.2, 8.3, 8.4, 8.5; 8.10,, 8.12, 8.15, 8.16, 8.17, 8.18; 8.19, 8.20, 8.21, 8.22, 8.23; 8.25, 8.26, 8.28; 8.6, 8.30, 8.31, 8.32; 8.34, 8.36, 8.37, 8.40, 8.45, 8.46, 8.47, 8.48; 8.63, 8.64, 8.65, 8.66; 8.69, 8.70, 8.72 Assignment 11 (& 12) Please click here to get to the information page explaining when and how to send in this assignment for marking. Please follow the instructions carefully. Please click here to download the assignment in pdf-format. This assignment 'counts' as both asignments 11 and 12 and is thus 'worth' half a bonus point rather than the usual quarter of a bonus point. This is the 1st Edition of the study guide for Block 11 of Discrete Mathematics for the Vocational Study Programme in Information Technology, written by Pia Heidtmann in The study guide may be printed for personal use by anybody with an interest. This study guide and any parts of it and any previous and future versions of it must not be copied or disseminated in any printed or electronic form or stored on any publicly accessible website other than without permission from the author. Page 5 of 6
6 The author welcomes comments and corrections via . All contributions incorporated in updates of the manuscript will be acknowledged. Pia Heidtmann MID SWEDEN UNIVERSITY Department of Engineering, Physics and Mathematics Mid Sweden University S SUNDSVALL Sweden Updated Page 6 of 6
Definition Låt n vara ett positivt heltal. Heltalen a och b sägs vara kongruenta modulo n om n är en faktor i a-b eller med andra ord om. n (a-b).
Block 4 Algebra och Diskret Matematik A BLOCK INNEHÅLL Referenser Inledning 1. Kongruens modulo n 2. Z n -- heltalen modulo n 3. Ekvationer modulo n 4. Relationer 5. Funktioner Golv och tak funktionerna
Grundläggande mängdlära
MAAA26 Diskret Matematik för Yrkeshögskoleutbildning-IT Block 3 BLOCK INNEHÅLL Referenser Nyckelord Inledning 1. Mängder Mängdbyggaren Symboler och notation 2. Venndiagram 3. Mängdoperationer Mängdunion
Block 2 Algebra och Diskret Matematik A. Följder, strängar och tal. Referenser. Inledning. 1. Följder
Block 2 Algebra och Diskret Matematik A BLOCK INNEHÅLL Referenser Inledning 1. Följder 2. Rekursiva definitioner 3. Sigmanotation för summor 4. Strängar 5. Tal 6. Övningsuppgifter Referenser Följder, strängar
[EG] avsnitt 6.4, 6.5, 6.6 (ej 6.6.1); och nedanstående text.
MAAA26 Diskret Matematik för Yrkeshögskoleutbildning-IT Block 8 BLOCK INNEHÅLL Referenser Grafer II Inledning 1. Grannmatrisen och incidensmatrisen för en graf 2. Grafisomorfier 3. Träd Introduktion Definitioner
Vi börjar med en viktig definition som inte finns i avsnitt 3.4 i [EG], den formella definitionen av kongruens modulo n:
MAAA26 Diskret Matematik för Yrkeshögskoleutbildning-IT Block 6 BLOCK INNEHÅLL Referenser Modulär aritmetik. Inledning 1. Kongruens modulo n 2. Z n -- heltalen modulo n 3. Ekvationer modulo n 4. Övningsuppgifter
Kap. 8 Relationer och funktioner
Begrepp och egenskaper: Kap. 8 elationer och funktioner relation, relationsgraf och matris, sammansatt relation reflexivitet, symmetri, anti-symmetri, transitivitet ekvivalensrelation, partialordning,
Starta med att läsa avsnitt 2.1 i [J] från sidan 56 (64) [76] till och med exempel (2.1.3) [2.1.5] på sidan 57 (65) [79].
Block 1 Algebra och Diskret Matematik A BLOCK INNEHÅLL Referenser Inledning 1. Mängder 2. Multiplikationsprincipen 3. Mera om mängder Venn-diagram Mängdoperationer 4. Additions- och sållningsprincipen
729G04 - Diskret matematik. Lektion 3. Valda lösningsförslag
729G04 - Diskret matematik. Lektion 3. Valda lösningsförslag 1 Uppgifter 1.1 Relationer 1. Vi ges mängden A = {p, q, r, s, t}. Är följande mängder relationer på A? Om inte, ge ett exempel som visar vad
MA2047 Algebra och diskret matematik
MA2047 Algebra och diskret matematik Något om funktioner och relationer Mikael Hindgren 1 oktober 2018 Funktionsbegreppet Exempel 1 f (x) = x 2 + 1, g(x) = x 3 och y = sin x är funktioner. Exempel 2 Kan
Explorativ övning 9 RELATIONER OCH FUNKTIONER
Explorativ övning 9 RELATIONER OCH FUNKTIONER Övningens syfte är att bekanta sig med begreppet relation på en mängd M. Begreppet relation i matematiska sammanhang anknyter till betydelsen av samma ord
Övningshäfte 3: Funktioner och relationer
GÖTEBORGS UNIVERSITET MATEMATIK 1, MAM100, HT2014 INLEDANDE ALGEBRA Övningshäfte 3: Funktioner och relationer Övning H Syftet är att utforska ett av matematikens viktigaste begrepp: funktionen. Du har
Uppgifter i TDDC75: Diskreta strukturer Kapitel 8 Ordning och oändlighet
Uppgifter i TDDC75: Diskreta strukturer Kapitel 8 Ordning och oändlighet Mikael Asplund 19 oktober 2016 Uppgifter 1. Avgör om följande relationer utgör partialordningar. Motivera varför eller varför inte.
Finns det tillräckligt med information för att bestämma hur många av eleverna som fick 1 poäng? Vad tycker du?
Logik och bevis I 1. Introduktion till logik Varför skulle vi vilja studera logik? Det kan vara för att det hjälper oss att förstå ett problem och dra slutsatser. Det hjälper oss att skriva klartext så
Diskret matematik, lektion 2
Diskret matematik, lektion Uppgifter med (*) är överkurs, och potentiellt lite klurigare. Ni behöver inte kunna lösa dessa. 1 Uppgifter 1. Låt A = {1,, 3}, B = {a, b}. Vilka element finns med i... a) A
Relationer och funktioner
Relationer och funktioner Joakim Nivre Uppsala universitet Institutionen för lingvistik och filologi Översikt Relationer: Binära relationer på mängder Mängd-, graf- och matrisnotation Egenskaper hos relationer
729G04: Inlämningsuppgift i Diskret matematik
729G04: Inlämningsuppgift i Diskret matematik Instruktioner Dessa uppgifter utgör del av examinationen i kursen 729G04 Programmering och diskret matematik. Uppgifterna ska utföras individuellt och självständigt,
När du läser en definition bör du kontrollera att den är vettig, och försöka få en idé om vad den egentligen betyder. Betrakta följande exempel.
Logik och bevis II 3. föring Detta avsnitt handlar om olika metoder för att bevisa påståenden, och hur man kan konstruera ett bevis. I varje avsnitt finns en allmän beskrivning av metoden, varför den fungerar
Relationer. 1. Relationer. UPPSALA UNIVERSITET Matematiska institutionen Erik Melin. Specialkursen HT07 23 oktober 2007
UPPSALA UNIVERSITET Matematiska institutionen Erik Melin Specialkursen HT07 23 oktober 2007 Relationer Dessa blad utgör skissartade föreläsningsanteckningar kombinerat med övningar. Framställningen är
MITTUNIVERSITETET TFM. Modelltenta Algebra och Diskret Matematik. Skrivtid: 5 timmar. Datum: 1 oktober 2007
MITTUNIVERSITETET TFM Modelltenta 2007 MA014G Algebra och Diskret Matematik Skrivtid: 5 timmar Datum: 1 oktober 2007 Den obligatoriska delen av denna (modell)tenta omfattar 8 frågor, där varje fråga kan
Mängder, funktioner och naturliga tal
Lådprincipen Följande sats framstår som en fullständig självklarhet: Sats (Lådprincipen (pigeon hole principle)). Låt n > m vara naturliga tal. Fördelar man n föremål i m lådor, så kommer åtminstone en
Algebra och Diskret Matematik A (svenska)
MITTUNIVERSITETET TFM Tentamen 2005 MAAA99 Algebra och Diskret Matematik A (svenska) Skrivtid: 5 timmar Datum: 2 november 2005 Denna tenta omfattar 8 frågor, där varje fråga kan ge 3 poäng. Maximalt poängantal
Diofantiska ekvationer
Uppsala Universitet Matematiska institutionen Isac Hedén isac distans@math.uu.se Algebra I, 5 hp Vecka 19. Diofantiska ekvationer Vi börjar med en observation som rör den största gemensamma delaren till
Matematik för språkteknologer
1 / 27 Matematik för språkteknologer 2.3 (Relationer och funktioner) Mats Dahllöf Institutionen för lingvistik och filologi Februari 2014 2 / 27 Dagens nya punkter Relationer Definitioner Egenskaper hos
Träning i bevisföring
KTHs Matematiska Cirkel Träning i bevisföring Andreas Enblom Institutionen för matematik, 2005 Finansierat av Marianne och Marcus Wallenbergs Stiftelse 1 Mängdlära Här kommer fyra tips på hur man visar
Föreläsning 8 i kursen Ma III, #IX1305, HT 07. (Fjärde föreläsningen av Bo Åhlander)
Föreläsning 8 i kursen Ma III, #IX1305, HT 07. (Fjärde föreläsningen av Bo Åhlander) Böiers 5.3 Relationer. Vi har definierat en funktion f: A B som en regel som kopplar ihop ett element a A, med ett element
Diskret Matematik A för CVI 4p (svenska)
MITTHÖGSKOLAN TFM Tentamen 2004 MAAA98 Diskret Matematik A för CVI 4p (svenska) Skrivtid: 5 timmar Datum: 3 juni 2004 Denna tentamen omfattar 10 frågor, där varje fråga kan ge 12 poäng. Delfrågornas poäng
Sådana avbildningar kallar vi bijektioner mellan A och B (eller från A till B).
BIJEKTION, INJEKTION, SURJEKTION Allmän terminologi. I samband med variabelbyte vid beräkning av integraler har vi en avbildning mellan två mängder A och B, dvs en funktion f : A B. Vi har oftast krav
Definitionsmängd, urbild, domän
5B1493, lekt 5, HT06 Funktioner Definition av begreppet Definition: Låt X och Y vara två mängder. En funktion f av typ X Y är detsamma som en delmängd av X Y, sådan att 1. Om (x, y) och (x, z) f, så är
Lösningar till Algebra och kombinatorik
Lösningar till Algebra och kombinatorik 090520 1. Av a 0 = 0, a 1 = 1 och rekursionsformeln får vi successivt att a 2 = 1 4 a 1 a 0 + 3 2 = 1 4 1 0 + 32 = 4, a 3 = 1 4 a 2 a 1 + 3 2 = 1 4 4 1 + 32 = 9,
Föreläsningsanteckningar och övningar till logik mängdlära
Inledande matematisk analys tma970, 010, logik, mängdlära Föreläsningsanteckningar och övningar till logik mängdlära Dessa öreläsningsanteckningar kompletterar mycket kortattat kap 0 och appendix B i Persson/Böiers,
Uppgifter om funktioner
Uppgifter om funktioner Mikael Forsberg September 27, 2004 1. Med hjälp av uttrycket y = x 2 så definierar vi tre funktioner: f 1 : R x x 2 R, f 2 : R x x 2 R f 3 : R x x 2 R, där R = {x R : x 0} Eftersom
Algebra och Diskret Matematik A (svenska)
MITTUNIVERSITETET TFM Tentamen 2006 MAAA99 Algebra och Diskret Matematik A (svenska) Skrivtid: 5 timmar Datum: 10 januari 2006 Denna tenta omfattar 8 frågor, där varje fråga kan ge 3 poäng. Maximalt poängantal
2MA105 Algebraiska strukturer I. Per-Anders Svensson
2MA105 Algebraiska strukturer I Per-Anders Svensson Föreläsning 4 Innehåll Bijektiva avbildningar en repetition Permutationsgrupper Permutationer skrivna som produkter av cykler Jämna och udda permutationer
Algebra och Diskret Matematik A (svenska)
MITTUNIVERSITETET TFM Tentamen 2007 MAAA99 Algebra och Diskret Matematik A (svenska) Skrivtid: 5 timmar Datum: 7 juni 2007 Denna tenta omfattar 8 frågor, där varje fråga kan ge 3 poäng. Maximalt poängantal
MITTUNIVERSITETET TFM. Tentamen Algebra och Diskret Matematik A (svenska) Skrivtid: 5 timmar. Datum: 9 januari 2007
MITTUNIVERSITETET TFM Tentamen 2007 MAAA99 Algebra och Diskret Matematik A (svenska) Skrivtid: 5 timmar Datum: 9 januari 2007 Denna tenta omfattar 8 frågor, där varje fråga kan ge 3 poäng. Maximalt poängantal
Lösningar till utvalda uppgifter i kapitel 3
Lösningar till utvalda uppgifter i kapitel 3 3.37 (a) Att ` ' är reexiv, antisymmetrisk och transitiv följer direkt av att `den vanliga' är det på N och Z. (b) Följden m n = ( n, n) där n = 0, 1, 2,...
TDP015: Lektion 5 - Svar
TDP015: Lektion 5 - Svar 11 maj 015 1. Huvudsaken här är att det spelar roll vilket initialvärde vi har. Nedan har jag valt beräkningar som slutar när f(x) < ɛ, där ɛ 10 10. Detta behöver ni såklart inte
Grundidén är att våra intuitiva rationella tal (bråk) alltid kan fås som lösningar till ekvationer av typen α ξ = β, där α och β är tal Z och α 0.
5B2710, lekt 4, HT07 Konstruktion av de rationella talen Q (AEE 2.3) Grundidén är att våra intuitiva rationella tal (bråk) alltid kan fås som lösningar till ekvationer av typen α ξ = β, där α och β är
RELATIONER OCH FUNKTIONER
RELATIONER OCH FUNKTIONER 1 ORDNADE LISTOR (n-tipplar) Ordningen i en mängd spelar ingen roll Exempelvis {1,,3}={3,1,}={1,3,} För att beskriva listor med objekt där ordningen är viktigt använder vi rundparenteser
Hemuppgifter till fredagen den 16 september Exercises to Friday, September 16
Introduction to Semigroups Hemuppgifter till fredagen den 16 september Exercises to Friday, September 16 Övningsuppgifterna lämnas in senast onsdagen 14.9. till David Stenlund, per e-post den 16 september.
Tentamen i TDDC75 Diskreta strukturer
Tentamen i TDDC75 Diskreta strukturer 2017-01-05, Lösningsförslag (med reservation för eventuella fel) 1. Betrakta följande satslogiska uttryck: (p q) (q p) (a) Visa genom naturlig deduktion att uttrycket
729G04: Inlämningsuppgift Diskret matematik
729G04: Inlämningsuppgift Diskret matematik Instruktioner Dessa uppgifter utgör del av examinationen i kursen 729G04 Programmering och diskret matematik. Uppgifterna ska utföras individuellt och självständigt,
En bijektion mellan två mängder A och B som har ändligt antal element kan finnas endast om mängderna har samma antal element.
Inversa unktion BIJEKTION, INJEKTION, SURJEKTION Allmän terminologi I samband med variabelbyte vid beräkning av integraler har vi en avbildning mellan två mängder A och B, dvs en unktion : A B Vi har otast
Dagens Teori. Figur 4.1:
Dagens Teori 4.1 Funktioner En funktion är en regel som till varje objekt i en mängd A associerar ett objekt i en annan mängd B Figur 4.1: Första gången vi normalt hör talas om funktioner i matematisk
LMA033/LMA515. Fredrik Lindgren. 4 september 2013
LMA033/LMA515 Fredrik Lindgren Matematiska vetenskaper Chalmers tekniska högskola och Göteborgs universitet 4 september 2013 F. Lindgren (Chalmers&GU) Matematik 4 september 2013 1 / 25 Outline 1 Föreläsning
f(x) = x 1 g(x) = x 2 2x + 3.
Kapitel 1 Uppgifter 1 Heltal 2 Mängder och funktioner 2.1 Betrakta funktionerna f : Z Z och g : Z Z som ges av f(x) = x 1 och Visa att a fg gf; g(x) = x 2 2x + 3. b det finns ett x Z sådant att fg(x) =
Mängder och kardinalitet
UPPSALA UNIVERSITET Matematiska institutionen Erik Melin Specialkursen HT07 28 september 2007 Mängder och kardinalitet Dessa blad utgör skissartade föreläsningsanteckningar kombinerat med övningar. Framställningen
729G04 - Diskret matematik. Hemuppgift.
729G04 - Diskret matematik. Hemuppgift. 2016-08-31 Instruktioner Dessa uppgifter utgör en del av examinationen i kursen 729G04 Programmering och diskret matematik. Uppgifterna ska utföras individuellt
MS-A0409 Grundkurs i diskret matematik I
MS-A0409 Grundkurs i diskret matematik I G. Gripenberg Aalto-universitetet oktober 014 G. Gripenberg (Aalto-universitetet) MS-A0409 Grundkurs i diskret matematik I oktober 014 1 / 44 Mängder (naiv, inte
Algebra och kombinatorik 28/4 och 5/ Föreläsning 9 och 10
Grupper En grupp är ett par (G,*) där G är en mängd och * är en binär operation på G som uppfyller följande villkor: G1 (sluten) x,yϵg så x*yϵg G2 (associativ) x,y,z ϵg (x*y)*z=x*(y*z) G3 (identitet) Det
Om relationer och algebraiska
Om relationer och algebraiska strukturer Anders Källén MatematikCentrum LTH anderskallen@gmail.com Sammanfattning Även i analysen behöver man en del algebraiska begrepp. I den här artikeln definierar vi
Algebra och kryptografi Facit till udda uppgifter
VK Algebra och kryptografi Facit till udda uppgifter Tomas Ekholm Niklas Eriksen Magnus Rosenlund Matematiska institutionen, 2002 48 Grupper. Lösning 1.1. Vi väljer att studera varje element i G H för
1. Compute the following matrix: (2 p) 2. Compute the determinant of the following matrix: (2 p)
UMEÅ UNIVERSITY Department of Mathematics and Mathematical Statistics Pre-exam in mathematics Linear algebra 2012-02-07 1. Compute the following matrix: (2 p 3 1 2 3 2 2 7 ( 4 3 5 2 2. Compute the determinant
MS-A0409 Grundkurs i diskret matematik I
MS-A0409 Grundkurs i diskret matematik I G. Gripenberg Aalto-universitetet oktober 04 G. Gripenberg (Aalto-universitetet) MS-A0409 Grundkurs i diskret matematik I oktober 04 / 45 Mängder och logik Relationer
σ 1 = (531)(64782), τ 1 = (18)(27)(36)(45), τ 1 σ 1 = (423871)(56).
MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik Examinator: Övningstenta i Algebra och Kombinatorik 7,5 hp 2015-11-24 Exempel på hur tentan skulle kunna se ut om alla uppgifter var från
Diskret matematik: Övningstentamen 1
Diskret matematik: Övningstentamen 1 1. Bevisa att de reella talen är en icke-uppräknelig mängd.. För två mängder av positiva heltal A och B skriver vi A C B, om det är så att A innehåller ett heltal som
Definition 1 En funktion (eller avbildning ) från en mängd A till en mängd B är en regel som till några element i A ordnar högst ett element i B.
Deinitionsmängd FUNKTIONER. DEFINITIONSMÄNGD OCH VÄRDEMÄNGD. Deinition En unktion (eller avbildning ) rån en mängd A till en mängd B är en regel som till några element i A ordnar högst ett element i B.
Linjär Algebra, Föreläsning 2
Linjär Algebra, Föreläsning 2 Tomas Sjödin Linköpings Universitet Riktade sträckor och Geometriska vektorer En (geometrisk) vektor är ett objekt som har storlek och riktning, men inte någon naturlig startpunkt.
KTHs Matematiska Cirkel. Reella tal. Joakim Arnlind Tomas Ekholm Andreas Enblom
KTHs Matematiska Cirkel Reella tal Joakim Arnlind Tomas Ekholm Andreas Enblom Institutionen för matematik, 2005 Finansierat av Marianne och Marcus Wallenbergs Stiftelse Innehåll 1 Mängdlära 7 1.1 Mängder...............................
ÄNDLIGT OCH OÄNDLIGT AVSNITT 4
VSNITT ÄNDLIGT OCH OÄNDLIGT Är det möjligt att jämföra storleken av olika talmängder? Har det någon mening om man säger att det finns fler irrationella tal än rationella? Är det överhuvudtaget möjligt
Kapitel 4. Funktioner. 4.1 Definitioner
Kapitel 4 Funktioner I det här kapitlet kommer vi att undersöka funktionsbegreppet. I de första sektionerna genomgås definitionen av begreppet funktion och vissa egenskaper som funktioner har. I slutet
Tentamen TMV210 Inledande Diskret Matematik, D1/DI2
Tentamen TMV20 Inledande Diskret Matematik, D/DI2 208-0-27 kl. 4.00 8.00 Examinator: Peter Hegarty, Matematiska vetenskaper, Chalmers Telefonvakt: Anton Johansson, telefon: 5325 (alt. Peter Hegarty 070-5705475)
Diskret matematik: Övningstentamen 4
Diskret matematik: Övningstentamen 22. Beskriv alla relationer, som är såväl ekvivalensrelationer som partiella ordningar. Är någon välbekant relation sådan? 23. Ange alla heltalslösningar till ekvationen
Filosofisk logik Kapitel 15. Robin Stenwall Lunds universitet
Filosofisk logik Kapitel 15 Robin Stenwall Lunds universitet Dagens upplägg Första ordningens mängdlära Naiv mängdlära Abstraktionsaxiomet (eg. comprehension) Extensionalitetsaxiomet Små mängder Ordnade
Föreläsningsanteckningar S6 Grafteori
HT 009 Tobias Wrigstad Introduktion till grafteori På den här föreläsningen tar vi upp elementär grafteori och försöker introducera termer och begrepp som blir viktigare i senare kurser. Subjektivt tycker
Ekvivalensrelationer
Abstrakt datatyp för disjunkta mängder Vi skall presentera en abstrakt datatyp för att representera disjunkta mängder Kan bl.a. användas för att lösa ekvivalensproblemet avgör om två godtyckliga element
f(x) = x 1 g(x) = x 2 2x + 3.
Kapitel 1 Uppgifter 1 Heltal 2 Mängder och funktioner 2.1 Betrakta funktionerna f : Z Z och g : Z Z som ges av f(x) = x 1 och Visa att g(x) = x 2 2x + 3. a fg gf. b det finns ett x Z sådant att fg(x) =
1 Analysens grunder. Ordlista för Funktionalanalys 1. avbildning (map) En avbildning är i matematiskt språk i regel detsamma som en funktion.
Ordlista för Funktionalanalys 1 (28 augusti 2002) 1 Analysens grunder avbildning (map) En avbildning är i matematiskt språk i regel detsamma som en funktion. Bolzano-Weierstrassegenskapen En delmängd M
avbildning En avbildning är i matematiskt språk i regel detsamma som en funktion.
Ordlista 1 1 Analysens grunder avbildning En avbildning är i matematiskt språk i regel detsamma som en funktion. Bolzano-Weierstrassegenskapen En delmängd M i ett metriskt rum har Bolzano- Weierstrass-egenskapen
Kvalificeringstävling den 30 september 2008
SKOLORNAS MATEMATIKTÄVLING Svenska Matematikersamfundet Kvalificeringstävling den 30 september 2008 Förslag till lösningar Problem 1 Tre rader med tal är skrivna på ett papper Varje rad innehåller tre
Filosofisk Logik (FTEA21:4) föreläsningsanteckningar I. v. 2.0, den 24/4 2013
Filosofisk Logik (FTEA21:4) föreläsningsanteckningar I v. 2.0, den 24/4 2013 Om detta kompendium: Filosofiska institutionen, Lunds Universitet staffan.angere@fil.lu.se Förberedande Det här kompendiet är
LUNDS TEKNISKA HÖGSKOLA Institutionen för Elektro- och Informationsteknik
LUNDS TEKNISKA HÖGSKOLA Institutionen för Elektro- och Informationsteknik SIGNALBEHANDLING I MULTIMEDIA, EITA50, LP4, 209 Inlämningsuppgift av 2, Assignment out of 2 Inlämningstid: Lämnas in senast kl
Om ordinaltal och kardinaltal
Matematik, KTH Bengt Ek december 2017 Material till kursen SF1679, Diskret matematik: Om ordinaltal och kardinaltal (Ännu ofullständig version) Mängdteorin kan ses som grunden för all matematik Här skall
E: 9p D: 10p C: 14p B: 18p A: 22p
MID SWEDEN UNIVERSITY DMA Examination 2017 MA095G & MA098G Discrete Mathematics (English) Time: 5 hours Date: 16 March 2017 Pia Heidtmann The compulsory part of this examination consists of 8 questions.
Kompletteringsmaterial. K2 Något om modeller, kompakthetssatsen
KTH Matematik Bengt Ek Maj 2008 Kompletteringsmaterial till kursen SF1642, Logik för D1 och IT3: K2 Något om modeller, kompakthetssatsen Vi skall presentera ett enkelt (om man känner till sundhets- och
Lösningar för tenta i TMV200 Diskret matematik kl. 14:00 18:00
Lösningar för tenta i TMV200 Diskret matematik 2018-08-31 kl 1:00 18:00 1 Om argumentet inte är giltigt går det att hitta ett motexempel, dvs en uppsättning sanningsvärden för vilka alla hypoteserna är
Lösningar till Algebra och kombinatorik
Lösningar till Algebra och kombinatorik 091214 1. Av a 0 = 1 och rekursionsformeln får vi successivt att a 1 = 1 + a 0 1 a 0 = 1 + 1 1 1 = 2, a 2 = 1 + a 1 1 a 0 + 1 a 1 = 1 + 2 1 + 1 = 4, 2 a 3 = 1 +
Exempel. Komplexkonjugerade rotpar
TATM79: Föreläsning 4 Polynomekvationer och funktioner Johan Thim 2 augusti 2016 1 Polynomekvationer Vi börjar med att upprepa definitionen av ett polynom. Polynom Definition. Ett polynom p(z) är ett uttryck
Modelltentamen. Ditt svar ska vara ett ändligt uttryck utan summationstecken.
SF2715 Tillämpad kombinatorik, våren 2009 Jakob Jonsson Modelltentamen Denna modelltentamen är tänkt att illustrera svårighetsgraden på en riktig tentamen. Att en viss typ av uppgift dyker upp här innebär
Lösningsförslag till Tentamen i 5B1118 Diskret matematik 5p 11 april, 2002
Institutionen för matematik, KTH Mats Boij och Niklas Eriksen Lösningsförslag till Tentamen i 5B1118 Diskret matematik 5p 11 april, 2002 1. Bestäm det minsta positiva heltal n sådant att 31n + 13 är delbart
Tentamen i TDDC75 Diskreta strukturer , lösningsförslag
Tentamen i TDDC75 Diskreta strukturer 2018-10-23, lösningsförslag 1 1. (a) Sanningstabell för uttrycken p q r p q p r r q r p q 0 0 0 1 0 1 1 1 0 0 1 1 1 0 1 1 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 0 1 0 0 0 1
Abstrakt algebra för gymnasister
Abstrakt algebra för gymnasister Veronica Crispin Quinonez Sammanfattning. Denna text är föreläsningsanteckningar från föredraget Abstrakt algebra som hölls under Kleindagarna på Institutet Mittag-Leffler
729G74 IT och programmering, grundkurs. Tema 2. Föreläsning 3 Jody Foo,
729G74 IT och programmering, grundkurs Tema 2. Föreläsning 3 Jody Foo, jody.foo@liu.se Föreläsningsöversikt Information i grafstrukturer Diskret matematik Relationer: kopplingar mellan mängder Funktioner
Explorativ övning 4 ÄNDLIGT OCH OÄNDLIGT. Övning A
Explorativ övning 4 ÄNDLIGT OCH OÄNDLIGT Första delen av övningen handlar om begreppet funktion. Syftet är att bekanta sig med funktionsbegreppet som en parbildning. Vi koncentrerar oss på tre viktiga
Hemuppgifter till fredagen den 16 september Exercises to Friday, September 16
Introduction to Semigroups Hemuppgifter till fredagen den 16 september Exercises to Friday, September 16 Övningsuppgifterna lämnas in senast onsdagen 14.9. till David Stenlund, per e-post dstenlun@abo.fi
Lösningsförslag till övningsuppgifter, del II
Lösningsförslag till övningsuppgifter del II Obs! Preliminär version! Ö.1. För varje delare d till n låt A d var mängden av element a sådana att gcd(a n = d. Partitionen ges av {A d : d delar n}. n = 6:
SF2715 Applied Combinatorics// Extra exercises and solutions, Part 2
SF2715 Applied Combinatorics// Extra exercises and solutions, Part 2 Jakob Jonsson April 5, 2011 Ö Övningsuppgifter These extra exercises are mostly in Swedish. If you have trouble understanding please
Discrete Mathematics (English)
MID SWEDEN UNIVERSITY Pia Heidtmann NAT Examination 2012 MA095G/MA098G Discrete Mathematics (English) Duration: 5 hours Date: 13 March 2012 The compulsory part of this examination consists of 8 questions.
729G74 IT och programmering, grundkurs. Tema 2. Föreläsning 3 Jody Foo,
729G74 IT och programmering, grundkurs Tema 2. Föreläsning 3 Jody Foo, jody.foo@liu.se Föreläsningsöversikt Information i grafstrukturer Diskret matematik Relationer: kopplingar mellan mängder Funktioner
Om modeller och teorier
Matematik, KTH Bengt Ek december 2017 Material till kursen SF1679, Diskret matematik: Om modeller och teorier Hittills i kursen har vi studerat flera olika typer av matematiska strukturer, bl.a. (partial)ordnade
Algebra och kryptografi
VK Algebra och kryptografi Tomas Ekholm Niklas Eriksen Magnus Rosenlund Institutionen för matematik, 2002 Grekiska alfabetet alfa A α iota I ι rho P ρ beta B β kappa K κ sigma Σ σ gamma Γ γ lambda Λ λ
Modul 1 Mål och Sammanfattning
Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2016-2017 Lars Filipsson Modul 1 Mål och Sammanfattning 1. Reella tal. 1. MÅL FÖR MODUL 1 Känna till talsystememet och kunna använda notation
Lösning till tentamensskrivning i Diskret Matematik för CINTE och CMETE, SF1610 och 5B1118, tisdagen den 7 januari 2014, kl
1 Matematiska Institutionen KTH Lösning till tentamensskrivning i Diskret Matematik för CINTE och CMETE, SF1610 och 5B1118, tisdagen den 7 januari 2014, kl 14.00-19.00. Examinator: Olof Heden Hjälpmedel:
Låt vara en reell funktion av en reell variabel med definitionsmängden som är symmetrisk i origo.
UDDA FUNKTIONER OCH DUBBELINTEGRALER. Från en variabelanalys vet vi att integral över ett symetrisk intervall, av en udda funktion är lika med 0. 0 om är udda. T ex 0 Här upprepar vi def. av udda ( och
LOGIK, MÄNGDER OCH FUNKTIONER
LOGIK, MÄNGDER OCH FUNKTIONER KOMPLETTERANDE STUDIEMATERIAL TILL MMA121 MATEMATISK GRUNDKURS VÅRTERMINEN 2014 ERIK DARPÖ 1. Utsagor, implikation och ekvivalens En utsaga är en påstående, formulerat med
Lösningar till utvalda uppgifter i kapitel 5
Lösningar till utvalda uppgifter i kapitel 5 5.3. Vi använder Euklides algoritm och får 4485 = 1 3042 + 1443 3042 = 2 1443 + 156 1443 = 9 156 + 39 156 = 4 39. Alltså är sgd(3042, 4485) = 39. Om vi startar
Kap Dubbelintegraler.
Kap 4. 4.. ubbelintegraler. A. Beräkna följande dubbelintegraler a. d. (x + y) dxdy, över kvadraten x 3, y. (sin y + y cos x) dxdy, då ges av x π, y π. x cos xy dxdy, då ges av x π, y. xy cos (x + y )
Introduktion till algoritmer - Lektion 4 Matematikgymnasiet, Läsåret 2014-2015. Lektion 4
Introduktion till algoritmer - Lektion 4 Matematikgymnasiet, Läsåret 014-015 Denna lektion ska vi studera rekursion. Lektion 4 Principen om induktion Principen om induktion är ett vanligt sätt att bevisa
Lösningsförslag till Tentamen i 5B1118 Diskret matematik 5p 14 augusti, 2002
Institutionen för matematik, KTH Mats Boij och Niklas Eriksen Lösningsförslag till Tentamen i 5B1118 Diskret matematik 5p 14 augusti, 2002 1. Använd induktion för att visa att 8 delar (2n + 1 2 1 för alla
Lösningar till utvalda uppgifter i kapitel 2
Lösningar till utvalda uppgifter i kapitel 2 2.15 Ett Venn-diagram över situationen ser ut så här: 10 5 A B C För att få ihop 30 element totalt så måste de tre okända fälten innehålla exakt 15 element