A12. Laserinducerad Fluorescens från Jodmolekyler
|
|
- Oliver Jansson
- för 8 år sedan
- Visningar:
Transkript
1 GÖTEBORGS UNIVERSITET CHALMERS TENKISKA HÖGSKOLA Avdelningen för Experimentell Fysik Göteborg april 2004 Martin Sveningsson Mats Andersson A12 Laserinducerad Fluorescens från Jodmolekyler Namn... Utförd den... Godkänd den... Kurs... Handledare... av...
2 Förord Laborationen A12, Laserinducerad fluorescens, är i stort sett en ny laboration för Tidigare år har man studerat jodmolekylers fluorescens i kursen experimentell fysik för F3 men då i form av ett tredagars projekt. Detta innebär också att det lab-pm som du nu håller i är en första version. Det vore bra om du efter laborationen kunde ge synpunkter på vad du tyckte var bra eller dåligt med laborationen och handledningen. En liten utvärderingsenkät att besvara finns på sista sidan i detta lab-pm. Målsättning Målsättningen med denna laboration är att du skall få en insikt i hur man kan studera övergångar mellan energinivåer i en diatomisk molekyl med laserspektroskopi. Dessutom ska laborationen ge en förklaring till spektrumets utseende med hjälp av teoretiska modeller. Förberedelse Du skall ha läst igenom detta lab-pm. Det förväntas också att du innan laborationen läser igenom kap 9.4 i Haken-Wolf "The Quantum Mechanical Oscillator" eller motsvarande teori i annan kursbok. Studera Schrödingerekvationen för systemet, fastna dock inte på matematiken utan koncentrera dig på resultaten i form av egenvärden (energi) och egenvektorer (vågfunktioner). Försök också besvara instuderingsfrågorna. Uppgift Mät upp ett fluorescensspektrum från jodmolekylen (I 2 ) och bestäm vibrationsfrekvensen hos molekylen i dess grundtillstånd. Förklara även spektrumets utseende med hjälp av teoretiska modeller. Genomförande Använd en orange HeNe-laser (λ = nm) och excitera jodmolekylerna som är inneslutna i en glasbehållare. För att detektera det emitterade ljuset används en monokromator, en fotomultiplikator, en amperemeter och en skrivare. Mät upp ett fluorescensspektrum genom att svepa monokromatorn över ett våglängdsområde och registrera signalen. Utgående från det uppmätta spektrumet kan jodmolekylernas vibrationsfrekvens bestämmas. 1 Inledning I denna laboration kommer vi att studera jodmolekylen (I 2 ) som är en diatomisk molekyl. Jod upptäcktes 1811 av fransmannen Bernard Courtois. Det engelska ordet för jod "Iodine" kommer från det grekiska ordet "iodes" vilket betyder violett som också speglar färgen på just jod. När två atomer binds samman till en molekyl erhålls en diatomisk molekyl. Den kemiska bindningen som uppstår är ett resultat av en minskning av den totala energin när valenselektronerna delas mellan de två atomerna. Beroende på avståndet mellan atomerna varierar energin vilket kan beskrivas med en potentialkurva där det finns ett minimum som motsvarar molekylens jämviktstillstånd d.v.s. jämviktsavståndet mellan de två atomkärnorna. 1
3 2 Teori Atomer och molekyler kan absorbera fotoner av en specifik energi (rätt våglängd) och hamna i ett sk. elektroniskt exciterat tillstånd. Men eftersom molekyler har fler frihetsgrader än atomer förekommer det även andra slags excitationer för molekyler. Dessa är vibrations samt rotationsexcitationer. En relativt enkel modell för att beskriva molekyler såsom I 2 är att dela upp elektronernas och kärnornas rörelser (Born-Oppenheimer approximationen). Detta är möjligt då elektronernas rörelse är mycket snabbare än de tunga kärnornas och snabbt följer kärnornas rörelse. En diatomisk molekyl kan på detta sätt beskrivas som två kärnor omringade av ett elektronmoln. Elektronmolnet från valenselektronerna kommer att skärma av Coulombrepulsionen mellan kärnorna vilket förklarar den kemiska bindningen. Bindningen kan också illustreras som en fjäder med en viss fjäderkonstant vilket gör att molekylen i en första ordningens approximation kan beskrivas som en harmonisk oscillator. Då vi gör detta är det lämpligt att beskriva systemet med en reducerad massa som rör sig runt en jämviktspunkt. Systemet "The Quantum Mechanical Oscillator" är beskrivet i kap. 9.4 i kursboken "The Physics of Atom and Quanta" [1] och skall läsas igenom innan laborationen. Samma system är också beskrivet i kompendiet "kvantfysik" kap. 7. Studera Schrödingerekvationen för systemet, fastna dock inte på matematiken utan koncentrera dig på resultaten i form av egenvärden (energi) och egenvektorer (vågfunktioner). Figurerna 9.8 och 9.9 i kursboken beskriver resultaten på ett mycket bra sätt. Förutom att molekylen har möjlighet att vibrera som en harmonisk oscillator med diskreta energinivåer, så kan den också rotera. Rotationsrörelsen beskrivs som en stel rotor, vilken är bekant från mekaniken. Löser man Schrödringerekvationen för den stela rotorn kommer man också att erhålla diskreta energibidrag. Men då energin som behövs för att ändra molekylens rotation är mycket liten i jämförelse med att ändra dess vibration kommer vi inte att kunna observera detta vid denna laboration. I en molekyl kan i allmänhet övergångar även ske mellan vibrationsnivåer inom samma elektrontillstånd. Energiskillnaden mellan vibrationsnivåer är då typiskt sådan att det motsvarar absorption eller emission av infrarött ljus. I symmetriska diatomiska molekyler, såsom I 2, som inte har något permanent dipolmoment är dock dessa övergångar kvantmekaniskt förbjudna. En illustration över de olika energinivåerna i en diatomisk molekyl kan slutligen ses i figur 1. Från figur 1 kan vi beskriva hur själva absorptionsprocessen går till. Jodmolekylen befinner sig till en början i sitt elektroniska grundtillstånd. Den kan då absorbera en foton och hamna i ett elektroniskt exciterat tillstånd. Då den elektroniska excitationen går mycket snabbt (mycket snabbare än vad de två kärnorna hinner hänga med på) kommer avståndet mellan kärnorna inte att hinna ändras initialt. För att en excitation skall ske måste fotonenergin överrensstämma med skillnaden mellan två olika tillstånd. Sannolikheten för att molekylen kommer att hamna i ett visst exciterat tillstånd beror på hur vågfunktionerna för de olika vibrationsnivåerna ser ut för det aktuella kärnavståndet. Då dessa inte är lika för alla vibrationsnivåer i det exciterade tillståndet kommer det att ske en fördelning i populationen av olika vibrationsnivåer. Detta är vad som brukar kallas Frank Condons princip. 2
4 Figure 1: Bilden visar potententiella energin hos en molekyl som funktion av avståndet mellan kärnorna (r) i den diatomiska molekylen. Kurvorna representerar två olika elektroniska tillstånd. Varje elektrontillstånd kan delas upp i olika vibrationsnivåer och varje vibrationsnivå kan i sin tur delas upp i olika rotationsnivåer (ej skalenligt). Vibrationspotentialen för varje elektrontillstånd kan till en första approximation beskrivas med en harmonisk oscillatorpotential [3]. För det lägsta vibrationstillståndet kommer det vara högst sannolikhet att befinna sig i mitten av potentialgropen (se figur 9.8 i kursboken). För högre vibrationsnivåer kommer den största sannolikheten istället bli längre ut på kanterna av potentialkurvan. Effektiviteten i excitationen till de olika vibrationsnivåerna kommer då bero på överlappet mellan vågfunktionerna för begynnelse- och sluttillståndets vibrationsnivåer. Ett analogt resonemang kan föras för emissionsprocessen, d.v.s. när molekylen emitterar ljus och faller tillbaka till sitt elektroniska grundtillstånd. Sannolikheten bestäms alltså även här av överlappet mellan de två vågfunktionerna i de olika vibrationsnivåerna. Kursboken nämner tyvärr inte så mycket om Frank Condons princip. Det finns en hel del information på internet om man vill läsa mer, men detta är något som vi också kommer att gå igenom under laborationens gång. Referenser [1] G. Niklasson, P. Apell, B. Lundkvist, "Kvantfysik" del 1. [2] H. Haken, H. C. Wolf, "The Physics of Atom and Quanta", 6 th edition. [3] J. Enger, S. Bagge, J. Sandström, D. Hanstorp, "Visualization of a quantum system", Conf. Proc. GIREP, Lund (2002) 3
5 3 Frågor att besvara vid analysen av mätdata 1. Ser det upptagna spektrumet ut som du hade förväntat dig? 2. Vad representerar de olika topparna? 3. Hur kan vibrationsenergin/frekvensen bestämmas med hjälp av spektrat? Beräkna vibrationsenergin och gör en feluppskattning. 4. Är alla toppar ekvidistanta, d.v.s. ligger de på exakt samma avstånd? Förklara dina observationer och hur det överrensstämmer med teorin. 5. Varför har topparna olika intensitet? 6. Vilken vibrationsövergång har högst (bortsett från laservåglängden) resp. lägst sannolikhet i ditt spektra? 7. Hur kommer det sig att man kan se toppar med kortare våglängd (högre energi) än excitationsljuset? 8. Ge exempel på någon viktig egenskap hos I 2 molekylen som inte kan bestämmas med hjälp av ert spektrum. 9. Hade ert spektrum sett annorlunda ut om glasbehållaren haft en annan temperatur? Förklara. 10. Hur hade fluorescensspektrumet sett ut om laserljuset hade haft en annan våglängd? (Undersök gärna detta om ni har tid!) 11. Hur skulle ett absorptionsspektrum se ut? Börja med att beskriva hur ett spektrum skulle sett ut om vi exciterade jodmolekylerna med flera olika lasrar (olika våglängder) samtidigt. 4
6 4 Instuderingsfrågor att besvara innan laborationstillfället 1. Vilken typ av excitationer kan förekomma i en atom? 2. Vilka typer av excitationer kan förekomma i en molekyl? 3. Rangordna de olika sorters excitationer som kan förekomma i förhållande till den energimängd som krävs för de olika excitationerna. 4. Ställ upp Schrödingerekvationen (S.E.) för den harmoniska oscillatorn. 5. Ange lösningarna till S.E. i form av energiegenvärden och vågfunktioner. 6. En väsentlig del i en monokromator är gittret. Hur fungerar ett gitter? 7. En fotomultiplikator bygger på den fotoelektriska effekten. Beskriv kortfattat denna effekt. 8. Hur ser man till att få en stark signal vid detektionen av fluorescensljuset? 9. Skissa ett emissionsspektrum som du förväntar dig att det kommer se ut när man exciterar jodmolekyler med en laser i det synliga våglängdsområdet. (Rita även in laservåglängden λ i ditt spektra) 5
Arbete A2 Jodets elektroniska vibrationsspektrum
Arbete A2 Jodets elektroniska vibrationsspektrum 1. INLEDNING I detta övningsarbete studeras övergångarna mellan olika elektroniska tillstånd i jodmolekylen och speciellt den finstruktur i dessa som förorsakas
Innehåll. Kvantfysik. Kvantfysik. Optisk spektroskopi Absorption. Optisk spektroskopi Spridning. Spektroskopi & Kvantfysik Uppgifter
Kvantfysik Delmoment i kursen Experimentell fysik TIF090 Marica Ericson marica.ericson@physics.gu.se Tel: 031 786 90 30 Innehåll Spektroskopi & Kvantfysik Uppgifter Genomförande Utrustning Assistenter
LABORATION ENELEKTRONSPEKTRA
LABORATION ENELEKTRONSPEKTRA Syfte och mål Uppgiften i denna laboration är att studera atomspektra från väte och natrium i det synliga våglängdsområdet och att med hjälp av uppmätta våglängder från spektrallinjerna
Tentamen i Modern fysik, TFYA11, TENA
IFM - Institutionen för Fysik, Kemi och Biologi Linköpings universitet Tentamen i Modern fysik, TFYA11, TENA Tisdagen den 26/4 2011 kl. 08.00-12.00 i TER3 Tentamen består av 4 sidor (inklusive denna sida)
Experimentell fysik 2: Kvantfysiklaboration
Experimentell fysik 2: Kvantfysiklaboration Lärare: Hans Starnberg Assistenter: Anna Martinelli Christoph Langhammer Mer info: Klicka er fram till kurshemsidan via Chalmers studieportal Spektroskopi Studier
Vibrationspektrometri. Matti Hotokka Fysikalisk kemi
Vibrationspektrometri Matti Hotokka Fysikalisk kemi Teoretisk modell Translationer, rotationer och vibrationer z r y x Beaktas inte Translationer Rotationer Rotationspektrometri senare Vibrationer Basmodell
Kvantbrunnar -Kvantiserade energier och tillstånd
Kvantbrunnar -Kvantiserade energier och tillstånd Inledning Syftet med denna laboration är att undersöka kvantiseringen av energitillstånd i kvantbrunnar. Till detta används en java-applet som hittas på
BANDGAP 2013-02-06. 1. Inledning
1 BANDGAP 13--6 1. Inledning I denna laboration studeras bandgapet i två halvledare, kisel (Si) och galliumarsenid (GaAs) genom mätning av transmissionen av infrarött ljus genom en tunn skiva av respektive
2.6.2 Diskret spektrum (=linjespektrum)
2.6 Spektralanalys Redan på 1700 talet insåg fysiker att olika ämnen skickar ut olika färger då de upphettas. Genom att låta färgerna passera ett prisma kunde det utsända ljusets enskilda färger identifieras.
M = den svängande fjäderns massa K = den svängande fjäderns fjäderkonstant A = dimensionslös konstant
UPPGIFT 1: SLINKY SPRING Tid: 50 min. Materiel: Fjäder, plåt, linjal, kronometer, stativ och klämmor. Beskrivning: En "slinky spring" på horisontellt underlag sträcks ut sträckan x under inflytande av
Halogenlampa Spektrometer Optisk fiber Laserdiod och UV- lysdiod (ficklampa)
Elektroner och ljus I den här laborationen ska vi studera växelverkan mellan ljus och elektroner. Kunskap om detta är viktigt för många tillämpningar men även för att förklara fenomen som t ex färgen hos
KVANTFYSIK för F3 2009 Inlämningsuppgifter I5
ALMERS TEKNISKA ÖGSKOLA Mikroteknologi och nanovetenskap Elsebeth Schröder (schroder vid chalmers.se) 2009-11-12 KVANTFYSIK för F3 2009 Inlämningsuppgifter I5 Bedömning: Bedömningen av de inlämnade lösningarna
MOLEKYLSPEKTROSKOPI I INFRARÖTT
MOLEKYLSPEKTROSKOPI I INFRARÖTT Uppgift Bestämma - rotationsenergier, tröghetsmoment och bindningsavstånd för H 35 Cl i två vibrationstillstånd - den fundamentala vibrationsfrekvensen för H 37 Cl - förhållandet
Kvantbrunnar Kvantiserade energier och tillstånd
Kvantbrunnar Kvantiserade energier och tillstånd Inledning Syftet med denna laboration är att undersöka kvantiseringen av energitillstånd i kvantbrunnar. Till detta används en java-applet som hittas på
BANDGAP 2009-11-17. 1. Inledning
1 BANDGAP 9-11-17 1. nledning denna laboration studeras bandgapet i två halvledare, kisel (Si) och galliumarsenid (GaAs) genom mätning av transmissionen av infrarött ljus genom en tunn skiva av respektive
Utveckling mot vågbeskrivning av elektroner. En orientering
Utveckling mot vågbeskrivning av elektroner En orientering Nikodemus Karlsson Februari 00 . Bohrs Postulat Niels Bohr (885-96) ställde utifrån iakttagelser upp fyra postulat gällande väteatomen ¹:. Elektronen
BFL122/BFL111 Fysik för Tekniskt/ Naturvetenskapligt Basår/ Bastermin Föreläsning 7 Kvantfysik, Atom-, Molekyl- och Fasta Tillståndets Fysik
Föreläsning 7 Kvantfysik 2 Partiklars vågegenskaper Som kunnat konstateras uppträder elektromagnetisk strålning ljus som en dubbelnatur, ibland behöver man beskriva ljus som vågrörelser och ibland är det
Fysik. Laboration 3. Ljusets vågnatur
Fysik Laboration 3 Ljusets vågnatur Laborationens syfte: att hjälpa dig att förstå ljusfenomen diffraktion och interferens och att förstå hur olika typer av spektra uppstår Utförande: laborationen skall
Varje uppgift ger maximalt 3 poäng. För godkänt krävs minst 8,5 poäng och
Institutionen för Fysik Göteborgs Universitet LÖSNINGAR TILL TENTAMEN I FYSIK A: MODERN FYSIK MED ASTROFYSIK Tid: Lördag 3 augusti 008, kl 8 30 13 30 Plats: V Examinator: Ulf Torkelsson, tel. 031-77 3136
TENTAMEN I FYSIKALISK KEMI KURS: KEM040 Institutionen för kemi Göteborgs Universitet Datum: LÄS DETTA FÖRST!
TENTAMEN I FYSIKALISK KEMI KURS: KEM040 Institutionen för kemi Del: QSM Göteborgs Universitet Datum: 111206 Tid: 8.30 14.30 Ansvariga: Gunnar Nyman tel: 786 9035 Jens Poulsen tel: 786 9089 Magnus Gustafsson
TILLÄMPAD ATOMFYSIK Övningstenta 2
TILLÄMPAD ATOMFYSIK Övningstenta 2 Skrivtid: 8 13 Hjälpmedel: Formelblad och räknedosa. Uppgifterna är inte ordnade efter svårighetsgrad. Börja varje ny uppgift på ett nytt blad och skriv bara på en sida.
Experimentell fysik 2: Kvantfysiklaboration
Experimentell fysik 2: Kvantfysiklaboration Lärare: Hans Starnberg Assistenter: Mikael Svedendahl Martin Wersäll Kurshemsida: Spektroskopi Studier av växelverkan
Uppsala Universitet Institutionen för fotokemi och molekylärvetenskap EG 2008-09-08 FH 2009-08-18. Konjugerade molekyler
Uppsala Universitet Institutionen för fotokemi och molekylärvetenskap EG 2008-09-08 FH 2009-08-18 Konjugerade molekyler Introduktion Syftet med den här laborationen är att studera hur ljus och materia
GRUNDERNA FÖR MOLEKYLÄR SPEKTROMETRI
GRUNDERNA FÖR MOLEKYLÄR SPEKTROMETRI Rapport B??? Institutionen för fysikalisk kemi Åbo Akademi 2001 i FÖRORD Detta kompendium utgör en grundkurs i molekylär spektrometri för kemister. De teoretiska grunderna
Vilken av dessa nivåer i väte har lägst energi?
Vilken av dessa nivåer i väte har lägst energi? A. n = 10 B. n = 2 C. n = 1 ⱱ Varför sänds ljus av vissa färger ut från upphettad natriumånga? A. Det beror på att ångan är mättad. B. Det beror på att bara
SPEKTROSKOPI (1) Elektromagnetisk strålning. Synligt ljus. Kemisk mätteknik CSL Analytisk kemi, KTH. Ljus - en vågrörelse
Kosmisk strålning Gammastrålning Röntgenstrålning Ultraviolet Synligt Infrarött Mikrovågor Radar Television NMR Radio Ultraljud Hörbart ljud Infraljud SEKTROSKOI () Kemisk mätteknik CSL Analytisk kemi,
Tentamen i Modern fysik, TFYA11/TENA
IFM - Institutionen för Fysik, Kemi och Biologi Linköpings universitet Tentamen i Modern fysik, TFYA11/TENA Onsdagen den 27/3 2013 kl. 08.00-12.00 i T1 och T2 Tentamen består av 2 A4-blad (inklusive detta)
TEORETISKT PROBLEM 2 DOPPLERKYLNING MED LASER SAMT OPTISK SIRAP
TEORETISKT PROBLEM 2 DOPPLERKYLNING MED LASER SAMT OPTISK SIRAP Avsikten med detta problem är att ta fram en enkel teori för att förstå så kallad laserkylning och optisk sirap. Detta innebär att en stråle
Tentamen i Modern fysik, TFYA11/TENA
IFM - Institutionen för Fysik, Kemi och Biologi Linköpings universitet Tentamen i Modern fysik, TFYA11/TENA Torsdagen den 29/8 2013 kl. 14.00-18.00 i TER2 Tentamen består av 2 A4-blad (inklusive detta)
Innehåll. Fysik Relativitetsteori. fy8_modernfysik.notebook. December 19, Relativitetsteorin Ljusets dualism Materiens struktur Kärnfysik
Fysik 8 Modern fysik Innehåll Relativitetsteorin Ljusets dualism Materiens struktur Kärnfysik 1. Relativitetsteori Speciella relativitetsteorin Allmänna relativitetsteorin Two Postulates Special Relativity
s 1 och s 2 är icke kvantmekaniska partiklar? e. (1p) Vad blir sannolikheterna i uppgifterna b, c och d om vinkeln = /2?
FK003 - Kvantfysikens principer, Fysikum, Stockholms universitet Tentamensskrivning, onsdag 7e mars 018, kl 17:00 - :00 Läs noggrant genom hela tentan först. Börja med uppgifterna som du tror du klarar
KEMA00. Magnus Ullner. Föreläsningsanteckningar och säkerhetskompendium kan laddas ner från
KEMA00 Magnus Ullner Föreläsningsanteckningar och säkerhetskompendium kan laddas ner från http://www.kemi.lu.se/utbildning/grund/kema00/dold Användarnamn: Kema00 Lösenord: DeltaH0 F2 Periodiska systemet
Tentamen i Modern fysik, TFYA11/TENA
IFM - Institutionen för Fysik, Kemi och Biologi Linköpings universitet Tentamen i Modern fysik, TFYA11/TENA Lördagen den 25/8 2012 kl. 14.00-18.00 i TER4 och TERD Tentamen består av 2 A4-blad (inklusive
Lösningar Heureka 2 Kapitel 14 Atomen
Lösningar Heureka Kapitel 14 Atomen Andreas Josefsson Tullängsskolan Örebro Lo sningar Fysik Heureka Kapitel 14 14.1) a) Kulorna från A kan ramla på B, C, D, eller G (4 möjligheter). Från B kan de ramla
Number 14, 15, 16, and 17 also in English. Sammanställning av tentamensuppgifter Kvant EEIGM (MTF057).
LULEÅ TEKNISKA UNIVERSITET Hans Weber, Avdelningen för Fysik, 2004 Number 14, 15, 16, and 17 also in English. Sammanställning av tentamensuppgifter Kvant EEIGM (MTF057). 1. Partikel i en en dimensionell
Vågfysik. Ljus: våg- och partikelbeteende
Vågfysik Modern fysik & Materievågor Kap 25 (24 1:st ed.) Ljus: våg- och partikelbeteende Partiklar Lokaliserade Bestämd position & hastighet Kollision Vågor Icke-lokaliserade Korsar varandra Interferens
7. Atomfysik väteatomen
Partiklars vågegenskaper Som kunnat konstateras uppträder elektromagnetisk strålning ljus som en dubbelnatur, ibland behöver man beskriva ljus som vågrörelser och ibland är det nödvändigt att betrakta
8. Atomfysik - flerelektronatomer
Flerelektronatomer På motsvarande sätt som för väteatomen kommer elektronerna i atomerna hos grundämnen som har två eller fler elektroner också att vara instängda inom ett litet område runt kärnan. Det
Föreläsning 2. Att uppbygga en bild av atomen. Rutherfords experiment. Linjespektra och Bohrs modell. Vågpartikel-dualism. Korrespondensprincipen
Föreläsning Att uppbygga en bild av atomen Rutherfords experiment Linjespektra och Bohrs modell Vågpartikel-dualism Korrespondensprincipen Fyu0- Kvantfysik Atomens struktur Atomen hade ingen elektrisk
Diffraktion och interferens
Diffraktion och interferens Laboration i kursen Syfte Laborationen ska ge förståelse för begreppen interferens och diffraktion och hur de karaktäriseras genom experiment. Vidare visar laborationen exempel
Zeemaneffekt. Projektlaboration, Experimentell kvantfysik, FK5013
Zeemaneffekt Projektlaboration, Experimentell kvantfysik, FK5013 Introduktion En del energinivåer i en atom kan ha samma energi, d.v.s. energinivåerna är degenererade. Degenereringen kan brytas genom att
Arbete A1 Atomens spektrum
Arbete A1 Atomens spektrum 1. INLEDNING I arbetet presenteras de elektroniska energitillstånden och spektret för den enklaste atomen, väteatomen. Väteatomens emissionsspektrum mäts med en gitterspektrometer
BFL 111/ BFL 120 Fysik del B2 för Tekniskt Basår/ Bastermin
Linköpings Universitet Institutionen för Fysik, Kemi och Biologi Avdelningen för Tillämpad Fysik Mike Andersson Lösningsförslag till Repetitionsuppgifter BFL 111/ BFL 120 Fysik del B2 för Tekniskt Basår/
Introduktion till kursen. Fysik 3. Dag Hanstorp
Introduktion till kursen Fysik 3 Dag Hanstorp Vi har fem sinnen: Syn Hörsel Smak Lukt Känsel Hur stor är räckvidden på de olika sinnena? Hur skulle vår världsbild påverkas om vi människor hade saknat
BFL102/TEN1: Fysik 2 för basår (8 hp) Tentamen Fysik mars :00 12:00. Tentamen består av 6 uppgifter som vardera kan ge upp till 4 poäng.
Institutionen för fysik, kemi och biologi (IFM) Marcus Ekholm BFL12/TEN1: Fysik 2 för basår (8 hp) Tentamen Fysik 2 22 mars 216 8: 12: Tentamen består av 6 uppgifter som vardera kan ge upp till 4 poäng.
1 Hur förklarar du att det blev ett interferensmönster i interferensexperimentet med elektroner?
Session: okt28 Class Points Avg: 65.38 out of 100.00 (65.38%) 1 Hur förklarar du att det blev ett interferensmönster i interferensexperimentet med elektroner? A 0% Vi måste ha haft "koincidens", dvs. flera
Tentamen i Modern fysik, TFYA11/TENA
IFM - Institutionen för Fysik, Kemi och Biologi Linköpings universitet Tentamen i Modern fysik, TFYA11/TENA Torsdagen den 28/8 2014 kl. 14.00-18.00 i T1 och S25 Tentamen består av 2 A4-blad (inklusive
c = λ ν Vågrörelse Kap. 1. Kvantmekanik och den mikroskopiska världen Kvantmekanik 1.1 Elektromagnetisk strålning
Kap. 1. Kvantmekanik och den mikroskopiska världen Modern teori för atomer/molekyler kan förklara atomers/molekylers egenskaper: Kvantmekanik I detta och nästa kapitel: atomers egenskaper och periodiska
Innehåll. Fysik Relativitetsteori. fy8_modernfysik.notebook. December 12, Relativitetsteorin Ljusets dualism Materiens struktur Kärnfysik
Fysik 8 Modern fysik Innehåll Relativitetsteorin Ljusets dualism Materiens struktur Kärnfysik 1. Relativitetsteori Speciella relativitetsteorin Allmänna relativitetsteorin Two Postulates Special Relativity
Andra föreläsningen kapitel 7. Patrik Lundström
Andra föreläsningen kapitel 7 Patrik Lundström Kvantisering i klassisk fysik: Uppkomst av heltalskvanttal För att en stående våg i en ring inte ska släcka ut sig själv krävs att den är tillbaka som den
Tentamen i Materia, 7,5 hp, CBGAM0
Fakulteten för teknik- och naturvetenskap Tentamen i Materia, 7,5 hp, CBGAM0 Tid Måndag den 9 januari 2012 08 15 13 15 Lärare Gunilla Carlsson tele: 1194, rum: 9D406 0709541566 Krister Svensson tele: 1226,
FAFA55 HT2016 Laboration 1: Interferens av ljus Nicklas Anttu och August Bjälemark, 2012, Malin Nilsson och David Göransson, 2015, 2016
Inför Laborationen Laborationen sker i två lokaler: K204 (datorsal) och H226. I början av laborationen samlas ni i H212. Laborationen börjar 15 minuter efter heltimmen som är utsatt på schemat. Ta med
Kvantmekanik. Kapitel Natalie Segercrantz
Kvantmekanik Kapitel 38-39 Natalie Segercrantz Centrala begrepp Schrödinger ekvationen i en dimension Fotoelektriska effekten De Broglie: partikel-våg dualismen W 0 beror av materialet i katoden minimifrekvens!
Kursplanen är fastställd av Naturvetenskapliga fakultetens utbildningsnämnd att gälla från och med , vårterminen 2016.
Humanistiska och teologiska fakulteterna ÄFYB23, Fysik: Grundläggande kvantmekanik, statistisk mekanik och kvantstatistik för lärare, 15 högskolepoäng Physics: Basic Quantum Mechanics, statistical mechanics
Lösningsförslag - tentamen. Fysik del B2 för tekniskt / naturvetenskapligt basår / bastermin BFL 122 / BFL 111
Linköpings Universitet Institutionen för Fysik, Kemi, och Biologi Avdelningen för Tillämpad Fysik Mike Andersson Lösningsförslag - tentamen Torsdagen den 27:e maj 2010, kl 08:00 12:00 Fysik del B2 för
Övergångar mellan vibrationsnivåer i grundtillståndet. Infraröd spektroskopi
Övergångar mellan vibrationsnivåer i grundtillståndet Infraröd spektroskopi Lägre energier än VIS Infraröd spektroskopi Övergångar mellan vibrationsnivåer i grundtillståndet Intensiteten är relaterad till
PROV I FYSIK KURS B FRÅN NATIONELLA PROVBANKEN
Enheten för Pedagogiska Mätningar PBFyB 02-05 Umeå universitet PROV I FYSIK KURS B FRÅN NATIONELLA PROVBANKEN Del II: Kortsvars- och flervalsfrågor. Uppgift 1-5 Del III: Långsvarsfrågor. Uppgift 6-15 Anvisningar
Kvantmekanik - Gillis Carlsson
Kvantmekanik - Föreläsning 1 Gillis Carlsson gillis.carlsson@matfys.lth.se LP2 Föreläsningarna i kvantmekanik LP1 V1): Repetition av kvant-nano kursen. Sid 5-84 V2 : V3 : Formalism (I). Sid 109-124, 128-131,
Bestämning av livslängden för singlettexciterad naftalen
Bestämning av livslängden för singlettexciterad naftalen Jesper Hagberg Simon Pedersen 0 november 20 Chalmers Tekniska Högskola Institutionen för Kemi och Bioteknik Fysikalisk Kemi Handledare Nils Carlsson
Kvantmekanik. Kvantmekaniken: De naturlagar som styr förlopp i den mikroskopiska världen (och i den makroskopiska!) Kvantmekanik.
Kap. 7. Kvantmekanik: introduktion 7A.1- I begynnelsen Kvantmekanik Kvantmekaniken: De naturlagar som styr förlopp i den mikroskopiska världen och i den makroskopiska! Kvantmekanik Klassisk fysik Specialfall!
Kvantmekanik och kemisk bindning I 1KB501
Kvantmekanik och kemisk bindning I 1KB501 TENTAMEN, 013-06-05, 8.00-13.00 Tillåtna hjälpmedel: Miniräknare, bifogade formelsamlingar. Börja på nytt blad för varje nytt problem, och skriv din kod på varje
Svar och anvisningar
160322 BFL102 1 Tenta 160322 Fysik 2: BFL102 Svar och anvisningar Uppgift 1 a) Centripetalkraften ligger i horisontalplanet, riktad in mot cirkelbanans mitt vid B. A B b) En centripetalkraft kan tecknas:
Optik Samverkan mellan atomer/molekyler och ljus elektroner atomkärna Föreläsning 7/3 200 Elektronmolnet svänger i takt med ljuset och skickar ut nytt ljus Ljustransmission i material Absorption elektroner
Dugga i FUF040 Kvantfysik för F3/Kf3
Dugga i FUF040 Kvantfysik för F3/Kf3 fredagen den 23 oktober 2015 kl 14.00-16.00 i V Examinator: Måns Henningson, ankn 3245. Inga hjälpmedel. Ringa in bokstaven svarande mot det unika rätta svaret på svarsblanketten!
Milstolpar i tidig kvantmekanik
Den klassiska mekanikens begränsningar Speciell relativitetsteori Höga hastigheter Klassisk mekanik Kvantmekanik Små massor Små energier Stark gravitation Allmän relativitetsteori Milstolpar i tidig kvantmekanik
TILLÄMPAD ATOMFYSIK Övningstenta 3
TILLÄMPAD ATOMFYSIK Övningstenta 3 Skrivtid: 8 13 Hjälpmedel: Formelblad och räknedosa. Uppgifterna är inte ordnade efter svårighetsgrad. Börja varje ny uppgift på ett nytt blad och skriv bara på en sida.
Hjälpmedel: Det för kursen ociella formelbladet samt TeFyMa. 0 x < 0
LÖSNINGAR TILL Deltentamen i kvantformalism, atom och kärnfysik med tillämpningar för F3 9-1-15 Tid: kl 8.-1. (MA9A. Hjälpmedel: Det för kursen ociella formelbladet samt TeFyMa. Poäng: Vid varje uppgift
FK Kvantfysikens principer, Fysikum, Stockholms universitet Tentamensskrivning, onsdag 16 december 2015, kl 17:00-22:00
FK003 - Kvantfysikens principer, Fysikum, Stockholms universitet Tentamensskrivning, onsdag 16 december 015, kl 17:00 - :00 Läs noggrant genom hela tentan först. Börja med uppgifterna som du tror du klarar
Vågrörelselära och optik
Vågrörelselära och optik Kapitel 14 Harmonisk oscillator 1 Vågrörelselära och optik 2 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator:
BFL102/TEN1: Fysik 2 för basår (8 hp) Tentamen Fysik 2. 5 juni :00 12:00. Tentamen består av 6 uppgifter som vardera kan ge upp till 4 poäng.
Institutionen för fysik, kemi och biologi (IFM) Marcus Ekholm BFL02/TEN: Fysik 2 för basår (8 hp) Tentamen Fysik 2 5 juni 205 8:00 2:00 Tentamen består av 6 uppgifter som vardera kan ge upp till 4 poäng.
Diffraktion och interferens
Institutionen för Fysik 005-10-17 Diffraktion och interferens Syfte och mål När ljus avviker från en rätlinjig rörelse kallas det för diffraktion och sker då en våg passerar en öppning eller en kant. Det
Laboration: Optokomponenter
LTH: FASTA TILLSTÅNDETS FYSIK Komponentfysik för E Laboration: Optokomponenter Utförd datum Inlämnad datum Grupp:... Laboranter:...... Godkänd datum Handledare: Retur Datum: Återinlämnad Datum: Kommentarer
Re(A 0. λ K=2π/λ FONONER
FONONER Atomerna sitter inte fastfrusna på det regelbundna sätt som kristallmodellerna visar. De rubbas ur sina jämviktslägen av tillförd värme, ljus, ljud, mekaniska stötar mm. Atomerna i kristallen vibrerar
Tentamen i FTF140 Termodynamik och statistisk fysik för F3
Chalmers Institutionen för Teknisk Fysik Göran Wahnström Tentamen i FTF4 Termodynamik och statistisk fysik för F3 Tid och plats: Tisdag aug, kl 8.3-.3 i Väg och vatten -salar. Hjälpmedel: Physics Handbook,
Instuderingsfrågor, Griffiths kapitel 4 7
Joakim Edsjö 15 oktober 2007 Fysikum, Stockholms Universitet Tel.: 08-55 37 87 26 E-post: edsjo@physto.se Instuderingsfrågor, Griffiths kapitel 4 7 Teoretisk Kvantmekanik II HT 2007 Tanken med dessa frågor
Atom- och kärnfysik med tillämpningar -
Atom- och kärnfysik med tillämpningar - Föreläsning 8 Gillis Carlsson gillis.carlsson@matfys.lth.se 19 Oktober, 2012 Föreläsningarna i kvantmekanik LP1 V1: Repetition av kvant-nano kursen. Sid 5-84 V2:
Bohrs atommodell. Uppdaterad: [1] Vätespektrum
Bohrs atommodell Uppdaterad: 171201 Har jag använt någon bild som jag inte får använda? Låt mig veta så tar jag bort den. christian.karlsson@ckfysik.se [1] Vätespektrum [15] Superposition / [2] Bohrs atommodell
Lösningsförslag. Fysik del B2 för tekniskt / naturvetenskapligt basår / bastermin BFL 120 / BFL 111
Linköpings Universitet Institutionen för Fysik, Kemi, och Biologi Avdelningen för Tillämpad Fysik Mike Andersson Lösningsförslag Fredagen den 29:e maj 2009, kl 08:00 12:00 Fysik del B2 för tekniskt / naturvetenskapligt
Tentamen i Termodynamik och Statistisk fysik för F3(FTF140)
Chalmers Tekniska Högskola Institutionen för Teknisk Fysik Mats Granath Tentamen i Termodynamik och Statistisk fysik för F3(FTF40) Tid och plats: Tisdag 8/8 009, kl. 4.00-6.00 i V-huset. Examinator: Mats
TENTAMEN I KVANTFYSIK del 1 (5A1324 och 5A1450) samt KVANTMEKANIK (5A1320) med SVAR och LÖSNINGSANVISNINGAR Tisdagen den 5 juni 2007
TENTAMEN I KVANTFYSIK del (5A4 och 5A45) samt KVANTMEKANIK (5A) med SVAR och LÖSNINGSANVISNINGAR Tisdagen den 5 juni 7 HJÄLPMEDEL: Formelsamling i Fysik (teoretisk fysik KTH), matematiska tabeller, dock
Tentamen. TFYA35 Molekylfysik, TEN1 24 oktober 2016 kl Skrivsal: G34, G36, G37
Thomas Ederth IFM / Molekylär Fysik ted@ifm.liu.se Tentamen TFYA35 Molekylfysik, TEN1 24 oktober 216 kl. 8.-13. Skrivsal: G34, G36, G37 Tentamen omfattar 6 problem som vardera kan ge 4 poäng. För godkänt
Svängningar. Innehåll. Inledning. Litteraturhänvisning. Förberedelseuppgifter. Svängningar
Svängningar Innehåll Inledning Inledning... 1 Litteraturhänvisning... 1 Förberedelseuppgifter... 1 Utförande... 3 Det dämpade men odrivna systemet... 3 Det drivna systemet... 4 Några praktiska tips...
Kursplanen är fastställd av Naturvetenskapliga fakultetens utbildningsnämnd att gälla från och med , vårterminen 2018.
Humanistiska och teologiska fakulteterna ÄFYD03, Fysik 3: Grundläggande kvantmekanik, statistisk mekanik och kvantstatistik för lärare, 15 högskolepoäng Physics 3: Basic Quantum Mechanics, Statistical
Atomen - Periodiska systemet. Kap 3 Att ordna materian
Atomen - Periodiska systemet Kap 3 Att ordna materian Av vad består materian? 400fKr (före år noll) Empedokles: fyra element, jord, eld, luft, vatten Demokritos: små odelbara partiklar! -------------------------
TEKNISKA HÖGSKOLAN I LULEÅ lp2 96 Avd. för Fysik Per Arve. Laboration i Kvantfysik för F
TEKNISKA HÖGSKOLAN I LULEÅ lp2 96 Avd. för Fysik Per Arve Laboration i Kvantfysik för F Syfte Laborationen syftar till att demonstrera två fysikaliska system, väteatomen och elektroner som strömmar genom
DEN FOTOELEKTRISKA EFFEKTEN
DEN FOTOELEKTRISKA EFFEKTEN 1 Inledning Vid den fotoelektriska effekten lösgör ljus, med frekvensen f, elektroner från en metall. Eftersom ljus består av kvanter (fotoner), vars energi är hf (var h är
Alla svar till de extra uppgifterna
Alla svar till de extra uppgifterna Fö 1 1.1 (a) 0 cm 1.4 (a) 50 s (b) 4 cm (b) 0,15 m (15 cm) (c) 0 cm 1.5 2 m/s (d) 0 cm 1.6 1.2 (a) A nedåt, B uppåt, C nedåt, D nedåt 1.7 2,7 m/s (b) 1.8 Våglängd: 2,0
Kvantfysik SI1151 för F3 Tisdag kl
TEORETISK FYSIK KTH Kvantfysik SI5 för F3 Tisdag 3008 kl. 8.00-3.00 Skriv på varje sida Namn och problemnummer Motivera noga Otillräckliga motiveringar leder till poängavdrag Hjälpmedel Teoretisk fysiks
Tentamen Fysikaliska principer
Institutionen för fysik, kemi och biologi (IFM) Marcus Ekholm NFYA02/TEN1: Fysikaliska principer och nanovetenskaplig introduktion Tentamen Fysikaliska principer 15 januari 2016 8:00 12:00 Tentamen består
Observera att uppgifterna inte är ordnade efter svårighetsgrad!
TENTAMEN I FYSIK FÖR n1, 19 DECEMBER 2003 Skrivtid: 14.00-19.00 Hjälpmedel: Formelblad och räknare. Börja varje ny uppgift på nytt blad. Lösningarna ska vara väl motiverade och försedda med svar. Kladdblad
Solens energi alstras genom fusionsreaktioner
Solen Lektion 7 Solens energi alstras genom fusionsreaktioner i dess inre När solen skickar ut ljus förlorar den också energi. Det måste finnas en mekanism som alstrar denna energi annars skulle solen
1. Mätning av gammaspektra
1. Mätning av gammaspektra 1.1 Laborationens syfte Att undersöka några egenskaper hos en NaI-detektor. Att bestämma energin för okänd gammastrålning. Att bestämma den isotop som ger upphov till gammastrålningen.
för gymnasiet Polarisation
Chalmers tekniska högskola och November 2006 Göteborgs universitet 9 sidor + bilaga Rikard Bergman 1992 Christian Karlsson, Jan Lagerwall 2002 Emma Eriksson 2006 O4 för gymnasiet Polarisation Foton taget
Kurs PM, Modern Fysik, SH1011
Kurs PM, Modern Fysik, SH1011 Allmänt Kurshemsida finns på http://www.mi.physics.kth.se/web/teaching_modern_physics_sh1011.htm dock hänvisas till BILDA för fortlöpande information och uppdateringar. Föreläsningar
Atomer, ledare och halvledare. Kapitel 40-41
Atomer, ledare och halvledare Kapitel 40-41 Centrala begrepp Kvantiserade energinivåer i atomer Elektronspinn och finstruktur Elektronen i en atom både banimpulsmoment, som karakteriseras av kvanttalet
Fysik del B2 för tekniskt basår / teknisk bastermin BFL 120/ BFL 111
Linköpings Universitet Institutionen för Fysik, Kemi och Biologi Avdelningen för Tillämpad Fysik Mike Andersson Lösningsförslag Tentamen Lördagen den 9:e juni 2007, kl. 08:00 12:00 Fysik del B2 för tekniskt
Bose-Einsteinkondensation. Lars Gislén, Malin Sjödahl, Patrik Sahlin
Bose-Einsteinkondensation Lars Gislén, Malin Sjödahl, Patrik Sahlin 3 mars, 009 Inledning Denna laboration går ut på att studera Bose-Einsteinkondensation för bosoner i en tredimensionell harmonisk-oscillatorpotential.
Ljuskällor. För att vi ska kunna se något måste det finnas en ljuskälla
Ljus/optik Ljuskällor För att vi ska kunna se något måste det finnas en ljuskälla En ljuskälla är ett föremål som själv sänder ut ljus t ex solen, ett stearinljus eller en glödlampa Föremål som inte själva
Fysik TFYA68. Föreläsning 11/14
Fysik TFYA68 Föreläsning 11/14 1 Kvantmekanik och Materialuppbyggnad University Physics: Kapitel 38-39* (*) 38.1, 38.4, 39.1-3, 6 koncept enklare uppgifter Översikt och breddningskurs! 2 Introduktion Kvantmekanik
Vågrörelselära och optik
Vågrörelselära och optik Kapitel 33 - Ljus 1 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator: Kapitel 14.1 14.4 Mekaniska vågor: Kapitel