Grundläggande mängdlära
|
|
- Helena Lundgren
- för 6 år sedan
- Visningar:
Transkript
1 MAAA26 Diskret Matematik för Yrkeshögskoleutbildning-IT Block 3 BLOCK INNEHÅLL Referenser Nyckelord Inledning 1. Mängder Mängdbyggaren Symboler och notation 2. Venndiagram 3. Mängdoperationer Mängdunion Snittmängd Differensmängd Komplementmängd 4. Produktmängd 5. PIE 6. Övningar Assignment 3 Referenser Grundläggande mängdlära [EG] avsnitt 2.1; [D] avsnitt 2.9; [EG] avsnitt ; [EG] avsnitt (ej 2.6.2); och nedanstående text. Nyckelord Mängder, element, delmängder, unionsmängd, snittmängd, komplementmängd, notation för mängder, räkneregler för mängder, standardmängder, produktmängder. Kardinalitet av mängder och principen om inklusion/exklusion. Inledning Läs inledningen till kapitel 2 i [EG]. Målet med detta block är att lära oss de grundläggande begrepp och symboler, som används i förbindelse med mängder. Vi går igenom venndiagram och använder dessa till att illustrera diverse grundläggande mängdoperationer. Läs nu nedanstående text och kapitel 2 i [EG], men ej delavsnitt Mängder I avsnitt 2.1 i [EG] är det viktigt att förstå, att mängder ej är ordnade, dvs. man kan lista deras element i vilken ordning som helst, till exempel är {1, 2, 5} = {1, 5, 2} = {5, 2, 1}. Mängder har heller inga repeterade element, så till exempel {1, 2, 5} = {1, 1, 5, 5, 5, 2}. Glöm ej parenteserna '{' och '}', när du vill ange en mängd, till exempel är {1, 2, 5} 1, 2, 5, för vänstrasidan av detta uttryck är mängden bestående av elementen 1, 2 och 5, medan högrasidan är notationen för en ordnad följd bestående av elementen 1, 2 och 5 i den angivna ordningen. Lika viktigt är det att förstå, att man ej kan sätta ett godtyckligt antal parenteser, till exempel är Page 1 of 10
2 {1, 2, 5} {{1, 2, 5}}, för vänstrasidan av detta uttryck är mängden bestående av elementen 1, 2 och 5, medan den högrasidan är en mängd bestående av blott ett element, nämligen mängden {1, 2, 5}. Många små mängder anges lättast genom att lista alla mängdens element, på det sätt som vi har gjort i exemplen ovan. Ofta är det dock ej möjligt att lista alla element i en mängd, antingen av hänsyn till utrymme eller för att mängden är oändligt stor. I sådana fall är det ibland möjligt att ange de första få av mängdens element och eventuellt det sista elementet, om ett sådant existerar, och så använda symbolen '...' till att indikera, att alla mellanliggande värden också är inkluderade. Till exempel kan vi använda denna notation till att ange mängden av alla udda tal mellan 1 och 20: { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19} = {1, 3, 5,..., 19}. Högrasidan utläses som 'mängden bestående av (elementen) 1, 3, 5 och så vidare, upp till och med 19'. Vi brukar '...'- notationen, när det är klart från kontexten vilka element som menas. Observera att '...'- symbolen består av precis tre prickar. Några standardmängder, som vi ofta hänvisar till, har vi av bekvämlighetsskäl reserverade symboler för. Till exempel har du i gymnasiet kanske använt (se också [EG] sidan 30): = {..., -2, -1, 0, 1, 2,... }, mängden av alla heltal; = {0, 1, 2, 3,... }, mängden av alla naturliga tal, och, mängden av alla reella tal. Vi använder symbolen till att beteckna den tomma mängden, dvs. = { }. Lägg märke till att här sätter man inte parenteser om symbolerna. Till exempel är { }, för här är vänstrasidan mängden av alla heltal, medan högrasidan är en mängd bestående av blott ett element, nämligen. Mängdbyggaren På sidan 19 i [EG] beskrivs en viktig metod för att ange mängder med hjälp av inklusionsregler. Inklusionsreglerna beskriver karaktäristiska egenskaper hos mängdens element, så man kan skilja mellan dessa och element som ej är inkluderat i mängden. Till exempel har vi { x x 10 och x är ett heltal } = {10, 11, 12, 13,... }, där vänstrasidan utläses som 'mängden bestående av de (element) x som uppfyller att x är större än eller lika med 10 och x är ett heltal'. Vi påpekar att några författare brukar symbolen ':' i stället för ' ' i denna notation, så vi har att { x x 10 och x är ett heltal } = { x : x 10 och x är ett heltal } = {10, 11, 12, 13,... }. [EG] använder absolutbeloppet till att beskriva en mängd på sidan 19. Läs avsnitt 2.9 i [D] om absolutbeloppet och lös då övning 2.19, 2.21 i [D]. Symboler och notation En mängds kardinalitet är antalet element i mängden. Detta begrepp införs mitt på sidan 21. Till exempel är = 0 Page 2 of 10
3 och {1, 2, 3, 7} = 4. På sidan 21 införs också symbolen '' '', som utläses 'tillhör'. Om till exempel A = {0, 1, 2, 4}, så har vi 2 A, som utläses ''(elementet) 2 tilhör (mängden) A''; 3 A, som utläses ''(elementet) 3 tilhör ej (mängden) A''. Det är viktigt, att du känner till skillnaden mellan symbolerna '' '' och '' '' och '' '', som införs i definition 2.1 och exempel 2.1 i [EG]. Till exempel har vi 2 {0, 1, 2, 4}, { 2 } {0, 1, 2, 4}, { 2 } {0, 1, 2, 4}. Vi har även att {0, 1, 2, 4}, {0, 1, 2, 4}, {0, 1, 2, 4} {0, 1, 2, 4}, men märk väl, att där är en viktig skillnad på delmängder och äkta delmängder (engelska: proper subset): en mängd är ej en äkta delmäng av sig själv, så därför har vi {0, 1, 2, 4} {0, 1, 2, 4}. På sidan 27 införs notationen (X) till att beteckna potensmängden av en mängd X. Vi märker här, att eftersom (X) är mängden bestående av alla delmängder av X och den tomma mängden är en delmängd av varje mängd X, så är (X) aldrig tom. På sidan 22 införs först de viktiga mängdoperationerna (mängdunion), (mängdsnitt), och därnäst differensen av två mängder. Dessa kan illustreras med hjälp av såkallade venndiagram, som vi beskriver nedan. Två mängder X och Y sägs vara disjunkta, om deras snittmängd är tom, dvs. om X Y =. Till exempel är mängderna {1, 3, 5, 7, 9} och {2, 4, 6, 8, 10} disjunkta, för deras snittmängd är tom. Därimot är mängderna {1, 3, 5, 7, 9} och {1, 2, 3, 4, 5} inte disjunkta, för deras snittmängd är inte den tomma mängden, utan {1, 3, 5}. En samling {X 1,X 2, X 3,..., X n} av mängder X i, i=1,...,n, kallas parvis disjunkta, om för alla i, j = 1,2,..., n där i j, X i X j =. En partition av en mängd X är en samling av icke-tomma, parvis disjunkta delmängder av X, vars union är hela X. Page 3 of 10
4 Låt till exempel U = {x x är udda} och J = {x x är jämnt }, då har vi, att S={U, J} är en partition av, för varje tal i är antingen jämnt eller udda, så U J = och inget heltal är både jämnt och udda, så U J =. På sidan 21 introducerades begreppet universum (engelska: universal set). Universum kallas ofte för grundmängd på svenska. Det är viktigt att förstå, att det ofta är nödvändigt att specifiera grundmängden för att undgå tvetydiga definitioner. Betrakta till exempel mängden {x x<2}. Om inte grundmängden är specificerat, är det omöjligt att se, om där menas {x x<2} = {0, 1}, vilket det skulle vara om grundmängden var, eller {x x<2} = {...,-2, -1, 0, 1}, vilket det skulle vara om grundmängden var, eller något helt annat. När vi anger mängder med hjälp av inklusionsregeln, specificerar vi därför alltid en grundmängd, utom när den är helt klar utifrån kontexten. I avsnitt 1 ovan betraktade vi till exempel mängden {x x 10 och x är ett heltal}. Här har vi undgått tvetydigheter genom att ange inklusionsregeln ''x är ett heltal''. Tvetydigheter kunde också ha undvikits om vi hade specificerat grundmängden. Grundmängder angives oftast före '' ''- tecknet, så ovanstående mängd kan specificeras med: { x x 10 }, vilket utläses 'mängden av x i (grundmängden) av alla heltal, som uppfyller att x är större än eller lika med 10'. 2. Venndiagram Ett venndiagram är en metod att illustrera, hur mängder från samma grundmängd är relaterade till varandra. Metoden är uppkallad efter dess uppfinnare, en engelsk matematiker med namnet John Venn, som levde på 1800-talet. I ett venndiagram illustreras grundmängden G med en stor rektangel och de i problemet givna mängder illustreras som överlappande områden (som regel cirklar) inuti rektangeln G. Om vi i en uppgift har två mängder S och T, bägge i samma grundmängd G, men i övrigt inte vet någonting om hur dessa är relaterade till varandra, ser venndiagrammet således ut: De fyra områdena i venndiagrammet svarar till, att det är precis fyra möjligheter för ett givet element x G, nämligen 1. x är i både S och T; Page 4 of 10
5 2. x är i S, men icke i T; 3. x är icke i S, men x är i T; 4. x är varken i S eller T. Om vi i en uppgift har tre mängder R, S och T, alla i samma grundmängden G, men i övrigt inte vet någonting om, hur dessa är relaterade till varandra, är det 8 möjligheter (varför?) för ett givet element x G, och det generella venndiagrammet för tre mängder partitionerar därför rektangeln G i 8 områden: 3. Mängdoperationer Mängdunion Unionen av två mängder S och T, S T, är mängden av alla de element, som tilhör en eller båda mängderna S och T. Om S = {1, 2, 3} och T = {2, 3, 4}, så är S T = {1, 2, 3, 4}. Detta kan illustreras således i ett venndiagram: Mängdsnitt Snittet av två mängder S och T, S T, är mängden, som består av alla de element, som är i både S och T. Om S = {1, 2, 3} och T = {2, 3, 4}, så är S T = {2, 3}. Detta kan illustreras således i ett venndiagram: Page 5 of 10
6 Mängddifferens Differensen av två mängder S och T, S \ T, består av alla de element, som tillhör S, men som icke tillhör T. Om S = {1, 2, 3} och T = {2, 3, 4}, så är S \ T = {1}. Detta kan illustreras således i ett venndiagram: Observera, att generellt är S \ T T \ S. Komplementmängd Komplementmängden S c av en mängd S består av alla element i grundmängden G, som inte tilhör S. S c kan därför beskrivas som G \ S. Om G = och S = { x x > 3 eller x < -1 }, så är S c = { -1,0,1,2,3 }. Detta kan illustreras således i ett venndiagram: Page 6 of 10
7 Observera att komplementmängden till en given mängd är beroende på grundmängden, medan unionsmängd, snittmängd och differensmängd är oberoende av grundmängden. Mängdoperationerna, som vi illustrerade med venndiagrammen ovanför, är definerade på sida 22 i [EG]. De uppfyller diverse räkneregler, varav de flesta är samlade i tabell 2.1 på sidan 22 i [EG]. Du skall lära dig alla dessa räkneregler for mängdoperationer, men du behöver dock inte kunna bevisa dem. 4. Mängder av par På sida 28 införas produktmängden av två mängder. För två mängder X och Y gäller det att X x Y = X Y. Detta följer av att ordnade par kan listas i en matris med X rader och Y kolumner som i exempel 2.4 på sidan PIE principen I avsnitt 2.4 i [EG] introduceras principen om inklusion/exklusion. Två godtyckliga mängder X och Y från samma grundmängd G är inte nödvändigtvis disjunkta. Därför är det inte alltid lätt att beräkna kardinaliteten av en union av mängder. Det gäller att X Y = X + Y - X Y Bevis: Denna formel ses lättast, om man ritar ett venndiagram för X och Y och numrerar de fyra disjunkta områden som följer: Page 7 of 10
8 De fyra mängder, som ingår i formeln är då X Y: områdena 1, 2 och 3; X: områdena 1 och 3; Y: områdena 2 och 3; X Y: området 3. Så vänstersidan av formeln är antalet av element i områdena 1,2 och 3, medans högersidan är antalet element i områdena 1 och 3 plus antalet element i områdena 2 och 3 minus antalet element i område 3, dvs. högersidan är också antalet element i områdena 1, 2 och 3. Man kan utvidga resultatet ovan till tre (eller flera) mängder. Det är denna räknemetod man kallar principen om inklusion/exklusion (engelska: The Principle of Inclusion - Exclusion), och den betecknas ofta PIE. Principen om inklusion/exklusion Låt X, Y och Z vara tre mängder från samma grundmängd G, som inte nödvändigtvis är parvis disjunkta. Då gäller att X Y Z = X + Y + Z - X Y - X Z - Y Z + X Y Z. Bevis: Denna formel ses också lättast, om man ritar ett venndiagram för X, Y och Z och numrerar de åtta disjunkta områden som följer: De åtta mängder, som ingår i formeln är då X Y Z: områdena 1, 2, 3, 4, 5, 6 och 7; X: områdena 1, 4, 5 och 7; Y: områdena 2, 4, 6 och 7; Z: områdena 3, 5, 6 och 7; Page 8 of 10
9 X Y: områdena 4 och 7; X Z: områdena 5 och 7; Z Y: områdena 6 och 7; X Y Z: området 7. På samma sätt som i exemplet med två mängder ovan ses då, att både vänstersidan och högersidan av formeln är antalet element i områden 1, 2, 3, 4, 5, 6 och Förslag till övningsuppgifter Övningar från [EG] kapitel 2: , 2.5, , 2.11, 2.15, 2.17, 2.18, 2.25; 2.28, 2.30, 2.31, 2.33 (a) - (b); 2.34, Assignment 3 Please click here to get to the information page explaining when and how to send in this assignment for marking. Please follow the instructions carefully. Uppgift 1 a. Låt A= {a,b,c}, B= {a,b,g} och C= {f,e,d,c} vara tre mängder från samma grundmängd G= {a,b,c,d,e,f,g}. Avgör för vart och ett av följande uttryck om det är sant eller falskt. Motivera dina svar! i. B C= G; ii. A B= G; iii. G \ A = C; iv. G \ B C; v. G \ B C; vi. {a,b,b} A; vii. {a,b,{g}} =B; viii. {{b}} B; ix. {{b}} B; x. {{b}} (B). b. Ange följande mängder genom att lista elementen. Använd... - symbolen om det behövs. i. S 1 = {x x 2-4 = 0}; ii. S 2 = {x x= 3n, n }; iii. S 3 = {x x 2 + 4= 0}; iv. S 4 = {x x 2-4 = 0}. c. Ange följande mängder med hjälp av mängdbyggaren och inklusionsregler. i. {-7,7,-8,8,-9,9,-10,10}; ii. {0,-2,2,-4,4,-6,6,-8,8,...}; iii. {1,2,4,8,16,32,64,128,...}. Page 9 of 10
10 Uppgift 2 Låt mängden X vara det färgade området i följande venndiagram. Ange X m.h.a. mängdoperationer på A, B och C. Uppgift 3 a. I en dansskola finns 500 elever, där hälften är pojkar och hälften flickor. Det skall väljas ut ett par för att representera dansskolan i en tävling. Hur många olika par har läraren att välja på, om ett par skall bestå av en flicka och en pojke? b. Dansskolan undervisar bl. a. i vals, rumba och tango, och 50 elever lär sig alla tre. 200 elever lär sig tango, 130 lär sig rumba och 280 lär sig vals. 100 av tangoeleverna och 80 av rumbaeleverna dansar också vals. 80 rumbaelever dansar också tango. i. Hur många elever dansar varken vals, rumba eller tango? ii. Hur många elever dansar tango men inte vals och rumba? iii. Hur många elever lär sig precis två av de tre danserna? This is the 2nd Edition of the study guide for Block 3 of Discrete Mathematics for the Vocational Study Programme in Information Technology, written by Pia Heidtmann in The study guide may be printed for personal use by anybody with an interest. This study guide and any parts of it and any previous and future versions of it must not be copied or disseminated in any printed or electronic form or stored on any publicly accessible website other than without permission from the author. The author welcomes comments and corrections via . All contributions incorporated in updates of the manuscript will be acknowledged. Pia Heidtmann MID SWEDEN UNIVERSITY Department of Engineering, Physics and Mathematics Mid Sweden University S SUNDSVALL Sweden Updated Page 10 of 10
Starta med att läsa avsnitt 2.1 i [J] från sidan 56 (64) [76] till och med exempel (2.1.3) [2.1.5] på sidan 57 (65) [79].
Block 1 Algebra och Diskret Matematik A BLOCK INNEHÅLL Referenser Inledning 1. Mängder 2. Multiplikationsprincipen 3. Mera om mängder Venn-diagram Mängdoperationer 4. Additions- och sållningsprincipen
Block 2 Algebra och Diskret Matematik A. Följder, strängar och tal. Referenser. Inledning. 1. Följder
Block 2 Algebra och Diskret Matematik A BLOCK INNEHÅLL Referenser Inledning 1. Följder 2. Rekursiva definitioner 3. Sigmanotation för summor 4. Strängar 5. Tal 6. Övningsuppgifter Referenser Följder, strängar
Relationer och funktioner
MAAA26 Diskret Matematik för Yrkeshögskoleutbildning-IT Block 11 BLOCK INNEHÅLL Referenser Inledning 1. Relationer 2. Funktioner 3. Övningsuppgifter Assignment 11 & 12 Referenser Relationer och funktioner
[EG] avsnitt 6.4, 6.5, 6.6 (ej 6.6.1); och nedanstående text.
MAAA26 Diskret Matematik för Yrkeshögskoleutbildning-IT Block 8 BLOCK INNEHÅLL Referenser Grafer II Inledning 1. Grannmatrisen och incidensmatrisen för en graf 2. Grafisomorfier 3. Träd Introduktion Definitioner
Vi börjar med en viktig definition som inte finns i avsnitt 3.4 i [EG], den formella definitionen av kongruens modulo n:
MAAA26 Diskret Matematik för Yrkeshögskoleutbildning-IT Block 6 BLOCK INNEHÅLL Referenser Modulär aritmetik. Inledning 1. Kongruens modulo n 2. Z n -- heltalen modulo n 3. Ekvationer modulo n 4. Övningsuppgifter
(N) och mängden av heltal (Z); objekten i en mängd behöver dock inte vara tal. De objekt som ingår i en mängd kallas för mängdens element.
Grunder i matematik och logik (2017) Mängdlära Marco Kuhlmann 1 Grundläggande begrepp Mängder och element 2.01 En mängd är en samling objekt. Två standardexempel är mängden av naturliga tal (N) och mängden
När du läser en definition bör du kontrollera att den är vettig, och försöka få en idé om vad den egentligen betyder. Betrakta följande exempel.
Logik och bevis II 3. föring Detta avsnitt handlar om olika metoder för att bevisa påståenden, och hur man kan konstruera ett bevis. I varje avsnitt finns en allmän beskrivning av metoden, varför den fungerar
Kapitel 1. betecknas detta antal med n(a). element i B; bet. A B. Den tomma mängden är enligt överenskommelsen en delmängd. lika; bet. A = B.
Kapitel 1 Mängdlära Begreppet mängd är fundamentalt i vårt tänkande; en mängd är helt allmänt en samling av objekt, vars antal kan vara ändligt eller oändligt. I matematiken kallas dessa objekt mängdens
Begreppen "mängd" och "element" är grundläggande begrepp i matematiken.
MÄNGDER Grundläggande begrepp och beteckningar Begreppen "mängd" och "element" är grundläggande begrepp i matematiken. Vi kan beskriva (ange, definiera) en mängd som innehåller ändligt många element genom
Block 1 - Mängder och tal
Block 1 - Mängder och tal Mängder Mängder och element Venndiagram Delmängder och äkta delmängder Union och snittmängd Talmängder Heltalen Z Rationella talen Q Reella talen R Räkning med tal. Ordning av
Finns det tillräckligt med information för att bestämma hur många av eleverna som fick 1 poäng? Vad tycker du?
Logik och bevis I 1. Introduktion till logik Varför skulle vi vilja studera logik? Det kan vara för att det hjälper oss att förstå ett problem och dra slutsatser. Det hjälper oss att skriva klartext så
Begreppen "mängd" och "element" är grundläggande begrepp i matematiken.
MÄNGDER Grundläggande begrepp och beteckningar egreppen "mängd" och "element" är grundläggande begrepp i matematiken. Vi kan beskriva (ange, definiera) en mängd som innehåller ändligt många element genom
I kursen i endimensionell analys är mängden av reella tal (eng. real number), R, fundamental.
Lunds tekniska högskola Datavetenskap Lennart ndersson Föreläsningsanteckningar EDF10 4 Mängder 4.1 Motivering Mängden är den mest grundläggande diskreta strukturen. Nästan alla matematiska begrepp går
Mängder. 1 Mängder. Grunder i matematik och logik (2015) 1.1 Grundläggande begrepp. 1.2 Beskrivningar av mängder. Marco Kuhlmann
Marco Kuhlmann 1 Diskret matematik handlar om diskreta strukturer. I denna lektion kommer vi att behandla den mest elementära diskreta strukturen, som alla andra diskreta strukturer bygger på: mängden.
MA2047 Algebra och diskret matematik
MA2047 Algebra och diskret matematik Något om logik och mängdlära Mikael Hindgren 5 september 2018 Utsagor Utsaga = Påstående som har sanningsvärde Utsagan kan vara sann (S) eller falsk (F) öppen eller
Block 1 - Mängder och tal
Block 1 - Mängder och tal Mängder Mängder och element Venndiagram Talmängder Heltalen Z Rationella talen Q Reella talen R Räkning med tal. Ordning av talen i R Intervall Absolutbelopp Olikheter 1 Prepkursen
Mängdlära. Kapitel Mängder
Kapitel 2 Mängdlära 2.1 Mängder Vi har redan stött på begreppet mängd. Med en mängd menar vi en väldefinierad samling av objekt eller element. Ordet väldefinierad syftar på att man för varje tänkbart objekt
Föreläsning 1: Tal, mängder och slutledningar
Föreläsning 1: Tal, mängder och slutledningar Tal Tal är organiserade efter några grundläggande egenskaper: Naturliga tal, N De naturliga talen betecknas med N och innehåller alla positiva heltal, N =
1 Föreläsning I, Mängdlära och elementär sannolikhetsteori,
1 Föreläsning I, Mängdlära och elementär sannolikhetsteori, LMA201, LMA521 1.1 Mängd (Kapitel 1) En (oordnad) mängd A är en uppsättning av element. En sådan mängd kan innehålla ändligt eller oändlligt
Föreläsning 8 i kursen Ma III, #IX1305, HT 07. (Fjärde föreläsningen av Bo Åhlander)
Föreläsning 8 i kursen Ma III, #IX1305, HT 07. (Fjärde föreläsningen av Bo Åhlander) Böiers 5.3 Relationer. Vi har definierat en funktion f: A B som en regel som kopplar ihop ett element a A, med ett element
Övningshäfte 3: Funktioner och relationer
GÖTEBORGS UNIVERSITET MATEMATIK 1, MAM100, HT2014 INLEDANDE ALGEBRA Övningshäfte 3: Funktioner och relationer Övning H Syftet är att utforska ett av matematikens viktigaste begrepp: funktionen. Du har
Algebra och Diskret Matematik A (svenska)
MITTUNIVERSITETET TFM Tentamen 2007 MAAA99 Algebra och Diskret Matematik A (svenska) Skrivtid: 5 timmar Datum: 7 juni 2007 Denna tenta omfattar 8 frågor, där varje fråga kan ge 3 poäng. Maximalt poängantal
{ } { } En mängd är en samling objekt A = 0, 1. Ex: Mängder grundbegrepp 5 C. Olof M C = { 7, 1, 5} M = { Ce, Joa, Ch, Je, Id, Jon, Pe}
Mängder grundbegrepp En mängd är en samling objekt Ex: { } { } A = 0, 1 B = 0 C = { 7, 1, 5} tomma mängden (har inga element) D = { 1, 2, 3,, 10} M = { Ce, Joa, Ch, Je, Id, Jon, Pe} kallas element i mängden
Induktionsprincipen Starka induktionsprincipen Välordningsprincipen Divisionsalgoritmen
Föreläsning 3 Induktionsprincipen Starka induktionsprincipen Välordningsprincipen Divisionsalgoritmen Mängder Induktion behöver inte börja från 1, Grundsteget kan vara P (n 0 ) för vilket heltal n 0 som
Matematisk statistik - Slumpens matematik
Matematisk Statistik Matematisk statistik är slumpens matematik. Började som en beskrivning av spel, chansen att få olika utfall. Brevväxling mellan Fermat och Pascal 1654. Modern matematisk statistik
SF2715 Applied Combinatorics// Extra exercises and solutions, Part 2
SF2715 Applied Combinatorics// Extra exercises and solutions, Part 2 Jakob Jonsson April 5, 2011 Ö Övningsuppgifter These extra exercises are mostly in Swedish. If you have trouble understanding please
Uppsala universitet Institutionen för lingvistik och filologi. Grundbegrepp: Mängder och element Delmängder
Mängder Joakim Nivre Uppsala universitet Institutionen för lingvistik och filologi Översikt Grundbegrepp: Mängder och element Delmängder Operationer på mängder: Union och snitt Differens och komplement
Hemuppgifter till fredagen den 16 september Exercises to Friday, September 16
Introduction to Semigroups Hemuppgifter till fredagen den 16 september Exercises to Friday, September 16 Övningsuppgifterna lämnas in senast onsdagen 14.9. till David Stenlund, per e-post den 16 september.
Definition Låt n vara ett positivt heltal. Heltalen a och b sägs vara kongruenta modulo n om n är en faktor i a-b eller med andra ord om. n (a-b).
Block 4 Algebra och Diskret Matematik A BLOCK INNEHÅLL Referenser Inledning 1. Kongruens modulo n 2. Z n -- heltalen modulo n 3. Ekvationer modulo n 4. Relationer 5. Funktioner Golv och tak funktionerna
Finansiell statistik, vt-05. Sannolikhetslära. Mängder En mängd är en samling element (objekt) 1, 2,, F2 Sannolikhetsteori. koppling till verkligheten
Johan, Koskinen, Statistiska institutionen, Stockholms universitet Finansiell statistik, vt-05 F2 Sannolikhetsteori Sannolikhetslära koppling till verkligheten mängdlära räkna med sannolikheter definitioner
ÄNDLIGT OCH OÄNDLIGT AVSNITT 4
VSNITT ÄNDLIGT OCH OÄNDLIGT Är det möjligt att jämföra storleken av olika talmängder? Har det någon mening om man säger att det finns fler irrationella tal än rationella? Är det överhuvudtaget möjligt
Explorativ övning 9 RELATIONER OCH FUNKTIONER
Explorativ övning 9 RELATIONER OCH FUNKTIONER Övningens syfte är att bekanta sig med begreppet relation på en mängd M. Begreppet relation i matematiska sammanhang anknyter till betydelsen av samma ord
TAMS79: Föreläsning 1 Grundläggande begrepp
TMS79: Föreläsning 1 Grundläggande begrepp Johan Thim 31 oktober 2018 1.1 Begrepp Ett slumpförsök är ett försök där resultatet ej kan förutsägas deterministiskt. Slumpförsöket har olika möjliga utfall.
Sannolikhetslära. 1 Enkel sannolikhet. Grunder i matematik och logik (2015) 1.1 Sannolikhet och relativ frekvens. Marco Kuhlmann
Marco Kuhlmann Detta kapitel behandlar grundläggande begrepp i sannolikhetsteori: enkel sannolikhet, betingad sannolikhet, lagen om total sannolikhet och Bayes lag. 1 Enkel sannolikhet Den klassiska sannolikhetsteorin,
F2 SANNOLIKHETSLÄRA (NCT )
Stat. teori gk, ht 2006, JW F2 SANNOLIKHETSLÄRA (NCT 4.1-4.2) Ordlista till NCT Random experiment Outcome Sample space Event Set Subset Union Intersection Complement Mutually exclusive Collectively exhaustive
Definitionsmängd, urbild, domän
5B1493, lekt 5, HT06 Funktioner Definition av begreppet Definition: Låt X och Y vara två mängder. En funktion f av typ X Y är detsamma som en delmängd av X Y, sådan att 1. Om (x, y) och (x, z) f, så är
Uppsala Universitet Matematiska Institutionen Thomas Erlandsson
Uppsala Universitet Matematiska Institutionen Thomas Erlandsson LÄSANVISNINGAR VECKA 36 VERSION 1. ARITMETIK FÖR RATIONELLA OCH REELLA TAL, OLIKHETER, ABSOLUTBELOPP ADAMS P.1 Real Numbers and the Real
Filosofisk logik Kapitel 15 (forts.) Robin Stenwall Lunds universitet
Filosofisk logik Kapitel 15 (forts.) Robin Stenwall Lunds universitet Dagens upplägg Antalet element i en mängd Kardinalitet Humes princip Cantors teorem Den universella mängden Några mängdteoretiska paradoxer
Lösning av tentamensskrivning i Diskret Matematik för CINTE och CMETE, SF1610, tisdagen den 27 maj 2014, kl
1 Matematiska Institutionen KTH Lösning av tentamensskrivning i Diskret Matematik för CINTE och CMETE, SF1610, tisdagen den 27 maj 2014, kl 14.00-19.00. Examinator: Olof Heden Hjälpmedel: Inga hjälpmedel
ANDREAS REJBRAND NV3ANV Matematik Matematiskt språk
ANDREAS REJBRAND NV3ANV 2006-02-14 Matematik http://www.rejbrand.se Matematiskt språk Innehållsförteckning MATEMATISKT SPRÅK... 1 INNEHÅLLSFÖRTECKNING... 2 INLEDNING... 3 MÄNGDER... 4 Att uttrycka en mängd...
Lösning till tentamensskrivning i Diskret Matematik för CINTE, CL2 och Media 1, SF1610 och 5B1118, onsdagen den 17 augusti 2011, kl
Matematiska Institutionen KTH Lösning till tentamensskrivning i Diskret Matematik för CINTE, CL och Media, SF60 och 5B8, onsdagen den 7 augusti 0, kl 4.00-9.00. Examinator: Olof Heden Hjälpmedel: Inga
Mängder och kardinalitet
UPPSALA UNIVERSITET Matematiska institutionen Erik Melin Specialkursen HT07 28 september 2007 Mängder och kardinalitet Dessa blad utgör skissartade föreläsningsanteckningar kombinerat med övningar. Framställningen
MATEMATIK GU. LLMA60 MATEMATIK FÖR LÄRARE, GYMNASIET Analys, ht 2014. Block 5, översikt
MATEMATIK GU H4 LLMA6 MATEMATIK FÖR LÄRARE, GYMNASIET Analys, ht 24 I block 5 ingår följande avsnitt i Stewart: Kapitel 2, utom avsnitt 2.4 och 2.6; kapitel 4. Block 5, översikt Första delen av block 5
Kombinatorik. Kapitel 2. Allmänt kan sägas att inom kombinatoriken sysslar man huvudsakligen med beräkningar av
Kapitel 2 Kombinatorik Allmänt kan sägas att inom kombinatoriken sysslar man huvudsakligen med beräkningar av det antal sätt, på vilket elementen i en given mängd kan arrangeras i delmängder på något sätt.
Lösningsförslag till Tentamen i 5B1118 Diskret matematik 5p 14 augusti, 2002
Institutionen för matematik, KTH Mats Boij och Niklas Eriksen Lösningsförslag till Tentamen i 5B1118 Diskret matematik 5p 14 augusti, 2002 1. Använd induktion för att visa att 8 delar (2n + 1 2 1 för alla
Övningshäfte 2: Induktion och rekursion
GÖTEBORGS UNIVERSITET MATEMATIK 1, MMG200, HT2017 INLEDANDE ALGEBRA Övningshäfte 2: Induktion och rekursion Övning D Syftet är att öva förmågan att utgående från enkla samband, aritmetiska och geometriska,
10. Mängder och språk
Objektorienterad modellering och diskreta strukturer 10. Mängder och språk Sven Gestegård Robertz Institutionen för datavetenskap, LTH 2013 Rekaputilation Vi har talat om satslogik, predikatlogik och härledning
729G74 IT och programmering, grundkurs. Tema 1, Föreläsning 3 Jody Foo,
729G74 IT och programmering, grundkurs Tema 1, Föreläsning 3 Jody Foo, jody.foo@liu.se Föreläsningsöversikt Kurslogistik Diskret matematik & Uppgifter i Python Kompletteringar Tema 1: Olika perspektiv
LMA033/LMA515. Fredrik Lindgren. 4 september 2013
LMA033/LMA515 Fredrik Lindgren Matematiska vetenskaper Chalmers tekniska högskola och Göteborgs universitet 4 september 2013 F. Lindgren (Chalmers&GU) Matematik 4 september 2013 1 / 25 Outline 1 Föreläsning
Tentamen i TDDC75 Diskreta strukturer
Tentamen i TDDC75 Diskreta strukturer 2017-01-05, Lösningsförslag (med reservation för eventuella fel) 1. Betrakta följande satslogiska uttryck: (p q) (q p) (a) Visa genom naturlig deduktion att uttrycket
MITTUNIVERSITETET TFM. Tentamen Algebra och Diskret Matematik A (svenska) Skrivtid: 5 timmar. Datum: 9 januari 2007
MITTUNIVERSITETET TFM Tentamen 2007 MAAA99 Algebra och Diskret Matematik A (svenska) Skrivtid: 5 timmar Datum: 9 januari 2007 Denna tenta omfattar 8 frågor, där varje fråga kan ge 3 poäng. Maximalt poängantal
Läsanvisning till Discrete matematics av Norman Biggs - 5B1118 Diskret matematik
Läsanvisning till Discrete matematics av Norman Biggs - 5B1118 Diskret matematik Mats Boij 18 november 2001 13 Grupper Det trettonde kapitlet behandlar grupper. Att formulera abstrakta begrepp som grupper
Den matematiska analysens grunder
KTH:s Matematiska Cirkel Den matematiska analysens grunder Katharina Heinrich Dan Petersen Institutionen för matematik, 2012 2013 Finansierat av Marianne och Marcus Wallenbergs Stiftelse Innehåll 1 Grundläggande
Reliability analysis in engineering applications
Reliability analysis in engineering applications Fredrik Carlsson Sannolikhetsteorins grunder Fördelningar och stokastiska variabler Extremvärdesfördelningar Simulering Structural Engineering - Lund University
Tentamensskrivning i Diskret Matematik för CINTE och CMETE, SF1610, onsdagen den 20 augusti 2014, kl
1 Matematiska Institutionen KTH Tentamensskrivning i Diskret Matematik för CINTE och CMETE, SF1610, onsdagen den 20 augusti 2014, kl 14.00-19.00. Examinator: Olof Heden Hjälpmedel: Inga hjälpmedel är tillåtna
TMS136. Föreläsning 2
TMS136 Föreläsning 2 Slumpförsök Med slumpförsök (random experiment) menar vi försök som upprepade gånger utförs på samma sätt men som kan få olika utfall Enkla exempel är slantsingling och tärningskast
Diskret Matematik A för CVI 4p (svenska)
MITTHÖGSKOLAN TFM Tentamen 2004 MAAA98 Diskret Matematik A för CVI 4p (svenska) Skrivtid: 5 timmar Datum: 3 juni 2004 Denna tentamen omfattar 10 frågor, där varje fråga kan ge 12 poäng. Delfrågornas poäng
Övningshäfte 1: Logik och matematikens språk
GÖTEBORGS UNIVERSITET MATEMATIK 1, MMG200, HT2014 INLEDANDE ALGEBRA Övningshäfte 1: Logik och matematikens språk Övning A Målet är att genom att lösa och diskutera några inledande uppgifter få erfarenheter
Lösning till tentamensskrivning i Diskret Matematik för CINTE och CMETE, m fl, SF1610, tisdagen den 2 juni 2015, kl
1 Matematiska Institutionen KTH Lösning till tentamensskrivning i Diskret Matematik för CINTE och CMETE, m fl, SF1610, tisdagen den juni 015, kl 1.00-19.00. Examinator: Olof Heden Hjälpmedel: Inga hjälpmedel
Matematisk Statistik och Disktret Matematik, MVE051/MSG810, VT19
Matematisk Statistik och Disktret Matematik, MVE051/MSG810, VT19 Nancy Abdallah Chalmers - Göteborgs Universitet March 25, 2019 1 / 36 1. Inledning till sannolikhetsteori 2. Sannolikhetslagar 2 / 36 Lärare
DEL I. Matematiska Institutionen KTH
1 Matematiska Institutionen KTH Lösning till tentamensskrivning i Diskret Matematik för CINTE, CL2 och Media 1, SF1610 och 5B1118, tisdagen den 21 oktober 2008, kl 08.00-13.00. Examinator: Olof Heden.
Svar och arbeta vidare med Student 2008
Student 008 Svar och arbeta vidare med Student 008 Det finns många intressanta idéer i årets Känguruaktiviteter. Problemen kan inspirera undervisningen under flera lektioner. Här ger vi några förslag att
Lösningsförslag till övningsuppgifter, del II
Lösningsförslag till övningsuppgifter del II Obs! Preliminär version! Ö.1. För varje delare d till n låt A d var mängden av element a sådana att gcd(a n = d. Partitionen ges av {A d : d delar n}. n = 6:
reella tal x i, x + y = 2 2x + z = 3. Här har vi tre okända x, y och z, och vi ger dessa okända den naturliga
. Lösningsmängden till homogena ekvationssystem I denna första föreläsning börjar vi med att repetera det grunnläggande begreppet inom linjär algebran. Linjär algebra är studiet av lösningsmängden till
Induktion, mängder och bevis för Introduktionskursen på I
Induktion, mängder och bevis för Introduktionskursen på I J A S, ht 04 1 Induktion Detta avsnitt handlar om en speciell teknik för att försöka bevisa riktigheten av påståenden eller formler, för alla heltalsvärden
MITTUNIVERSITETET TFM. Modelltenta Algebra och Diskret Matematik. Skrivtid: 5 timmar. Datum: 1 oktober 2007
MITTUNIVERSITETET TFM Modelltenta 2007 MA014G Algebra och Diskret Matematik Skrivtid: 5 timmar Datum: 1 oktober 2007 Den obligatoriska delen av denna (modell)tenta omfattar 8 frågor, där varje fråga kan
Explorativ övning 4 ÄNDLIGT OCH OÄNDLIGT. Övning A
Explorativ övning 4 ÄNDLIGT OCH OÄNDLIGT Första delen av övningen handlar om begreppet funktion. Syftet är att bekanta sig med funktionsbegreppet som en parbildning. Vi koncentrerar oss på tre viktiga
Statistikens grunder HT, dagtid Statistiska institutionen
Statistikens grunder 1 2013 HT, dagtid Statistiska institutionen Orsak och verkan N Kap 2 forts. Annat ord: kausalitet Något av det viktigaste för varje vetenskap. Varför? Orsakssamband ger oss möjlighet
Moment 6.1, 6.2 Viktiga exempel Övningsuppgifter T6.1-T6.6
Moment 6., 6. Viktiga exempel 6.-6. Övningsuppgifter T6.-T6.6 Matriser Definition. En matris är ett schema med m rader och n kolonner eller kolumner, som vi kallar dem i datalogin innehållande m n element.
Algebra och Diskret Matematik A (svenska)
MITTUNIVERSITETET TFM Tentamen 2005 MAAA99 Algebra och Diskret Matematik A (svenska) Skrivtid: 5 timmar Datum: 2 november 2005 Denna tenta omfattar 8 frågor, där varje fråga kan ge 3 poäng. Maximalt poängantal
Föreläsningsanteckningar och övningar till logik mängdlära
Inledande matematisk analys tma970, 010, logik, mängdlära Föreläsningsanteckningar och övningar till logik mängdlära Dessa öreläsningsanteckningar kompletterar mycket kortattat kap 0 och appendix B i Persson/Böiers,
Lösningar till Algebra och kombinatorik
Lösningar till Algebra och kombinatorik 091214 1. Av a 0 = 1 och rekursionsformeln får vi successivt att a 1 = 1 + a 0 1 a 0 = 1 + 1 1 1 = 2, a 2 = 1 + a 1 1 a 0 + 1 a 1 = 1 + 2 1 + 1 = 4, 2 a 3 = 1 +
Föreläsning 2. Kapitel 3, sid Sannolikhetsteori
Föreläsning 2 Kapitel 3, sid 47-78 Sannolikhetsteori 2 Agenda Mängdlära Kombinatorik Sannolikhetslära 3 Mängdlära Används för att hantera sannolikheter Viktig byggsten inom matematik och logik Utfallsrummet,
Filosofisk logik Kapitel 15. Robin Stenwall Lunds universitet
Filosofisk logik Kapitel 15 Robin Stenwall Lunds universitet Dagens upplägg Första ordningens mängdlära Naiv mängdlära Abstraktionsaxiomet (eg. comprehension) Extensionalitetsaxiomet Små mängder Ordnade
BIOSTATISTISK GRUNDKURS, MASB11, VT-16, VT2 ÖVNING 1, OCH ÖVNING 2, SAMT INFÖR ÖVNING 3
LUNDS UNIVERSITET, MATEMATIKCENTRUM, MATEMATISK STATISTIK BIOSTATISTISK GRUNDKURS, MASB11, VT-16, VT2 ÖVNING 1, 2016-04-01 OCH ÖVNING 2, 2016-04-04 SAMT INFÖR ÖVNING 3 Övningarnas mål: Du ska förstå grundläggande
Sanningsvärdet av ett sammansatt påstående (sats, utsaga) beror av bindeord och sanningsvärden för ingående påståenden.
MATEMATISK LOGIK Matematisk logik formaliserar korrekta resonemang och definierar formellt bindeord (konnektiv) mellan påståenden (utsagor, satser) I matematisk logik betraktar vi påståenden som antingen
1 Föreläsning Implikationer, om och endast om
1 Föreläsning 1 Temat för dagen, och för dessa anteckningar, är att introducera lite matematisk terminologi och notation, vissa grundkoncept som kommer att vara genomgående i kursen. I grundskolan presenteras
18 juni 2007, 240 minuter Inga hjälpmedel, förutom skrivmateriel. Betygsgränser: 15p. för Godkänd, 24p. för Väl Godkänd (av maximalt 36p.
HH / Georgi Tchilikov DISKRET MATEMATIK,5p. 8 juni 007, 40 minuter Inga hjälpmedel, förutom skrivmateriel. Betygsgränser: 5p. för Godkänd, 4p. för Väl Godkänd (av maximalt 36p.). Förenkla (så mycket som
SF1901: Sannolikhetslära och statistik
SF1901: Sannolikhetslära och statistik Föreläsning 1. Jan Grandell & Timo Koski 01.09.2008 Jan Grandell & Timo Koski () Matematisk statistik 01.09.2008 1 / 48 Inledning Vi ska först ge några exempel på
TMS136. Föreläsning 1
TMS136 Föreläsning 1 Varför? Om vi gör mätningar vill vi kunna modellera och kvantifiera de osäkerheter som obönhörligen finns Om vi handlar med värdepapper vill kunna modellera och kvantifiera de risker
3 Grundläggande sannolikhetsteori
3 Grundläggande sannolikhetsteori Ämnet sannolikhetsteori har sin grund i studier av hasardspel utförda under 1500- och 1600-talen av bland andra Gerolamo Cardano, Pierre de Fermat och Blaise Pascal. Mycket
Sannolikhetsteori. Måns Thulin. Uppsala universitet Statistik för ingenjörer 23/ /14
1/14 Sannolikhetsteori Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 23/1 2013 2/14 Dagens föreläsning Relativa frekvenser Matematik för händelser Definition av sannolikhet
RELATIONER OCH FUNKTIONER
RELATIONER OCH FUNKTIONER 1 ORDNADE LISTOR (n-tipplar) Ordningen i en mängd spelar ingen roll Exempelvis {1,,3}={3,1,}={1,3,} För att beskriva listor med objekt där ordningen är viktigt använder vi rundparenteser
729G04 - Diskret matematik. Lektion 3. Valda lösningsförslag
729G04 - Diskret matematik. Lektion 3. Valda lösningsförslag 1 Uppgifter 1.1 Relationer 1. Vi ges mängden A = {p, q, r, s, t}. Är följande mängder relationer på A? Om inte, ge ett exempel som visar vad
Diskret matematik, lektion 2
Diskret matematik, lektion Uppgifter med (*) är överkurs, och potentiellt lite klurigare. Ni behöver inte kunna lösa dessa. 1 Uppgifter 1. Låt A = {1,, 3}, B = {a, b}. Vilka element finns med i... a) A
Övningshäfte 6: 2. Alla formler är inte oberoende av varandra. Försök att härleda ett par av de formler du fann ur några av de övriga.
GÖTEBORGS UNIVERSITET MATEMATIK 1, MAM100, HT2005 MATEMATISK BASKURS Övningshäfte 6: Syftet med övningen är att utforska strukturen hos talsystemen under addition respektive multiplikation samt sambandet
Relationer. 1. Relationer. UPPSALA UNIVERSITET Matematiska institutionen Erik Melin. Specialkursen HT07 23 oktober 2007
UPPSALA UNIVERSITET Matematiska institutionen Erik Melin Specialkursen HT07 23 oktober 2007 Relationer Dessa blad utgör skissartade föreläsningsanteckningar kombinerat med övningar. Framställningen är
2 = 2. Tal skrivna på det sättet kallas potenser. I vårt fall har vi tredje tvåpotensen. Tredje tvåpotensen har 2 som bas och 3 som
616 Talföljder på laborativt vis Vikt papper Vik ett A-4 ark mitt itu så att du får två stycken A-5 ark. Vik det en gång till på samma sätt. Hur stora och hur många är dina ark? Vad händer om du fortsätter?
Kontinuitet och gränsvärden
Kapitel Kontinuitet och gränsvärden.1 Introduktion till kontinuerliga funktioner Kapitlet börjar med allmänna definitioner. Därefter utvidgar vi successivt familjen av kontinuerliga funktioner, genom specifika
Vektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Skalärprodukt Innehåll Skalärprodukt - Inledning
A B A B A B S S S S S F F S F S F S F F F F
Uppsala Universitet Matematiska institutionen Isac Hedén isac distans@math.uu.se Algebra I, 5 hp Vecka 17. Logik När man utför matematiska resonemang så har man alltid vissa logiska spelregler att förhålla
Abstrakt algebra för gymnasister
Abstrakt algebra för gymnasister Veronica Crispin Quinonez Sammanfattning. Denna text är föreläsningsanteckningar från föredraget Abstrakt algebra som hölls under Kleindagarna på Institutet Mittag-Leffler
Lösning till tentamensskrivning i Diskret Matematik för CINTE och CMETE, SF1610 och 5B1118, tisdagen den 7 januari 2014, kl
1 Matematiska Institutionen KTH Lösning till tentamensskrivning i Diskret Matematik för CINTE och CMETE, SF1610 och 5B1118, tisdagen den 7 januari 2014, kl 14.00-19.00. Examinator: Olof Heden Hjälpmedel:
Relationer och funktioner
Relationer och funktioner Joakim Nivre Uppsala universitet Institutionen för lingvistik och filologi Översikt Relationer: Binära relationer på mängder Mängd-, graf- och matrisnotation Egenskaper hos relationer
a), c), e) och g) är olikheter. Av dem har c) och g) sanningsvärdet 1.
PASS 9. OLIKHETER 9. Grundbegrepp om olikheter Vi får olikheter av ekvationer om vi byter ut likhetstecknet mot något av tecknen > (större än), (större än eller lika med), < (mindre än) eller (mindre än
1 Grundläggande kalkyler med vektorer och matriser
Krister Svanberg, mars 2015 1 Grundläggande kalkyler med vektorer och matriser Trots att läsaren säkert redan behärskar grundläggande vektor- och matriskalkyler, ges här i Kapitel 1 en repetition om just
Linjära ekvationer med tillämpningar
UMEÅ UNIVERSITET Institutionen för matematik och matematisk statistik Olof Johansson, Nina Rudälv 2006-10-17 SÄL 1-10p Linjära ekvationer med tillämpningar Avsnitt 2.1 Linjära ekvationer i en variabel
KOMBINATORIK. Exempel 1. Motivera att det bland 11 naturliga tal finns minst två som slutar på samma
Explorativ övning 14 KOMBINATORIK Kombinatoriken används ofta för att räkna ut antalet möjligheter i situationer som leder till många olika utfall. Den används också för att visa att ett önskat utfall
Algebra I, 1MA004. Lektionsplanering
UPPSALA UNIVERSITET Matematiska Institutionen Dan Strängberg HT2016 Fristående, IT, KandDv, KandMa, Lärare 2016-11-02 Algebra I, 1MA004 Lektionsplanering Här anges rekommenderade uppgifter ur boken till