Flervariabelanalys I2 Vintern Översikt föreläsningar läsvecka 2
|
|
- Maj Åström
- för 8 år sedan
- Visningar:
Transkript
1 Flervariabelanals I Vintern Översikt öreläsningar läsvecka Denna vecka ägnas nästan uteslutande åt problemet att hitta största och minsta värden till en unktion av lera variabler. Vi kommer att studera tre olika situationer, var och en krävande sitt speciella angreppssätt. ) Lokala ma och min ) Ma och min på kompakta mängder 3) Ma och min med bivillkor För unktioner av en variabel brukar man som bekant lösa ekvationen ' punkter där eventuellt har ett etremvärde. Motsvarigheten ör en unktion av två variabler,,, är att man löser Ekvationssstemet. En lösning till ett sådant sstem kallas ör stationär punkt. ör att hitta En stationär punkt kan vara ett lokalt maimum eller minimum, men också en så kallad sadelpunkt, som är varken eller. Ett tpeempel på en sadelpunkt är origo till unktionen,.
2 Lokala ma och min Adams 3. Vi kommer under veckans örsta öreläsning reda ut hur man hittar lokala etremvärden till en unktion av lera variabler (i de lesta all två), vilket i stor utsträckning går ut på att söka upp stationära punkter och bestämma karaktären hos dessa. Grunden ör denna process läggs i avsnittet om Talorutvecklingar, ett begrepp som naturligtvis även har många andra användningsområden. Karaktären av en stationär punkt avgörs av de tre andraderivatorna på öljande vis: A Låt B och inör den kvadratiska ormen Qh, k Ah Bhk Ck. C Nu gäller (i stort) att om Q har vi ett lokalt maimum. om Q har vi ett lokalt minimum. om Q antar både positiva och negativa värden har vi en sadelpunkt. Eempel: bestäm alla lokala etremvärden till, e Lösning: vi bestämmer örst stationära punkter genom att lösa e e e Ur den övre ekvationen år vi att måste vara ; det använder vi i den nedre ekvationen och år att måste vara. Den enda stationära punkten är alltså,, Anmärkning: bestämning av stationära punkter leder till ett ekvationssstem som nästan alltid är olinjärt. Det inns ingen universell metod att lösa sådana, och i många all är de mcket svåra. Man lckas dock ota genom att aktorisera de ingående uttrcken. Vi bestämmer sedan andraderivatorna: A e B e C e I,, blir A B C e e Q h, k h k e som uppenbarligen är.,, är öljaktligen ett lokalt minimum. Alltså blir Punkten
3 Ma och min över kompakta områden Adams 3. Ibland ställs man inör problemet att hitta ett största eller minsta värde ör en unktion över ett speciikt område. Eempel: hur stort kan bli om? Om det angivna området är kompakt, dvs slutet och begränsat, underlättas undersökningen, t då vet man rån början att ett största eller minsta värde eisterar, och man kan också ganska väl beskriva var man skall leta. Problemet är alltså: sök största och minsta värde ör punkt där ett sådant ma eller min antas måste vara a) en stationär punkt i det inre av D. b) en randpunkt till D. c) en hörnpunkt till D., på det kompakta området D. En Eter hand år man en väande lista av kandidater till ma och min, och när listan är klar behöver man bara jämöra unktionsvärdena. Det är alltså inte nödvändigt att ör varje punkt reda ut huruvida man hittat ett lokalt etremvärde och om det i så all är ma eller min, vilket örkortar arbetet avsevärt. Eempel: Bestäm största och minsta värde till, triangeln med hörn i,,, samt, på Lösning: Vi kallar triangeln ör D och söker örst stationära punkter i det inre av D. 3
4 Vi år två all, beroende på om eller är. i den nedre ekvationen ger i den nedre ekvationen ger.,,, ligger i D. Så vi har tre stationära punkter men bara en, Däreter betraktar vi randen av D. Denna delas upp i triangelns tre sidor. Vi studerar sidan längs den sneda linjen : 3 Sätt h, ; vi söker lösningar till. h 3 3 h i intervallet Detta ger oss två punkter,,, respektive, 3 3 Man studerar sedan de två övriga två sidorna där man på samma sätt hittar 3 punkterna,, respektive, Till sitt gör man en lista med de unna punkterna, tillsammans med tre hörnpunkter:,,, 3 3, 3, 7 6 9,,, Svar: största värde är, minsta värde är 9 Om området inte är kompakt blir undersökningen genast svårare, men man kan ibland genom att betrakta den aktuella unktionen ändå dra de slutsatser som krävs. Eempel: har, e något största eller minsta värde i? Lösning: området är inte kompakt etersom det är obegränsat. Emellertid ser vi på unktionen att, (negativ eponent), att,, samt att lim,. Vi kan alltså dra slutsatsen att värde saknas., har ett största värde, men att minsta
5 Ma och min med bivillkor Adams 3.3 Det tredje och sista allet vi studerar kallas optimering med bivillkor. Här letar man eter största och minsta värde av en unktion på en mängd som i tvåvariabelallet ota utgörs av en kurva och i trevariabelallet av en ta. Man kan till eempel råga sig hur stort kan bli om det gäller att. Bivillkoret kommer att beskrivas av en eller lera ekvationer av tpen g,. Man kan visa att under vissa örutsättningar kommer ma och min att antas i en punkt där gradienterna är parallella. Eempel: Bestäm största och minsta värde till,, z 8 z z. om Lösning: Sätt g,, z z. Bivillkoret kan alltså skrivas g och bildar här ett kompakt område (en ellipsoid), och största och minsta värde kommer att antas i punkter där grad // grad g. Vi skriver grad g grad och år öljande ekvationssstem: z z 8 Vid lösningen av ett sådant sstem vill man gärna eliminera vars värde sällan är intressant. Ur de tre örsta ekvationerna år vi att sista: z z, z ; det sätter vi in i den z och hittar på detta vis två punkter,,, Svar: största värde är,,, minsta värde är,, Man måste vara noga med att kontrollera örutsättningarna innan man börjar räkna med parallella gradienter. Om man till eempel vill hitta största och minsta värde till en unktion ( ) på ett plan,, är området inte längre kompakt (planet är ju obegränsat), och då är det inte ens säkert att största och minsta värde eisterar. Ota måste man i det läget hitta helt andra metoder.
Några kommentarer om optimering under bivillkor Thomas Andrén
Nåra kommentarer om optimerin under bivillkor Thomas Andrén Ett vanlit optimerinsproblem ber på att man vill inna de variabelvärden som ör att en unktion tar ett så stort eller litet värde som möjlit inom
TENTAMEN Kurs: HF1903 Matematik 1, moment TEN2 (analys) Datum: 29 okt 2015 Skrivtid 8:15 12:15
TENTMEN Kurs: HF9 Matematik moment TEN anals Datum: 9 okt 5 Skrivtid 8:5 :5 Eaminator: rmin Halilovic Rättande lärare: Fredrik Bergholm Elias Said Jonas Stenholm För godkänt betg krävs av ma poäng Betgsgränser:
Existensen av största och minsta värde är inte garanterad i det här fallet.
OPTIMERING PÅ ICKE-KOMPAKTA OMRÅDEN. Låt f,..., ) vara en reell funktion med en icke-kompakt definitionsmängd D. ( n Eistensen av största och minsta värde är inte garanterad i det här fallet. För att bestämma
Om för en reellvärd funktion f som är definierad på mängden D gäller följande
OPTIMERING PÅ KOMPAKTA OMRÅDEN. Om för en reellvärd funktion f som är definierad på mängden D gäller följande 1. D är en KOMPAKT mängd. funktionen f är KONTINUERLIG på D då antar f sitt största och sitt
6. Samband mellan derivata och monotonitet
34 6 SAMBAND MELLAN DERIVATA OCH MONOTONITET 6. Samband mellan derivata och monotonitet Antag att funktionen f är deriverbar på ]a,b[. Vi vet att derivatan f ( 0 ) i 0 ]a,b[ är riktningskoefficienten för
Examinator: Armin Halilovic Undervisande lärare: Bengt Andersson, Elias Said, Jonas Stenholm
Tentamen i Matematik, HF93, 9 oktober, kl 8.5.5 Hjälpmedel: Endast ormelblad miniräknare är inte tillåten) För godkänt krävs poäng av möjliga poäng. Betgsgränser: För betg A, B, C, D, E krävs, 9, 6, 3
EXTREMVÄRDESPROBLEM MED BIVILLKOR. LAGRANGES MULTIPLIKATORMETOD. Problem. Bestäm lokala (eller globala) extremvärden till
Etremvärdesproblem med bivillkor. Laranes metod EXTREMVÄRDESPROBLEM MED BIVILLKOR. LAGRANGES MULTIPLIKATORMETOD Problem. Bestäm lokala eller lobala etremvärden till f... n under bivillkoret... n METOD.
Y=konstant V 1. x=konstant. TANGENTPLAN OCH NORMALVEKTOR TILL YTAN z = f ( x, LINEARISERING NORMALVEKTOR (NORMALRIKTNING) TILL YTAN.
Tangentplan Linjära approimationer TANGENTPLAN OCH NORMALVEKTOR TILL YTAN z LINEARISERING NORMALVEKTOR NORMALRIKTNING TILL YTAN Låt z vara en dierentierbar unktion i punkten a b Då är N a b a b en normalvektor
Problem inför KS 2. Problem i matematik CDEPR & CDMAT Flervariabelanalys. KTH -matematik
KTH -matematik Problem i matematik EPR & MAT Flervariabelanalys Problem inför KS.. Låt F(, y, z) + y 3z + och G(, y, z) 3 + y 3 4z +. Visa att i en omgivning av punkten (,, ) definieras genom ekvationerna
n : R vara en reell funktion av n variabler och P 0 en punkt i funktionens definitionsområde D.
EXTREMVÄRDEN OCH EXTREMPUNKTER. LOKALA OCH GLOBALA EXTREMPUNKTER Definition 1. Låt f : R n : R vara en reell funktion av n variabler och P en punkt i funktionens ionsområde D. Vi säger att f har ett lokalt
7 Extremvärden med bivillkor, obegränsade områden
Nr 7, 1 mars -5, Amelia 7 Extremvärden med bivillkor, obegränsade områden Största och minsta värden handlar om en funktions värdemängd. Värdemängden ligger givetvis mellan det största och minsta värdet,
VÄXANDE OCH AVTAGANDE FUNKTIONER. STATIONÄRA(=KRITISKA) PUNKTER. KONVEXA OCH KONKAVA FUNKTIONER. INFLEXIONSPUNKTER
Stationära och infleionspunkter VÄXANDE OCH AVTAGANDE FUNKTIONER STATIONÄRA(KRITISKA) PUNKTER KONVEXA OCH KONKAVA FUNKTIONER INFLEXIONSPUNKTER EXTREMPUNKTER OCH EXTREMVÄRDEN Definition (Globalt maimum)
0 annan metod måste tillämpas **************************************************************** vara en stationär punkt dvs f x
EXTREMVÄRDEN FÖR FUNKTIONER AV TVÅ VARIABLER. Lokala etremvärden för funktioner av två variabler Låt zz = ff(, y vara en funktion från ett område D i RR till R. Låt (aa, b vara en inre punkt av D. Vi säger
INGA HJÄLPMEDEL. Lösningarna ska vara försedda med ordentliga motiveringar. xy dxdy,
LUNS TEKNISKA HÖGSKOLA MATEMATIK TENTAMENSSKRIVNING FLERIMENSIONELL ANALYS --3 kl. 8 3 INGA HJÄLPMEEL. Lösningarna ska vara försedda med ordentliga motiveringar.. Beräkna dubbelintegralen y ddy, där är
Optimering, exempel. Funktionens enda stationära punkt är alltså origo. Den ligger också i det inre av mängden.
Optimering, exempel Exempel 1 (optimering över kompakt mängd) Bestäm största och minsta värdet till funktionen f(x,y) = x 4 + y 4 + 4x 2 + 16 i cirkelskivan {x 2 + y 2 4}. Lösning: Cirkelskivan är kompakt
Sammanfattning TATA43
Sammanfattning TATA43 Innehåll Förkunskap... 2 Beskrivning av mängder... 2 Beskrivning av funktioner/tor... 4 Implicita funktioner... 4 Polära koordinater... 4 Rmdpolära koordinater... 4 Clindriska koordinater...
HF0021 TEN2. Program: Strömberg. Examinator: Datum: Tid: :15-12:15. , linjal, gradskiva. Lycka till! Poäng
ENAMEN Kursnummer: Moment: Program: Rättande lärare: Eaminator: Datum: id: Hjälpmedel: Omattning oc betgsgränser: HF Matematik ör basår I EN ekniskt basår Marina Arakelan, Jonass Stenolm & Håkan Strömberg
Optimering med bivillkor
Kapitel 9 Optimering med bivillkor 9.1. Optimering med bivillkor Låt f(x) vara en funktion av x R. Vi vill optimera funktionen f under bivillkoret g(x) =C (eller bivllkoren g 1 (x) =C 1,..., g k (x) =C
1. Bestäm definitionsmängden och värdemängden till funktionen f(x,y) = 1 2x 2 3y 2. Skissera definitionsmängden, nivålinjerna och grafen till f.
1. Bestäm definitionsmängden och värdemängden till funktionen f(x,y) = 1 2x 2 3y 2. Skissera definitionsmängden, nivålinjerna och grafen till f. 2. Beräkna gränsvärdet (eller visa att det inte finns):
En bijektion mellan två mängder A och B som har ändligt antal element kan finnas endast om mängderna har samma antal element.
Inversa unktion BIJEKTION, INJEKTION, SURJEKTION Allmän terminologi I samband med variabelbyte vid beräkning av integraler har vi en avbildning mellan två mängder A och B, dvs en unktion : A B Vi har otast
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
Institutionen för matematik SF66 Flervariabelanalys Lösningsförslag till tentamen 4-9-6 DEL A. Betrakta följande tre områden i planet: D = {(x, y): x y < 4}, D = {(x, y): x + y }, D 3 = {(x, y): 4x + 3y
Analys av funktioner och dess derivata i Matlab.
Analys av unktioner oc dess derivata i Matlab. 5B47 Envariabelanalys Ludvig Adlercreutz, ME Hans Lindgren, IT Stockolm den 7 mars 7 Kursledare: Karim Dao Inneåll Uppgit 5...3 Uppgit 6...5 Uppgit 7...7
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF626 Flervariabelanals Lösningsförslag till tentamen 24-5-26 DEL A. Skissera definitionsmängden till funktionen f (,) 2 ln(2 ). Är definitionsmängden kompakt? (4 p) Lösning. Termen 2 är definierad när
Kap Globala extremvärden, extremproblem med bivillkor.
Kap 13.2 13.3. Globala extremvärden, extremproblem med bivillkor. A 1001. Sök det största och minsta värdet av funktionen f(x,y) = x 2 + 2y 2 x på cirkeln x 2 + y 2 = 1. A 1002. Vilka värden kan funktionen
SF1626 Flervariabelanalys Tentamen Måndagen den 26 maj, 2014
SF1626 Flervariabelanals Tentamen Måndagen den 26 maj, 214 Skrivtid: 14:-19: Tillåtna hjälpmedel: inga Eaminator: Mattias Dahl Tentamen består av nio uppgifter som vardera ger maimalt fra poäng. Del A
TNK049 Optimeringslära
TNK049 Optimeringslära Clas Rydergren, ITN Föreläsning 9 Icke-linjär optimering Konveitet Metoder ör problem utan bivillkor Optimalitetsvillkor ör icke-linjära problem Icke-linjär programmering Non-linear
Optimering med bivillkor
Optimering med bivillkor Vi ska nu titta på problemet att hitta max och min av en funktionen f(x, y), men inte över alla möjliga (x, y) utan bara för de par som uppfyller ett visst bivillkor g(x, y) =
SF1626 Flervariabelanalys
Föreläsning 9 Institutionen för matematik KTH VT 2018 1 Dagens program Extremvärdesproblem (största och minsta värde) kap 13.2 Extremvärdesproblem med bivillkor Lagranges multiplikatormetod kap 13.3 (+ev
5 Lokala och globala extremvärden
Nr 5, mars -5, Amelia 5 Lokala och globala extremvärden Ienvariabelinträffar lokala extremvärden i punkter där f (x) =, om f är deriverbar och det inte är en randpunkt. Vilken typ av extremvärde det är
Lösningsförslag till Tentamen: Matematiska metoder för ekonomer
Matematiska Institutionen Tentamensskrivning STOKHOLMS UNIVERSITET kurskod: MM Eaminator: Åsa Ericsson 5-- Lösningsförslag till Tentamen: Matematiska metoder för ekonomer aril 5, kl 9:-: (a) Vi använder
Tentamen i Analys B för KB/TB (TATA09/TEN1) kl 14 19
LINKÖPINGS UNIVERSITET Matematiska Institutionen Joakim Arnlind Tentamen i Analys B för KB/TB (TATA9/TEN) 23-8-22 kl 4 9 Inga hjälpmedel är tillåtna. Varje uppgift kan ge maximalt 3 poäng. Betygsgränser:
Definition 1 En funktion (eller avbildning ) från en mängd A till en mängd B är en regel som till några element i A ordnar högst ett element i B.
Deinitionsmängd FUNKTIONER. DEFINITIONSMÄNGD OCH VÄRDEMÄNGD. Deinition En unktion (eller avbildning ) rån en mängd A till en mängd B är en regel som till några element i A ordnar högst ett element i B.
Moment 8.51 Viktiga exempel , 8.34 Övningsuppgifter 8.72, 8.73
Moment 8.5 Viktiga eempel 8.30-8.3, 8.34 Övningsuppgifter 8.7, 8.73 Derivator av högre ordning Hur många gånger kan funktionen f() = 4 + 0 + 5 deriveras? Egentligen hur många gånger som helst! Vi deriverar
VÄXANDE OCH AVTAGANDE FUNKTIONER. STATIONÄRA(=KRITISKA) PUNKTER. KONVÄXA OCH KONKAVA FUNKTIONER. INFLEXIONSPUNKTER
Stationära och infleionspunkter VÄXANDE OCH AVTAGANDE FUNKTIONER STATIONÄRA(KRITISKA) PUNKTER KONVÄXA OCH KONKAVA FUNKTIONER INFLEXIONSPUNKTER 3 VÄXANDE och AVTAGANDE FUNKTIONER i) Om funktionen y f ()
H1009, Introduktionskurs i matematik Armin Halilovic ============================================================
H9, Introduktionskurs i matematik EXTREMPUNKTER ============================================================. EXTREMPUNKTER OCH EXTREMVÄRDEN Definition. (Globalt maimum) Låt vara en punkt definitionsmängden
ARCUSFUNKTIONER. udda. arcsin(x) [-1, 1] varken udda eller jämn udda. arccos(x) [-1, 1] [ 0, π ] arctan(x) alla reella tal π π. varken udda eller jämn
Arcusunktioner ARCUSFUNKTIONER Deinitionsmängd Värdemängd derivatan udda/jämn arcsin() [-, ] [, ] arccos() [-, ] [ 0, ] arctan() alla reella tal (, ) arccot() alla reella tal ( 0, ) + + udda varken udda
DUBBELINTEGRALER. Rektangulära (xy) koordinater
ubbelintegraler. -koordinater UBBELINTEGRALER. Rektangulära ( koordinater efinition. Låt zf(, vara en reell funktion av två variabler och. Vi delar integrationsområde (definitionsområde) i ändligt antal
Sätt t = (x 1) 2 + y 2 + 2(x 1). Då är f(x, y) = log(t + 1) = t 1 2 t t3 + O(t 4 ) 1 2 (x 1) 2 + y 2 + 2(x 1) ) 2 (x 1) 2 + y 2 + 2(x 1) ) 3
Lektion 7, Flervariabelanalys den februari 000 9 Bestäm Taylorserien till funktionen log( + x + y + xy) i punkten (0, 0) Vi kan faktorisera argumentet till logaritmen och förenkla funktionen log( + x +
RELATIONER OCH FUNKTIONER
RELATIONER OCH FUNKTIONER 1 ORDNADE LISTOR (n-tipplar) Ordningen i en mängd spelar ingen roll Exempelvis {1,,3}={3,1,}={1,3,} För att beskriva listor med objekt där ordningen är viktigt använder vi rundparenteser
MATLAB LABORATION INOM KURSEN LINJÄR ALGEBRA MED GEOMETRI
Sidan av Daniel Helén IT, Bengt Ek ME och Christoer Lindqvist IT Innehållsörteckning: Uppgit Uppgit 6 Uppgit 9 Uppgit 4 KTH, ICT orum, 64 4 Kista Inlämningsdatum: 6-- Sidan av D. Helén B. Ek C. Lindqvist
arcsin(x) udda ( x) varken udda eller jämn alla reella tal ( 0, ) 1. y=a 1 x udda/jämn Värdemängd derivatan Definitionsmängd Arcusfunktioner
ARCUSFUNKTIONER Deinitionsmängd Värdemängd arcsin( [-, ] [, ] arccos( [-, ] [00, ] arctan( alla reella tal (, arccot( alla reella tal ( 0, derivatan udda/jämn udda varken udda eller jämn udda varken udda
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF626 Flervariabelanalys Lösningsförslag till tentamen 23-- DEL A. Bestäm en ekvation för tangentplanet i punkten (,, 2 till ellipsoiden 2x 2 +3y 2 +z 2 = 9. (4 p Lösning. Vi uppfattar ytan som nivåytan
Flervariabelanalys E2, Vecka 3 Ht08
Flervariabelanalys E2, Vecka 3 Ht8 Omfattning och innehåll 2.7 Gradienter och riktningsderivator. 2.8 Implicita funktioner 2.9 Taylorserier och approximationer 3. Extremvärden 3.2 Extremvärden under bivillkor
SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A
SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen 16-8-18 DEL A 1. Låt D vara det område ovanför x-axeln i xy-planet som begränsas av cirkeln x + y = 1 samt linjerna y = x och y =
Repetitionsfrågor i Flervariabelanalys, Ht 2009
Repetitionsfrågor i Flervariabelanalys, Ht 2009 Serier 1. Visa att för en positiv serie är summan oberoende av summationsordningen. 2. Visa att för en absolutkonvergent serie är summan oberoende av summationsordningen.
III. Analys av rationella funktioner
Analys 360 En webbaserad analyskurs Grundbok III. Analys av rationella funktioner Anders Källén MatematikCentrum LTH anderskallen@gmail.com III. Analys av rationella funktioner () Introduktion Vi ska nu
Kap Dubbelintegraler.
Kap 4. 4.. ubbelintegraler. A. Beräkna följande dubbelintegraler a. d. (x + y) dxdy, över kvadraten x 3, y. (sin y + y cos x) dxdy, då ges av x π, y π. x cos xy dxdy, då ges av x π, y. xy cos (x + y )
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF166 Flervariabelanalys Lösningsförslag till tentamen 16-8-18 DEL A 1 Låt D vara det område ovanför x-axeln i xy-planet som begränsas av cirkeln x + y = 1 samt linjerna y = x oc y = x Beräkna x-koordinaten
Kap Funktioner av flera variabler, definitionsmängd, värdemängd, graf, nivåkurva. Gränsvärden, kontinuitet.
Kap. 2. 2.2. Funktioner av flera variabler, definitionsmängd, värdemängd, graf, nivåkurva. Gränsvärden, kontinuitet. 20. Skissera definitionsmängden till följande funktioner: A a. f(,) = ln ( 2 2 ) A b.
Tentan , lösningar
UPPALA UNIVERITET MATEMATIKA INTITUTIONEN Bo tyf Flervariabelanalys K, X m.fl. Höstterminen 2008 Tentan 2008-12-16, lösningar 1. Avgör om det finns någon punkt på ytan (x 1) 2 + 2(y 1) 2 + 2z 8 som är
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A. 1. En svängningsrörelse beskrivs av
SF166 Flervariabelanalys Lösningsförslag till tentamen 13-3-1 DEL A 1. En svängningsrörelse beskrivs av ( πx ) u(x, t) = A cos λ πft där amplituden A, våglängden λ och frekvensen f är givna konstanter.
SF1669 Matematisk och numerisk analys II Lösningsförslag till tentamen DEL A
SF669 Matematisk och numerisk anals II Lösningsförslag till tentamen 7-3-5 DEL A. I nedanstående rätvinkliga koordinatsstem är varje ruta en enhet lång. (a) Bestäm de rmdpolära (sfäriska) koordinaterna
När vi ritar grafen kan vi bestämma om funktionen har globalt maximum ( =största värde)
GRAFRITNING För att skissera (rita) grafen till en funktion y f () undersöker vi först några viktiga egenskaper: definitionsmängd, eventuella skärningspunkter med och y-aeln, gränsvärdena f ( ), f ( )
x ( f u 2y + f v 2x) xy = 24 och C = f
Institutionen för Matematik, KTH Torbjörn Kolsrud SF160, Differential- och integralkalkyl II, del 2, flervariabel, för F1. Tentamen onsdag 0 maj 2012, 8.00-1.00 Förslag till lösningar 1. Bestäm tangentplanet
Institutionen för Matematik, KTH Torbjörn Kolsrud
Institutionen för Matematik, KTH Torbjörn Kolsrud 5B 7, ifferential- och integralkalkyl II, del 2, flervariabel, för F. Tentamen fredag 25 maj 27, 8.-3. Förslag till lösningar (ändrat 28/5-7, 29/5-7).
Lektion 3, Flervariabelanalys den 20 januari 2000
Lektion 3, Flervariabelanals den januari.. Bestäm definitionsmängden till funktionen..5 Bestäm definitionsmängden till funktionen f, 4 + 9 36. f, Funktionen är definierad i alla punkter där argumentet
När det gäller en motor kanske man vill maximera verkningsgraden för att hålla nere bränslekostnaden men inte till vilket pris som helst.
Vad är optimering? Man vill hitta ett optimum, när något är bäst. Men att definiera vad som är bäst är inte alltid så självklart. När det gäller en motor kanske man vill maximera verkningsgraden för att
Tentamen i Matematik 1 HF aug 2012 Tid: Lärare: Armin Halilovic
Tentamen i Matematik HF70 6 aug 0 Tid: 3. 7. Lärare: Armin Halilovic Hjälpmedel: Formelblad (Inga andra hjälpmedel utöver utdelat formelblad.) Fullständiga lösningar skall presenteras på alla uppgifter.
TATA42: Föreläsning 2 Tillämpningar av Maclaurinutvecklingar
TATA42: Föreläsning 2 Tillämpningar av Maclaurinutvecklingar Johan Thim 24 mars 29 Entydighet Om vi har ett polynom som approimerar en snäll funktion bra, kan vi då vara säkra på att koefficienterna i
MATEMATIK Datum: Tid: förmiddag. A.Heintz Telefonvakt: Jacob Leander, Tel.:
MATEMATIK Datum: 0-0- Tid: förmiddag Chalmers Hjälpmedel: inga A.Heintz Telefonvakt: Jacob Leander, Tel.: 070-0880 Lösningar till tenta i TMV06/TMV0 Analys och linjär algebra K/Bt/Kf, del A.. Sats. Formulera
Tentamen i TATA43 Flervariabelanalys
Linköpings universitet Matematiska institutionen Kurskod: TATA4 Provkod: TEN Tentamen i TATA4 Flervariabelanalys 5--7 kl 8 Inga hjälpmedel tillåtna inte heller miniräknare 8//6 poäng med minst /4/5 uppgifter
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF66 Flervariabelanals Lösningsförslag till tentamen --9 EL A. En kulle beskrivs approximativt av funktionen 5 hx, ) + 3x + i lämpliga enheter där hx, ) är höjden. Om du befinner dig i punkten,, ) på kullen,
SF1626 Flervariabelanalys Tentamen Torsdagen den 18 augusti 2016
Institutionen för matematik SF166 Flervariabelanalys Tentamen Torsdagen den 18 augusti 16 Skrivtid: 8:-1: Tillåtna jälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger
Tentamen i Analys B för KB/TB (TATA09/TEN1) kl 08 13
LINKÖPINGS UNIVERSITET Matematiska Institutionen Joakim Arnlind Tentamen i Analys B för KB/TB (TATA9/TEN1) 212-5-22 kl 8 13 Inga hjälpmedel är tillåtna. Varje uppgift kan ge maximalt 3 poäng. Betygsgränser:
betecknas = ( ) Symmetriska egenskaper hos derivator av andra ordningen. (Schwarzs sats)
PARTIELLA DERIVATOR Partiella derivator deinieras enom ränsvärden Deinition Låt vara en reellvärd untion deinierad på en öppen mänd n n Ω R Den partiella derivatan av i punten Aa a n Ω med avseende på
= 0 genom att införa de nya
UPPSALA UNIVERSITET Matematiska institutionen Anders Källström Prov i matematik ES, IT, W Flervariabelanals 9 1 19 Skrivtid: 8 13. Inga hjälpmedel. Lösningarna skall åtföljas av förklarande text/figurer.
Tentamensuppgifter, Matematik 1 α
Matematikcentrum Matematik NF Tentamensuppgifter, Matematik 1 α Utvalda och utskrivna av Tomas Claesson och Per-Anders Ivert Aritmetik 1. Bestäm en största gemensam delare till heltalen a) 5431 och 1345,
En normalvektor till g:s nivåyta i punkten ( 1, 1, f(1, 1) ) är gradienten. Lektion 6, Flervariabelanalys den 27 januari z x=y=1.
Lektion 6, Flervariabelanals den 27 januari 2000 1272 Givet funktionen och punkten p 1, 1, beräkna a gradienten till f i p, f, + b en ekvation för tangentplanet till f:s graf i punkten p, fp, c en ekvation
SF1626 Flervariabelanalys Tentamen Tisdagen den 12 januari 2016
Institutionen för matematik SF626 Flervariabelanalys Tentamen Tisdagen den 2 januari 26 Skrivtid: 8:-3: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger
1. Vad är optimering?
. Vad är optimering? Man vill hitta ett optimum, när något är bäst, men att definiera vad som är bäst är inte alltid så självklart. För att kunna jämföra olika fall samt avgöra vad som är bäst måste man
Föreläsning 2: Simplexmetoden. 1. Repetition av geometriska simplexmetoden. 2. Linjärprogrammeringsproblem på standardform.
Föreläsning 2: Simplexmetoden. Repetition av geometriska simplexmetoden. 2. Linjärprogrammeringsproblem på standardform. 3. Simplexalgoritmen. 4. Hur bestämmer man tillåtna startbaslösningar? Föreläsning
SF1646 Analys i flera variabler Tentamen 18 augusti 2011, Svar och lösningsförslag
SF1646 Analys i flera variabler Tentamen 18 augusti 11, 14. - 19. Svar och lösningsförslag (1) Låt f(x, y) = xy ln(x + y ). I vilken riktning är riktningsderivatan till f i punkten (1, ) som störst, och
lim 1 x 2 lim lim x x2 = lim
Moment 8.-8. Viktiga eempel 8.,8.4-6,8.8,8.-,8.5,8.0 Övningsuppgifter Ö8.a, Ö8.cdef,Ö8.a,e,f, Ö8.4cde, Ö8.5d, Ö8.0- Gränsvärden Definition. Funktionen f har gränsvärdet G då går mot om vi kan få f) att
Lösningar till tentamen i Matematik 2, 5B1116, för E och ME samt 5B1136 för I den 1 mars 2004.
Institutionen för matematik. KTH Lösningar till tentamen i Matematik 2, 5B1116, för E och ME samt 5B1136 för I den 1 mars 24. 1. Gausselimination ger: 2 3 5 2 1 5 6 b 1 2 3 3 1 2 3 1 1 1 1 3 b/3 1 8 1
Antag att du går rakt norrut i ett bergslandskap. Ibland går du uppför, ibland nerför men hela tiden rakt mot norr. Vi kallar detta bäring 0.
Karlstads universitet matematik Peter Mogensen Flervariabelanalys 1. Antag att du går rakt norrut i ett bergslandskap. Ibland går du uppför, ibland nerför men hela tiden rakt mot norr. Vi kallar detta
Lokala undersökningar
Kapitel 6 Lokala undersökningar 6.. Lokala extrempunkter: nödvändiga villkor Definition 6.. Låt f = f(x) vara en funktion med definitionsmängd D R n. f sägs att ha ett lokalt maximum i en punkt a D om
3.1 Derivator och deriveringsregler
3. Derivator och deriveringsregler Kort om derivator Eempel derivatans definition deriveringsregler numerisk derivering andraderivatan På höjden km kan lufttrcket mbar beskrivas med funktionen = 03 e 0,
2.5 Partiella derivator av högre ordning.
2.3 Kedjeregeln Pass 4 Antag att: 1. funktionen f( x) = (f 1 (x 1, x 2,..., x n ),..., f m (x 1, x 2,..., x n )) är dierentierbar i N R n ; 2. funktionen g( t) = (g 1 (t 1, t 2,..., t p ),..., g n (t 1,
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF66 Flervariabelanalys Lösningsförslag till tentamen 4-3-7 EL A. Betrakta funktionen f, y y. a Beräkna riktningsderivatan av f i punkten, i den riktning som ges av vektorn 4, 3. p b Finns det någon riktning
Flervariabelanalys: Exempel
Flervariabelanals: Eempel Tomas Sjödin 5 augusti 9 enna sammanställning är i princip teterna ur presentationerna till video-eemplen i ett utskriftvänligt format. et är dock inte nödvändigtvis fullständiga
konstanterna a och b så att ekvationssystemet x 2y = 1 2x + ay = b
Lösningsförslag till Tentamen i Inledande matematik för E, (TMV57), 203-0-26. Till denna uppgift skulle endast lämnas svar, men här ges kortfattade lösningar. a) För vilka tal gäller 2 + > cos2 ()? Lösning:
Lösning till kontrollskrivning 1A
KTH Matematik Olle Stormark Lösning till kontrollskrivning 1A i SF1626 Flervariabelanalys för E, vt 28. Varje uppgift ger maximalt 3 poäng. För godkänt krävs minst 5 poäng sammanlagt. 1. Funktionen f(x,
SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A
SF1626 Flervariabelanalys Lösningsförslag till tentamen 215-3-16 DEL A 1. Låt f(x, y) = 1 x 2 y 2. (a) Skissa nivåkurvorna f(x, y) = c till f för c =, c = 1 och c = 2. (1 p) (b) Beräkna gradf(x, y) i de
SF1626 Flervariabelanalys Tentamen 18 augusti 2011, Svar och lösningsförslag
SF166 Flervariabelanalys entamen 18 augusti 11, 14. - 19. Svar och lösningsförslag 1) Låt fx, y) = xy lnx + y ). I vilken riktning är riktningsderivatan till f i punkten 1, ) som störst, och hur stor är
Lösningsförslag till tentamen Onsdagen den 15 mars 2017 DEL A
Institutionen för matematik SF66 Flervariabelanalys Lösningsförslag till tentamen Onsdagen den 5 mars 7 DEL A. I nedanstående rätvinkliga koordinatsystem är varje ruta en enhet lång. (a) Bestäm de rymdpolära
i punkten ( 1,2,3). b) Bestäm riktningsderivatan av f i punkten ( 1,2) ut ur Scandinavium genom tak och yttervägg [Scandinaviums tak är ytan ( x, y,
Tentamensskrivning i flervariabelanals F (MVE05) och reell matematisk anals F, delb (TMA975), 006-0-0, kl 80-0 i V Telefon: Johan Jansson, tel 076-7860 Låt f (, = 6 a) Ange en ekvation för tangentplanet
Svar till S-uppgifter Endimensionell Analys för I och L
Svar till S-uppgifter Endimensionell Anals för I och L - 00 S 600 = 3 3 5 3850 = 5 7 847 = 7 största gemensamma delare till 600 och 3850: 5 minsta gemensamma multipel till 3850 och 847: 5 7 S a) +6+9 b)
Tentamen i Analys B för KB/TB (TATA09/TEN1) kl 14 19
LINKÖPINGS UNIVERSITET Matematiska Institutionen Joakim Arnlind Tentamen i Anals B för KB/TB (TATA9/TEN1 214-3-21 kl 14 19 Inga hjälpmedel är tillåtna. Varje uppgift kan ge maximalt 3 poäng. Betgsgränser:
TENTAMEN. Rättande lärare: Sara Sebelius & Håkan Strömberg Examinator: Niclas Hjelm Datum: Tid:
TENTAMEN Kursnummer: HF00 Matematik ör basår I Moment: TEN Program: Tekniskt basår Rättane lärare: Sara Sebelius & Håkan Strömberg Eaminator: Niclas Hjelm Datum: Ti: 0-0- 08:00-:00 Hjälpmeel: Formelsamling:
NEWTON-RAPHSONS METOD (en metod för numerisk lösning av ekvationer)
Armi Halilovic: EXTRA ÖVNINGAR Newto Raphsos metod NEWTON-RAPHSONS METOD (e metod ör umeris lösig av evatioer Måga evatioer är besvärligt och iblad äve omöjligt att lösa eat. Då aväder ma umerisa metoder
Moment Viktiga exempel Övningsuppgifter I
Moment Viktiga eempel Övningsuppgifter I Inga Inga Inga Grafritning Vi använder en sjustegsprocess Funktionens definitionsmängd 2 Funktionens skärningspunkter med alarna Asymptoter 4 Stationära punkter
Institutionen för Matematik, KTH Torbjörn Kolsrud
Institutionen för Matematik, KTH Torbjörn Kolsrud B 7, ifferential- och integralkalkyl II, del, flervariabel, för F. Tentamen tisdag 8 augusti 7, 4.-9. Förslag till lösningar.. Om F (x, y, z) x y + y z
Teorifra gor kap
Teorira gor kap. 5. 9.3 Repetition ) Härled ormeln ör partiell integration ur nedanstående samband: d F x g x = x g x + F x g x dx ) Vilken typ av elementär unktion brukar man otast välja att derivera
Kontrollskrivning 1A
Kontrollskrivning 1A i 5B1147 Flervariabelanalys för E, vt 2007. 1. Låt g(t) vara en deriverbar envariabelsfunktion. Visa att tvåvariabelsfunktionen f(x, y) = g(2x y 2 ) satisfierar den partiella differentialekvationen
MATEMATISK INTRODUKTION. Innehåll
MATEMATISK INTRODUKTION Innehåll - Räkneregler för bråk - Räkneregler för potenser - Procenträkning - Ekvationer o Ekvationer och tillvätförlopp - Nuvärdesberäkningar - Funktioner o Linjära funktioner
Lösningsförslag till TMA043/MVE085
MAEMAIK Hjälpmedel: bifogat formelblad, ordlistan från kurswebbsidan, ej räknedosa Chalmers tekniska högskola atum: 988 kl. 4. - 8. entamen elefonvakt: avid Heintz elefon: 76-786 Lösningsförslag till MA4/MVE85
201. (A) Beräkna derivatorna till följande funktioner och förenkla så långt som möjligt: a. x 7 5x b. (x 2 x) 4. x 2 +1 x + 1 x 2 (x + 1) 2 f.
Kap..5,.8.9. Lutning, tangent, normal, derivata, höger och vänsterderivata, differential, allmänna deriveringsregler, kedjeregel, derivator av högre ordning, implicit derivering. Gränsvärden. 0. (A) Beräkna
Optimeringsproblem. 1 Inledning. 2 Optimering utan bivillkor. CTH/GU STUDIO 6 TMV036c /2015 Matematiska vetenskaper
CTH/GU STUDIO TMV3c - 1/15 Matematiska vetenskaper Optimeringsproblem 1 Inledning Vi skall söka minsta eller största värdet hos en funktion på en mängd, dvs. vi skall lösa s.k. optimeringsproblem min f(x)
När det gäller en motor kanske man vill maximera verkningsgraden för att hålla nere bränslekostnaden men inte till vilket pris som helst.
Vad är optimering? Man vill hitta ett optimum när något är bäst. Men att definiera vad som är bäst är inte alltid så självklart. När det gäller en motor kanske man vill maximera verkningsgraden för att