BANDGAP Inledning
|
|
- Ludvig Bengtsson
- för 9 år sedan
- Visningar:
Transkript
1 1 BANDGAP Inledning I denna laboration studeras bandgapet i två halvledare, kisel (Si) och galliumarsenid (GaAs) genom mätning av transmissionen av infrarött ljus genom en tunn skiva av respektive halvledarmaterial. I GaAs är excitationen direkt. Detta innebär att en elektron i halvledarens valensband absorberar fotonens energi E och därigenom exciteras till ett tillstånd i halvledarens ledningsband. Excitationen är möjlig om E E g där bandgapet E g definieras som energiskillnaden mellan den högsta energin (den s.k. valensbandkanten) i valensbandet och den lägsta energin (ledningsbandkanten) i ledningsbandet. Tröskelvärdet (fotonens minimienergi) för excitation av en elektron är alltså E = E g (bortsett från vissa modifikationer som diskuteras i den artikel som laborationen baseras på). I Si är excitationen för fotoner nära tröskelvärdet för excitation indirekt. Detta innebär att elektronen, vid sin excitation från valensbandet till ledningsbandet, inte endast absorberar en foton, utan även emitterar eller absorberar en s.k. fonon. En fonon är ett energikvantum hos en kvantiserad vibration (vågrörelse) i halvledarens kristallstruktur. Eftersom en sådan vibration har mycket lägre frekvens än frekvensen hos det infraröda ljuset, är fononens energi E p mycket mindre än fotonens energi E. Tröskelvärdet för excitation blir E = E g + E p E = E g E p vid emission av en fonon vid absorption av en fonon Båda processerna föreligger samtidigt och bidrar var för sig till den observerade absorptionen av infrarött ljus i halvledaren. Mätningarna går ut på att man för olika våglängder mäter transmissionen T av infrarött ljus genom en skiva av halvledarmaterialet. Från T beräknar man absorptionskoefficienten för det infraröda ljuset. För fotonenergier mindre än tröskelvärdet för excitation är halvledarna genomskinliga ( = ). Transmissionen T är dock mindre än 1%, väsentligen på grund av reflexion vid halvledarskivans ytor. För fotonenergier tillräckligt mycket större än tröskelvärdena (t.ex. i det synliga området) är halvledarna ogenomskinliga (T = ) praktiskt taget alla fotoner absorberas. I övergången mellan dessa båda energiområden ökar med ökande fotonenergi E på ett sätt som beror på tillståndstätheten i valensband och ledningsband, dvs på antalet elektrontillstånd per energienhet.
2 . Uppgift Målsättningen för det experimentella arbetet och analysen av mätdata är att a) bestämma bandgapets storlek E g (ev) i såväl GaAs som Si, b) bestämma fononens energi E p (ev) i den indirekta absorptionen i Si, c) bestämma Urbach-energin E U (ev) för GaAs. 3. Metod Den metod som används i laborationen beskrivs i artikeln "Characterization of a bulk semiconductor's band gap via a near-edge optical transmission experiment", American Journal of Physics 61 (1993) 646, av J.M.Essick och R.T.Mather. Sök efter artikeln på och följ anvisningar för nedladdning. Artikeln är endast tillgänglig på universitetets bibliotek och datorer. Några kommentarer och förklaringar till denna artikel ges nedan. Uppskattningen av bandgapet för GaAs nämns inte i artikeln, men en diskussion av detta ska vara med i laborationsrapporten Kommentarer till teori och analys. Ekvation (1) i artikeln anger transmissionen T genom halvledarskivan, givet reflektansen R hos skivans ytor, absorptionskoefficienten och skivans tjocklek x. Ekvationen härleds ur en modell av multipel reflektion och dämpning i halvledarskivan. Modellen illustreras i figur 1. I x Vid halvledarskivans båda ytor är reflektansen, dvs förhållandet mellan reflekterad och infallande intensitet, likamed R (för strålning från båda håll). Den vid reflektionen transmitterade intensiteten är 1 R. Intensiteten hos strålningen avtar med faktorn exp(-x) vid varje passage av distansen x i halvledaren. Den infallande strålningens intensitet är I. Den transmitterade strålningens intensitet I kan, om interferenseffekter är försumbara (se nedan), beräknas som I I j j1 där I j är intensiteten hos den strålning som kommer ut i transmissionsriktningen efter (j-1) inre reflektioner i halvledarskiktet (se Fig.1). Denna strålning I j har alltså reflekterats (j-1) gånger, färdats sträckan x + (j-1)x i halvledaren och transmitterats gånger. Således fås I 1 I I 3 Fig.1. Multipel reflektion och transmission i halvledarskiva. Infallsvinkeln visas sned bara för tydlighets skull; i beräkningen antas vinkelrätt infall.
3 3 I j I ( j1) R exp( ( x ( j 1) x)) (1 R) varav (med användning av formeln för summan av en geometrisk serie) j 1 exp( x) (1 R) I I exp( x)(1 R) ( R exp( x)) I j1 1 R exp( x) varav följer ekvation (1) i artikeln. Notera att man i denna härledning ignorerar eventuell interferens mellan fram- och återgående strålar. Detta kan motiveras av den ändliga koherenslängden hos strålningen jämförd med skivans tjocklek samt eventuellt förekomsten av ojämnheter i skivtjocklek och i de båda ytorna. Riktigheten av ekvation () i artikeln inses om man betänker att halvledaren bör vara i det närmaste genomskinlig för fotoner vilkas energi är mindre än eller nära likamed bandgapet E g. Variabeln k, som är proportionell mot absorptionskoefficienten, är i då i det närmaste likamed noll, varför reflektansen R bestäms helt av n, dvs det vanliga brytningsindexet. Ekvation (3) i artikeln anger hur absorptionskoefficienten kan förväntas variera med fotonenergin E i övergångsområdet, om excitationen är direkt (som i GaAs). Emellertid används snarare ekv.(4) i analysen av bandgapet i GaAs, av skäl som anges i artikeln. Ekvationerna (6) och (7) anger hur kan förväntas variera med fotonenergin E om excitationen är indirekt (som i Si). 3.. Kommentarer till experimentell metodik. Den experimentella uppställningen liknar, i princip, den i artikeln av Essick och Mather. Figur på nästa sida ger en mycket schematisk översikt. juskällan vid mätning av transmissionen genom halvledarskivan utgörs av en vanlig glödtrådslampa, vilken ger ett brett, kontinuerligt spektrum. Vid kalibrering av apparaturen utgörs ljuskällan av en kvicksilverlampa som ger ett linjespektrum med väl kända våglängder för de olika linjerna. I ett Hg-spektrum finns följande linjer, angivna med våglängd i nm. 365 ultraviolett, kan synas 45 violett 436 blå 546 grön 578 gul 114 första infraröda de infraröda linjerna kan vara svåra att upplösa en möjlig metod är att slå ihop flera närliggande linjer 153 och ta ett medelvärde De synliga linjerna är lämpliga referenser att observera för att hitta ungefär rätt område. Området 1-14 nm är viktigast för experimentet.
4 4 M C D P juset från ljuskällan fokuseras på en chopper, som hackar ljuset till pulser med en viss frekvens, chopperfrekvensen. Chopperns uppgift är att (tillsammans med en s.k. lock-in förstärkare) eliminera bakgrund och störningar. Den således pulserande ljusstrålen fokuseras med ytterligare linser och/eller speglar på ingångsspalten till en monokromator av typ Czerny- Turner. (Funktionen kan hittas på internet.) Alternativt bygger man själv sin monokromator på ett optiskt bord. Fokuseringen bör göras så att en skarp avbildning av ljuskällan (eventuellt av en spalt framför ljuskällan) fås på ingångsspalten vars bredd bör vara.1-. mm. I monokromatorn passerar ljuset ett prisma i vilket ljuset spektraluppdelas via två fokuserande speglar. Genom rotation av prismat kan en vald del av spektrum avbildas på utgångsspalten, vars bredd likaså bör vara.1-. mm. Prismat roteras av en motor som är kopplad till datorn. Rotationsläget, svarande mot våglängden hos det ljus som träffar utgångsspalten, avläses av datorn. Rotationsläget kan också avläsas direkt på en skala på monokromatorn. Observera att sambandet mellan rotationsläge och våglängd måste bestämmas genom ovan nämnda kalibrering, och att kalibreringen är ytterst känslig för hela det experimentella arrangemanget. Flera av topparna i den infraröda delen av spektrumet kommer antagligen att sammanfalla och inte gå att lösa upp. Man kan då slå ihop flera toppar och ta ett medelvärde av våglängderna. Efter monokromatorns utgångsspalt passerar ljuset genom en provhållare, som antingen är försedd med ett prov (Si eller GaAs), eller tom. Slutligen registreras ljuset av en PbS-detektor, vars funktionssätt baseras på att dess ledningsförmåga ökar med ljusintensiteten. Notera att detektorns respons (signal ut/ljusintensitet) varierar med ljusets våglängd. Alternativt används (vid det optiska bordet) en Ge-fotodiod som detektor. Transmissionen T( ) vid en viss våglängd fås som I( ) T( ) I ( ) Fig.. Experimentell uppställning, mycket schematiskt. = ljuskälla, C = chopper, M = monokromator (konkava speglar endast antydda), P = provhållare, D = detektor. Tillkommer diverse linser, speglar, en lock-in-förstärkare och en dator. där I( ) är ljusintensiteten mätt med prov, medan I ( ) är ljusintensiteten mätt utan prov, men under i övrigt identiska förhållanden. Signalen från PbS-detektorn går till ingången på lock-in förstärkaren, som jämför signalen från detektorn med en referenssignal från choppern. Syftet är att eliminera yttre störningar
5 5 (störande ljus, värme) genom att endast signaler med rätt frekvens (chopper-frekvensen) släpps fram. Från lock-in förstärkaren fås en spänning R som väsentligen är amplituden hos den signal från detektorn som har chopperns frekvens. Denna spänning bör alltså vara ett mått på den av detektorn registrerade ljusintensiteten I. Beskrivning av hur en lock-in förstärkare fungerar, och manual till det använda instrumentet, (lock-in amplifier SR85) kan laddas hem på Avsnittet SR85 Basics ger en introduktion till funktionssättet. Sidorna ger en första introduktion till principen hos lock-in förstärkaren, och bör läsas i förväg. En utskrift av manualen finns tillgänglig vid laborationen. Data registreras av ett mätprogram skrivet i abview. En introduktion till handhavandet av lock-in förstärkaren och mätprogrammet ges av laborationsassistenten. 4. Förberedelser 1) Studera artikeln av Essick och Mather. äs om hur en Czerny-Turner-monokromator fungerar på exempelvis internet. Studera principen för funktionssättet hos lock-in förstärkaren. ) Tänk igenom och planera de mätningar som behövs för att lösa uppgifterna. Man kan räkna med att mycket tid går åt för att finjustera uppställning och mätmetod. 3) Tänk igenom och planera den analys av mätdata som måste göras för att bestämma E g och E U för GaAs, och E g och E p för Si. Räkna med att även denna analys tar tid! ycka till!
BANDGAP 2009-11-17. 1. Inledning
1 BANDGAP 9-11-17 1. nledning denna laboration studeras bandgapet i två halvledare, kisel (Si) och galliumarsenid (GaAs) genom mätning av transmissionen av infrarött ljus genom en tunn skiva av respektive
4. Allmänt Elektromagnetiska vågor
Det är ett välkänt faktum att det runt en ledare som det flyter en viss ström i bildas ett magnetiskt fält, där styrkan hos det magnetiska fältet beror på hur mycket ström som flyter i ledaren. Om strömmen
Laboration: Optokomponenter
LTH: FASTA TILLSTÅNDETS FYSIK Komponentfysik för E Laboration: Optokomponenter Utförd datum Inlämnad datum Grupp:... Laboranter:...... Godkänd datum Handledare: Retur Datum: Återinlämnad Datum: Kommentarer
Institutionen för Fysik 2013-10-17. Polarisation
Polarisation Syfte Syftet med denna laboration är att lära sig om ljusets polarisation. Du kommer att se exempel på opolariserat, linjär- och cirkulärpolariserat ljus. Exempel på komponenter som kan ändra
Introduktion till halvledarteknik
Introduktion till halvledarteknik Innehåll 4 Excitation av halvledare Optisk absorption och excitation Luminiscens Rekombination Diffusion av laddningsbärare Optisk absorption och excitation E k hv>e g
Föreläsning 6: Opto-komponenter
Föreläsning 6: Opto-komponenter Opto-komponent Interaktion ljus - halvledare Fotoledare Fotodiod / Solcell Lysdiod Halvledarlaser Dan Flavin 2014-04-02 Föreläsning 6, Komponentfysik 2014 1 Komponentfysik
Fysik (TFYA14) Fö 5 1. Fö 5
Fysik (TFYA14) Fö 5 1 Fö 5 Kap. 35 Interferens Interferens betyder samverkan och i detta fall samverkan mellan elektromagnetiska vågor. Samverkan bygger (precis som för mekaniska vågor) på superpositionsprincipen
Fysik. Laboration 3. Ljusets vågnatur
Fysik Laboration 3 Ljusets vågnatur Laborationens syfte: att hjälpa dig att förstå ljusfenomen diffraktion och interferens och att förstå hur olika typer av spektra uppstår Utförande: laborationen skall
DEN FOTOELEKTRISKA EFFEKTEN
DEN FOTOELEKTRISKA EFFEKTEN 1 Inledning Vid den fotoelektriska effekten lösgör ljus, med frekvensen f, elektroner från en metall. Eftersom ljus består av kvanter (fotoner), vars energi är hf (var h är
Föreläsning 6: Opto-komponenter
Föreläsning 6: Opto-komponenter Opto-komponent Interaktion ljus - halvledare Fotoledare Fotodiod / Solcell Lysdiod Halvledarlaser 1 Komponentfysik - Kursöversikt Bipolära Transistorer pn-övergång: kapacitanser
SPEKTROSKOPI (1) Elektromagnetisk strålning. Synligt ljus. Kemisk mätteknik CSL Analytisk kemi, KTH. Ljus - en vågrörelse
Kosmisk strålning Gammastrålning Röntgenstrålning Ultraviolet Synligt Infrarött Mikrovågor Radar Television NMR Radio Ultraljud Hörbart ljud Infraljud SEKTROSKOI () Kemisk mätteknik CSL Analytisk kemi,
Föreläsning 2 (kap , 2.6 i Optics)
5 Föreläsning 2 (kap 1.6-1.12, 2.6 i Optics) Optiska ytor Vad händer med ljusstrålarna när de träffar en gränsyta mellan två olika material? Strålen in mot ytan kallas infallande ljus och den andra strålen
Optik, F2 FFY091 TENTAKIT
Optik, F2 FFY091 TENTAKIT Datum Tenta Lösning Svar 2005-01-11 X X 2004-08-27 X X 2004-03-11 X X 2004-01-13 X 2003-08-29 X 2003-03-14 X 2003-01-14 X X 2002-08-30 X X 2002-03-15 X X 2002-01-15 X X 2001-08-31
EXPERIMENTELLT PROBLEM 2 DUBBELBRYTNING HOS GLIMMER
EXPERIMENTELLT PROBLEM 2 DUBBELBRYTNING HOS GLIMMER I detta experiment ska du mäta graden av dubbelbrytning hos glimmer (en kristall som ofta används i polariserande optiska komponenter). UTRUSTNING Förutom
Halogenlampa Spektrometer Optisk fiber Laserdiod och UV- lysdiod (ficklampa)
Elektroner och ljus I den här laborationen ska vi studera växelverkan mellan ljus och elektroner. Kunskap om detta är viktigt för många tillämpningar men även för att förklara fenomen som t ex färgen hos
Optiska ytor Vad händer med ljusstrålarna när de träffar en gränsyta mellan två olika material?
1 Föreläsning 2 Optiska ytor Vad händer med ljusstrålarna när de träffar en gränsyta mellan två olika material? Strålen in mot ytan kallas infallande ljus och den andra strålen på samma sida är reflekterat
Institutionen för Fysik Polarisation
Polarisation Syfte Syftet med denna laboration är att lära sig om ljusets polarisation. Du kommer att se exempel på opolariserat-, linjärt- och cirkulär polariserat ljus. Exempel på komponenter som kan
530117 Materialfysik vt 2010. 10. Materiens optiska egenskaper. [Callister, etc.]
530117 Materialfysik vt 2010 10. Materiens optiska egenskaper [Callister, etc.] 10.0 Grunder: upprepning av elektromagnetism Ljus är en elektromagnetisk våg våglängd, våglängd, k vågtal, c hastighet, E
Mäta ljudnivåer och beräkna vägt reduktionstal för skiljevägg i byggnad
UMEÅ UNIVERSITET Tillämpad fysik och elektronik Laborationer i byggnadsakustik Osama Hassan 2010-09-07 Byggnadsakustik: Luftljudisolering Mäta ljudnivåer och beräkna vägt reduktionstal för skiljevägg i
Kapitel 35, interferens
Kapitel 35, interferens Interferens hos ljusvågor, koherensbegreppet Samband för max och min för ideal dubbelspalt Samband för intensitetsvariation för ideal dubbelspalt Interferens i tunna filmer Michelson
5. Elektromagnetiska vågor - interferens
Interferens i dubbelspalt A λ/2 λ/2 Dal för ena vågen möter topp för den andra och vice versa => mörkt (amplitud = 0). Dal möter dal och topp möter topp => ljust (stor amplitud). B λ/2 Fig. 5.1 För ljusvågor
10.0 Grunder: upprepning av elektromagnetism
530117 Materialfysik vt 2010 10. Materiens optiska egenskaper [Callister, etc.] 10.0 Grunder: upprepning av elektromagnetism Ljus är en elektromagnetisk våg våglängd, våglängd, k vågtal, c hastighet, E
Geometrisk optik reflektion och brytning. Optiska system F9 Optiska instrument. Elektromagnetiska vågor. Det elektromagnetiska spektrumet FAF260
Geometrisk optik reflektion oh brytning Geometrisk optik F7 Reflektion oh brytning F8 Avbildning med linser Plana oh buktiga speglar Optiska system F9 Optiska instrument 1 2 Geometrisk optik reflektion
A12. Laserinducerad Fluorescens från Jodmolekyler
GÖTEBORGS UNIVERSITET CHALMERS TENKISKA HÖGSKOLA Avdelningen för Experimentell Fysik Göteborg april 2004 Martin Sveningsson Mats Andersson A12 Laserinducerad Fluorescens från Jodmolekyler Namn... Utförd
Föreläsning 2 - Halvledare
Föreläsning 2 - Halvledare Historisk definition Atom Molekyl - Kristall Metall-Halvledare-Isolator Elektroner Hål Intrinsisk halvledare effekt av temperatur Donald Judd, untitled 1 Komponentfysik - Kursöversikt
10.0 Grunder: upprepning av elektromagnetism Materialfysik vt Materiens optiska egenskaper. Det elektromagnetiska spektret
10.0 Grunder: upprepning av elektromagnetism 530117 Materialfysik vt 2010 Ljus är en elektromagnetisk våg 10. Materiens optiska egenskaper [Callister, etc.] våglängd, våglängd, k vågtal, c hastighet, E
Kvantbrunnar Kvantiserade energier och tillstånd
Kvantbrunnar Kvantiserade energier och tillstånd Inledning Syftet med denna laboration är att undersöka kvantiseringen av energitillstånd i kvantbrunnar. Till detta används en java-applet som hittas på
LABORATION ENELEKTRONSPEKTRA
LABORATION ENELEKTRONSPEKTRA Syfte och mål Uppgiften i denna laboration är att studera atomspektra från väte och natrium i det synliga våglängdsområdet och att med hjälp av uppmätta våglängder från spektrallinjerna
Polarisation Laboration 2 för 2010v
Polarisation Laboration 2 för 2010v Stockholms Universitet 2007 Innehåll 1 Vad är polariserat ljus? 2 Teoretisk beskrivning av polariserat ljus 2.1 Linjärpolariserat ljus 2.2 Cirkulärpolariserat ljus
FAFA55 HT2016 Laboration 1: Interferens av ljus Nicklas Anttu och August Bjälemark, 2012, Malin Nilsson och David Göransson, 2015, 2016
Inför Laborationen Laborationen sker i två lokaler: K204 (datorsal) och H226. I början av laborationen samlas ni i H212. Laborationen börjar 15 minuter efter heltimmen som är utsatt på schemat. Ta med
1. Betrakta en plan harmonisk elektromagnetisk våg i vakuum där det elektriska fältet E uttrycks på följande sätt (i SI-enheter):
FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 högskolepoäng, FK4009 Måndagen den 5 maj 2008 kl 9-15 Hjälpmedel: Handbok (Physics handbook eller motsvarande) och räknare.
Strömning och varmetransport/ varmeoverføring
Lektion 9: Värmetransport TKP4100/TMT4206 Strömning och varmetransport/ varmeoverføring Värme kan överföras från en kropp till en annan genom strålning (värmestrålning). Det är därför vi kan känna solens
Ljuskällor. För att vi ska kunna se något måste det finnas en ljuskälla
Ljus/optik Ljuskällor För att vi ska kunna se något måste det finnas en ljuskälla En ljuskälla är ett föremål som själv sänder ut ljus t ex solen, ett stearinljus eller en glödlampa Föremål som inte själva
Elektromagnetiska vågor (Ljus)
Föreläsning 4-5 Elektromagnetiska vågor (Ljus) Ljus kan beskrivas som bestående av elektromagnetiska vågrörelser, d.v.s. ett tids- och rumsvarierande elektriskt och magnetiskt fält. Dessa ljusvågor följer
Vågrörelselära och Optik VT14 Lab 3 - Polarisation
Vågrörelselära och Optik VT14 Lab 3 - Polarisation Stockholms Universitet 2014 Kontakt: olga.bylund@fysik.su.se Instruktioner för redogörelse för Laboration 3 Denna laboration består utav fyra experiment
Polarisation laboration Vågor och optik
Polarisation laboration Vågor och optik Utförs av: William Sjöström 19940404-6956 Philip Sandell 19950512-3456 Laborationsrapport skriven av: William Sjöström 19940404-6956 Sammanfattning I laborationen
I princip gäller det att mäta ström-spänningssambandet, vilket tillsammans med kännedom om provets geometriska dimensioner ger sambandet.
Avsikten med laborationen är att studera de elektriska ledningsmekanismerna hos i första hand halvledarmaterial. Från mätningar av konduktivitetens temperaturberoende samt Hall-effekten kan en hel del
Vinkelupplösning, exempel hålkameran. Vinkelupplösning När är två punkter upplösta? FAF260. Lars Rippe, Atomfysik/LTH 1. Böjning i en spalt
Kursavsnitt Böjning och interferens Böjning i en spalt bsin m m 1,... 8 9 Böjning i en spalt Böjning i cirkulär öppning med diameter D Böjningsminimum då =m Första min: Dsin 1. 10 11 Vinkelupplösning,
Tentamen i Fotonik , kl
FAFF25-2015-05-04 Tentamen i Fotonik - 2015-05-04, kl. 14.00-19.00 FAFF25 - Fysik för C och D, Delkurs i Fotonik Tillåtna hjälpmedel: Miniräknare, godkänd formelsamling (t ex TeFyMa), utdelat formelblad.
Laboration Photovoltic Effect Diode IV -Characteristics Solide State Physics. 16 maj 2005
Laboration Photovoltic Effect Diode I -Characteristics Solide State Physics Farid Bonawiede Michael Litton Johan Mörtberg fabo2@kth.se litton@kth.se jmor2@kth.se 16 maj 25 1 I denna laboration ska vi förklara
Optik. Läran om ljuset
Optik Läran om ljuset Vad är ljus? Ljus är en form av energi. Ljus är elektromagnetisk strålning. Energi kan inte försvinna eller nyskapas. Ljuskälla Föremål som skickar ut ljus. I alla ljuskällor sker
FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 10,5 högskolepoäng, FK4009 Tisdagen den 17 juni 2008 kl 9-15
FYSIKUM STOCKHOLMS UNIVERSITET Tentamensskrivning i Vågrörelselära och optik, 1,5 högskolepoäng, FK49 Tisdagen den 17 juni 28 kl 9-15 Hjälpmedel: Handbok (Physics handbook eller motsvarande) och räknare
Varje laborant ska vid laborationens början lämna renskrivna lösningar till handledaren för kontroll.
Vätespektrum Förberedelser Läs i Tillämpad atomfysik om atomspektroskopi (sid 147-149), empiriska samband (sid 151-154), och Bohrs atommodell (sid 154-165). Läs genom hela laborationsinstruktionen. Gör
λ = T 2 g/(2π) 250/6 40 m
Problem. Utbredning av vattenvågor är komplicerad. Vågorna är inte transversella, utan vattnet rör sig i cirklar eller ellipser. Våghastigheten beror bland annat på hur djupt vattnet är. I grunt vatten
Föreläsning 2 - Halvledare
Föreläsning 2 - Halvledare Historisk definition Atom Molekyl - Kristall Metall-Halvledare-Isolator lektroner Hål Intrinsisk halvledare effekt av temperatur 1 Komponentfysik - Kursöversikt Bipolära Transistorer
TILLÄMPAD ATOMFYSIK Övningstenta 2
TILLÄMPAD ATOMFYSIK Övningstenta 2 Skrivtid: 8 13 Hjälpmedel: Formelblad och räknedosa. Uppgifterna är inte ordnade efter svårighetsgrad. Börja varje ny uppgift på ett nytt blad och skriv bara på en sida.
Laboration i Geometrisk Optik
Laboration i Geometrisk Optik Stockholms Universitet 2002 Modifierad 2007 (Mathias Danielsson) Innehåll 1 Vad är geometrisk optik? 1 2 Brytningsindex och dispersion 1 3 Snells lag och reflektionslagen
Vågrörelselära och optik
Vågrörelselära och optik Kapitel 36-1 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator: Kapitel 14.1 14.4 Mekaniska vågor: Kapitel 15.1
OPTIK läran om ljuset
OPTIK läran om ljuset Vad är ljus Ljuset är en form av energi Ljus är elektromagnetisk strålning som färdas med en hastighet av 300 000 km/s. Ljuset kan ta sig igenom vakuum som är ett utrymme som inte
för gymnasiet Polarisation
Chalmers tekniska högskola och November 2006 Göteborgs universitet 9 sidor + bilaga Rikard Bergman 1992 Christian Karlsson, Jan Lagerwall 2002 Emma Eriksson 2006 O4 för gymnasiet Polarisation Foton taget
3. Ljus. 3.1 Det elektromagnetiska spektret
3. Ljus 3.1 Det elektromagnetiska spektret Synligt ljus är elektromagnetisk vågrörelse. Det följer samma regler som vi tidigare gått igenom för mekanisk vågrörelse; reflexion, brytning, totalreflexion
Gauss Linsformel (härledning)
α α β β S S h h f f ' ' S h S h f S h f h ' ' S S h h ' ' f f S h h ' ' 1 ' ' ' f S f f S S S ' 1 1 1 S f S f S S 1 ' 1 1 Gauss Linsformel (härledning) Avbilding med lins a f f b Gauss linsformel: 1 a
Kvantfysik - introduktion
Föreläsning 6 Ljusets dubbelnatur Det som bestämmer vilken färg vi uppfattar att ett visst ljus (från t.ex. s.k. neonskyltar) har är ljusvågornas våglängd. violett grönt orange IR λ < 400 nm λ > 750 nm
Föreläsning 7: Antireflexbehandling
1 Föreläsning 7: Antireflexbehandling När strålar träffar en yta vet vi redan hur de bryts (Snells lag) eller reflekteras (reflektionsvinkeln lika stor som infallsvinkeln). Nu vill vi veta hur mycket som
Tentamen i Fotonik , kl
FAFF25-2015-03-20 Tentamen i Fotonik - 2015-03-20, kl. 14.00-19.15 FAFF25 - Fysik för C och D, Delkurs i Fotonik Tillåtna hjälpmedel: Miniräknare, godkänd formelsamling (t ex TeFyMa), utdelat formelblad.
Presentationsmaterial Ljus som vågrörelse - Fysik B. Interferens i dubbelspalt gitter tunna skikt
Presentationsmaterial Ljus som vågrörelse - Fysik B Interferens i ubbelspalt gitter tunna skikt Syfte och omfattning Detta material behanlar på intet sätt fullstänigt såant som kan ingå i avsnitt me innebören
Föreläsning 7: Antireflexbehandling
1 Föreläsning 7: Antireflexbehandling När strålar träffar en yta vet vi redan hur de bryts (Snells lag) eller reflekteras (reflektionsvinkeln lika stor som infallsvinkeln). Nu vill vi veta hur mycket som
Polarisation. Abbas Jafari Q2-A. Personnummer: april Laborationsrapport
Polarisation Laborationsrapport Abbas Jafari Q2-A Personnummer: 950102-9392 22 april 2017 1 Innehåll 1 Introduktion 2 2 Teori 2 2.1 Malus lag............................. 3 2.2 Brewstervinklen..........................
Hur funkar 3D bio? Laborationsrapporter Se efter om ni har fått tillbaka dem och om de är godkända!
Hur funkar 3D bio? Laborationsrapporter Se efter om ni har fått tillbaka dem och om de är godkända! Sista dag för godkännande av laborationer är torsdagen den 10/6 2015 Räknestuga Förra veckan kapitel
Föreläsning 1. Elektronen som partikel (kap 2)
Föreläsning 1 Elektronen som partikel (kap 2) valenselektroner i metaller som ideal gas ström från elektriskt fält mikroskopisk syn på resistans, Ohms lag diffusionsström Vår första modell valenselektroner
Re(A 0. λ K=2π/λ FONONER
FONONER Atomerna sitter inte fastfrusna på det regelbundna sätt som kristallmodellerna visar. De rubbas ur sina jämviktslägen av tillförd värme, ljus, ljud, mekaniska stötar mm. Atomerna i kristallen vibrerar
SÄTT DIG NER, 1. KOLLA PLANERINGEN 2. TITTA I DITT SKRIVHÄFTE.
SÄTT DIG NER, 1. KOLLA PLANERINGEN 2. TITTA I DITT SKRIVHÄFTE. Vad gjorde vi förra gången? Har du några frågor från föregående lektion? 3. titta i ditt läromedel (boken) Vad ska vi göra idag? Optik och
Vinkelupplösning, exempel hålkameran. Vinkelupplösning När är två punkter upplösta? FAF260. Lars Rippe, Atomfysik/LTH 1. Böjning i en spalt
Kursavsnitt Böjning och interferens Böjning i en spalt bsin m m 1,... 8 9 Böjning i en spalt Böjning i cirkulär öppning med diameter D Böjningsminimum då =m Första min: Dsin 1. 10 11 Vinkelupplösning,
1. Ge en tydlig förklaring av Dopplereffekt. Härled formeln för frekvens som funktion av källans hastighet i stillastående luft.
Problem. Ge en tydlig förklaring av Dopplereffekt. Härled formeln för frekvens som funktion av källans hastighet i stillastående luft. (p) Det finns många förklaringar, till exempel Hewitt med insekten
Övning 6 Antireflexbehandling
Övning 6 Antireflexbehandling Antireflexbehandling Idén med antireflexskikt är att få två reflektioner som interfererar destruktivt och därmed försvagar varandra. R Vi ser att vågorna är ur fas, vi har
Atomer, ledare och halvledare. Kapitel 40-41
Atomer, ledare och halvledare Kapitel 40-41 Centrala begrepp Kvantiserade energinivåer i atomer Elektronspinn och finstruktur Elektronen i en atom både banimpulsmoment, som karakteriseras av kvanttalet
Instuderingsfrågor extra allt
Instuderingsfrågor extra allt För dig som vill lära dig mer, alla svaren finns inte i häftet. Sök på nätet, fråga en kompis eller läs i en grundbok som du får låna på lektion. Testa dig själv 9.1 1 Vilken
Tentamen i FTF140 Termodynamik och statistisk mekanik för F3
Chalmers Institutionen för Teknisk Fysik Göran Wahnström Tentamen i FTF14 Termodynamik och statistisk mekanik för F3 Tid och plats: Tisdag 25 aug 215, kl 8.3-13.3 i V -salar. Hjälpmedel: Physics Handbook,
Böjning. Tillämpad vågrörelselära. Föreläsningar. Vad är optik? Huygens princip. Böjning vs. interferens FAF260. Lars Rippe, Atomfysik/LTH 1
Tillämpad vågrörelselära 2 Föreläsningar Vad är optik? F10 och upplösning (kap 16) F11 Interferens och böjning (kap 17) F12 Multipelinterferens (kap 18) F13 Polariserat ljus (kap 20) F14 Reserv / Repetition
Tentamen i Fotonik , kl
FAFF25 FAFA60-2016-05-10 Tentamen i Fotonik - 2016-05-10, kl. 08.00-13.00 FAFF25 Fysik för C och D, Delkurs i Fotonik FAFA60 Fotonik för C och D Tillåtna hjälpmedel: Miniräknare, godkänd formelsamling
2.6.2 Diskret spektrum (=linjespektrum)
2.6 Spektralanalys Redan på 1700 talet insåg fysiker att olika ämnen skickar ut olika färger då de upphettas. Genom att låta färgerna passera ett prisma kunde det utsända ljusets enskilda färger identifieras.
Hjälpmedel: Typgodkänd räknare, Physics Handbook, Mathematics Handbook.
CHALMERS TEKNISKA HÖGSKOLA 2009-01-13 Teknisk Fysik 14.00-18.00 Sal: V Tentamen i Optik för F2 (FFY091) Lärare: Bengt-Erik Mellander, tel. 772 3340 Hjälpmedel: Typgodkänd räknare, Physics Handbook, Mathematics
Övning 6 Antireflexbehandling. Idén med antireflexskikt är att få två reflektioner som interfererar destruktivt och därmed försvagar varandra.
Övning 6 Antireflexbehandling Antireflexbehandling Idén med antireflexskikt är att få två reflektioner som interfererar destruktivt och därmed försvagar varandra. R 1 R Vi ser att vågorna är ur fas, vi
Fotoelektriska effekten
Fotoelektriska effekten Bakgrund År 1887 upptäckte den tyska fysikern Heinrich Hertz att då man belyser ytan på en metallkropp med ultraviolett ljus avges elektriska laddningar från ytan. Noggrannare undersökningar
Om inget annan anges gäller det rumstemperatur, d.v.s. T =300K, termisk jämvikt och värden som inte ges i uppgiften hämtas från formelsamlingen.
Komponentfysik Övningsuppgifter Halvledare VT-15 Om inget annan anges gäller det rumstemperatur, d.v.s. T =300K, termisk jämvikt och värden som inte ges i uppgiften hämtas från formelsamlingen. Utredande
GAMMASPEKTRUM 2008-12-07. 1. Inledning
GAMMASPEKTRUM 2008-12-07 1. Inledning I den här laborationen ska du göra mätningar på gammastrålning från ämnen som betasönderfaller. Du kommer under laborationens gång att lära dig hur ett gammaspektrum
Välkomna till kursen i elektroniska material!
Välkomna till kursen i elektroniska material! Information Innehåll: fasta tillståndets fysik med fokus på halvledarfysik. Dioder, solceller, transistorer... Lärare: Martin Leijnse (föreläsare, kursansvarig)
BFL122/BFL111 Fysik för Tekniskt/ Naturvetenskapligt Basår/ Bastermin Föreläsning 7 Kvantfysik, Atom-, Molekyl- och Fasta Tillståndets Fysik
Föreläsning 7 Kvantfysik 2 Partiklars vågegenskaper Som kunnat konstateras uppträder elektromagnetisk strålning ljus som en dubbelnatur, ibland behöver man beskriva ljus som vågrörelser och ibland är det
Optik 2018 Laborationsinstruktioner Våglära och optik FAFF30+40
Optik 2018 Laborationsinstruktioner Våglära och optik FAFF30+40 Åsa Bengtsson: asa.bengtsson@fysik.lth.se Emma Persson: tfy15epe@student.lu.se Lärandemål I den här laborationen får Du experimentera med
Tentamen i Våglära och optik för F
Tentamen i Våglära och optik för F FAFF30, 2013 06 03 Skrivtid 8.00 13.00 Hjälpmedel: Läroboken och miniräknare Uppgifterna är inte sorterade i svårighetsgrad Börja varje ny uppgift på ett nytt blad och
Böjning och interferens
Böjning och interferens Böjning: Oänligt många elementarvågor från en öppning Böjnings minima bsin m Interferens: Änligt många elementarvågor från flera öppningar Interferens maxima sin m Multipelinterferens
Välkomna till kursen i elektroniska material! Martin Leijnse
Välkomna till kursen i elektroniska material! Martin Leijnse Information Innehåll: fasta tillståndets fysik med fokus på halvledarfysik. Dioder, solceller, transistorer... Lärare: Martin Leijnse (föreläsare,
Kursiverade ord är viktiga begrepp som skall förstås, kunna förklaras och dess relevans i detta sammanhang skall motiveras.
Holografilab I denna lab kommer ett dubbelexponerat, transmissions hologram göras genom att bygga en holografiuppställning, dubbelexponera och framkalla en holografisk film. Dubbelexponerade hologram används
Denna våg är. A. Longitudinell. B. Transversell. C. Något annat
Denna våg är A. Longitudinell B. Transversell ⱱ v C. Något annat l Detta är situationen alldeles efter en puls på en fjäder passerat en skarv A. Den ursprungliga pulsen kom från höger och mötte en lättare
M = den svängande fjäderns massa K = den svängande fjäderns fjäderkonstant A = dimensionslös konstant
UPPGIFT 1: SLINKY SPRING Tid: 50 min. Materiel: Fjäder, plåt, linjal, kronometer, stativ och klämmor. Beskrivning: En "slinky spring" på horisontellt underlag sträcks ut sträckan x under inflytande av
Linnéuniversitetet. Naturvetenskapligt basår. Laborationsinstruktion 1 Kaströrelse och rörelsemängd
Linnéuniversitetet VT2013 Institutionen för datavetenskap, fysik och matematik Program: Kurs: Naturvetenskapligt basår Fysik B Laborationsinstruktion 1 Kaströrelse och rörelsemängd Uppgift: Att bestämma
Diffraktion och interferens
Diffraktion och interferens Laboration i kursen Syfte Laborationen ska ge förståelse för begreppen interferens och diffraktion och hur de karaktäriseras genom experiment. Vidare visar laborationen exempel
1. Mätning av gammaspektra
1. Mätning av gammaspektra 1.1 Laborationens syfte Att undersöka några egenskaper hos en NaI-detektor. Att bestämma energin för okänd gammastrålning. Att bestämma den isotop som ger upphov till gammastrålningen.
Ett materials förmåga att leda elektrisk ström beror på två förutsättningar:
Bandmodellen Som vi såg i föreläsningen om atommodeller lägger sig elektronerna runt en atom i ett gasformigt ämne i väldefinierade energinivåer. Dessa kan vara svåra att beräkna, men är i allmänhet experimentellt
7. Atomfysik väteatomen
Partiklars vågegenskaper Som kunnat konstateras uppträder elektromagnetisk strålning ljus som en dubbelnatur, ibland behöver man beskriva ljus som vågrörelser och ibland är det nödvändigt att betrakta
Strömning och varmetransport/ varmeoverføring
Lektion 8: Värmetransport TKP4100/TMT4206 Strömning och varmetransport/ varmeoverføring Den gul-orange färgen i den smidda detaljen på bilden visar den synliga delen av den termiska strålningen. Värme
Lösningsförslag - Tentamen. Fysik del B2 för tekniskt / naturvetenskapligt basår / bastermin BFL 122 / BFL 111
Linköpings Universitet Institutionen för Fysik, Kemi, och Biologi Avdelningen för Tillämpad Fysik Mike Andersson Lösningsförslag - Tentamen Måndagen den 21:e maj 2012, kl 14:00 18:00 Fysik del B2 för tekniskt
Fotoelektrisk effekt. Experimentuppställning. Förberedelser
Fotoelektrisk effekt Förberedelser Läs i atomfysikboken om fotoelektriska effekten (sid 132 137). Läs igenom hela laborationsinstruktionen. Gör följande uppgifter och lämna lösningarna renskrivna vid laborationens
Observera att uppgifterna inte är ordnade efter svårighetsgrad!
TENTAMEN I FYSIK FÖR n, 13 APRIL 2010 Skrivtid: 8.00-13.00 Hjälpmedel: Formelblad och räknare. Börja varje ny uppgift på nytt blad. Lösningarna ska vara väl motiverade och försedda med svar. Kladdblad
Kvantbrunnar -Kvantiserade energier och tillstånd
Kvantbrunnar -Kvantiserade energier och tillstånd Inledning Syftet med denna laboration är att undersöka kvantiseringen av energitillstånd i kvantbrunnar. Till detta används en java-applet som hittas på
Geometrisk optik. Syfte och mål. Innehåll. Utrustning. Institutionen för Fysik 2006-04-25
Geometrisk optik Syfte och mål Laborationens syfte är att du ska lära dig att: Förstå allmänna principen för geometrisk optik, (tunna linsformeln) Rita strålgångar Ställa upp enkla optiska komponenter
1. a) I en fortskridande våg, vad är det som rör sig från sändare till mottagare? Svara med ett ord. (1p)
Problem Energi. a) I en fortskridande våg, vad är det som rör sig från sändare till mottagare? Svara med ett ord. (p) b) Ge en tydlig förklaring av hur frekvens, period, våglängd och våghastighet hänger
Tentamen i Fotonik - 2014-04-25, kl. 08.00-13.00
FAFF25-2014-04-25 Tentamen i Fotonik - 2014-04-25, kl. 08.00-13.00 FAFF25 - Fysik för C och D, Delkurs i Fotonik Tillåtna hjälpmedel: Miniräknare, godkänd formelsamling (t ex TeFyMa), utdelat formelblad.
Experimentell fysik 2: Kvantfysiklaboration
Experimentell fysik 2: Kvantfysiklaboration Lärare: Hans Starnberg Assistenter: Anna Martinelli Christoph Langhammer Mer info: Klicka er fram till kurshemsidan via Chalmers studieportal Spektroskopi Studier
Lösningsförslag - tentamen. Fysik del B2 för tekniskt / naturvetenskapligt basår / bastermin BFL 122 / BFL 111
Linköpings Universitet Institutionen för Fysik, Kemi, och Biologi Avdelningen för Tillämpad Fysik Mike Andersson Lösningsförslag - tentamen Torsdagen den 27:e maj 2010, kl 08:00 12:00 Fysik del B2 för