Biomekanik, 5 poäng Kinematik

Storlek: px
Starta visningen från sidan:

Download "Biomekanik, 5 poäng Kinematik"

Transkript

1 Dynamik Handlar om kroppar med föränderlig rörelse. Dynamiken indelas traditionellt i kinematik och kinetik. : Enbart rörelsebeskrining, centrala begrepp är sträcka (inkel) hastighet och acceleration. Kinetik: Till rörelsen kopplas äen krafter och moment liksom massor och masströghetsmoment. Translations- och rotationsrörelser Translation innebär att alla delar på en kropp rör sig på exakt samma sätt. Translationen kan ara Rätlinjig, ds. längs en rät linje kurolinjär eller kroklinjig, ds. i en böjd bana (t ex kastparabel) Rotationsrörelse (inkelrörelse) uppstår då kroppen rör sig kring en rotationsaxel (-punkt). Alla delar a kroppen går lika stor inkel, i samma riktning, på samma tid. Delarna beskrier koncentriska cirklar (cirklar med samma medelpunkt) i ett plan. P. Carlsson 1

2 Ofta är rörelsen en kombination a både translations- och rotationsrörelse. Translationsrörelse uppstår (från ila) då de finns en obalanserad kraft, ds. då Σ F, och rotationsrörelse då det finns ett obalanserat moment, ds. då Σ M. Jämför med illkoren för statisk jämikt: Σ F = och Σ M =! innebär enbart rörelsebeskrining. centrala begrepp är sträcka (inkel) hastighet och acceleration. sträckor, hastigheter och accelerationer är ektorer Rätlinjig rörelse Det enklaste fallet studeras först: Rätlinjig rörelse för en partikel (den kropp som studeras antas ha försumbar utsträckning). Vi lägger in en koordinataxel längs den linje som partikeln rör sig utefter. P. Carlsson

3 Hastighet Medelhastighet = Δs Δt Om i låter punkten P närma sig P kan i låta medelhastigheten,ia en gränsöergång, gå öer i det man kallar partikelns hastighet id tiden t, nämligen Δs lim Δt = Δ t eller, om s är en derierbar funktion a tiden t: = ds Inom mekaniken är det anligt med ett förkortat skrisätt för olika tidsderiator. = ds = s& Tidsderiator betecknas alltså med en prick oanför aktuell storhet. P. Carlsson 3

4 Acceleration Acceleration säger hur snabbt hastigheten arierar då partikeln rör sig. Vi får på samma sätt som förut medelacceleration: a = Δ Δt Och, genom en gränsöergång där tiden Δt går mot noll: a Δ lim Δt = Δ t = d = & Sedan tidigare et i att = ds ilket ger a d d ds = = d s = = & s Obserera att a och inte behöer ha samma tecken, de kan alltså ara motriktade. Hittills har partikelns läge s, dess hastighet och dess acceleration a setts som funktioner a tiden t. Vi har alltså att s= s(t), =(t) os. Ser i istället hastigheten som en funktion a sträckan s gäller =(s) och för accelerationen a att a=a(s), där s i sin tur är en funktion a tiden t. Vi får då de sammansatta sambanden = a = a ( s() t ) ( s() t ) P. Carlsson 4

5 Kedjeregeln för deriering ger då följande uttryck för accelerationen a: d d ds d a = = = = ds ds Uttrycken d a = = ds 1 d ds ( ) 1 d ds ( ) är mycket anändbara id lösning a olika problem. Grafik framställning Allt detta gäller för goyckliga uttryck för hastigheter och accelerationer! P. Carlsson 5

6 Ex 1. När luftmotståndet inkluderas blir y- komponenten a accelerationen för en boll som rör sig i ertikal led: a u = & y = g k där k är en positi konstant och är hastigheten i m/s. Om bollen kastas uppåt med en hastighet a = 3 m/s, beräkna hur högt den kommer från marken innan den änder igen. Hur högt skulle den komma om luftmotståndet försummades? Antag att k =,6 m -1 och att g är konstant. Sar: k h = 1 ln(1 + ) = 36, 5m, utan luftmotstånd h = 45,9 m k g Ex. Ett jet-driet passagerarplan landar med en hastighet a km/h och har 6 m på sig att minska sin hastighet till 3 km/h. Beräkna hur stor genomsnittlig acceleration a som kräs för åstadkomma inbromsningen. Sar: a = -,51 m/s P. Carlsson 6

7 Luftmotstånd - Vätskemotstånd Luftmotstånd En generell (något förenklad) formel för luftmotståndet ges a F L 1 = AP C D ρ där F L är luftmotstånd A P är den projicerade arean i rörelseriktningen är hastigheten C D är en konstant som representerar strömlinjeformen ρ är mediets densitet (täthet) Oanstående fall kan i en del fall äen anändas för ätskemotstånd. Vätskemotstånd Vätskemotstånd beskris ofta med sambandet: a ätska = k där k är en positi konstant. För den fritt fallande kulan i röret gäller t.ex. a y = g k P. Carlsson 7

8 Konstant acceleration Vid konstant acceleration a kan följande samband härledas: = + a t Sträckan kroppen färdas på tiden t med konstant acceleration a fås ur formeln s = s 1 + t + a t Dessutom gäller: = o + a( s s ) Obs att oanstående endast gäller id konstant acceleration! Ex 3. En mc-polis startar från ila id A, tå sekunder efter det att bilen har passerat med den konstanta hastigheten 1 km/h. Om polismannen accelererar med konstant acceleration a = 6 m/s till dess han når maxhastigheten 15 km/h och sedan behåller den hastigheten till dess han kommit ikapp bilen, beräkna hur lång sträcka s har kör under omkörningsmanöern. Sar: s = 911 m P. Carlsson 8

9 Ex 4. Ett tunnelbanetåg går mellan tå stationer med ett accelerationsförlopp enligt figuren. Bestäm a) det tidsinterall Δt, under ilket accelerationen är m/s. b) aståndet s mellan stationerna. Det förutsätts att tåget stannar helt id de båda stationerna. Sar: a) Δt = 6 s, b) s = 416 m P. Carlsson 9

10 Kaströrelse Kaströrelse återkommer i flera idrotter (om luftmotståndet försummas!). När kroppen lämnat marken följer tyngdpunkten obönhörligt kastparabelns kura. P. Carlsson 1

11 Kaströrelsen sätts ihop a en ågrät rörelse med konstant hastighet och en lodrät rörelse med konstant acceleration (hastighetens resultant i tangentens riktning). Bestämmande för rörelsens förlopp är utgångshastigheten och kastinkeln Θ. I figuren ser i att: a = a x y = g x y = = o o cos Θ sin Θ Sätts detta i de allmänna formlerna + a t s = 1 = s + t + a t får i (s = ): (Begynnelsehastigheter) x y = = cos Θ sin Θ g t x = y = cos Θ t sin Θ t 1 g t Kastidden fås ur uttrycket x = sin Θ g P. Carlsson 11

12 Jämförande bilder mellan en boll som faller rakt ned och en boll som fått en konstant hastighet åt höger samtidigt med att den börjar falla. Slutsatser som kan dras ur figuren: Bollarna faller lika snabbt ertikalt Rörelsen i horisontell och ertikal ledd sker oberoende a arandra En bolls bana sedd med olika referensramar P. Carlsson 1

13 Ex 5. En längdhoppare kommer till astampet id A med en horisontell hastighet x a 1 m/s. Bestäm den ertikala hastighetskomponenten y som hans tyngdpunkt måste ha för att genomföra hoppet i figuren. Hur stor sträcka h höjer sig hans tyngdpunkt under hoppet? Sar: y = 3,68 m/s, h =,69 m Ex 6. En åghalsig motorcyklist ska pröa att göra ett hopp enligt figuren nedan. Om jordaccelerationen g = 9,81 m/s, beräkna a) Hur stor utgångshastighet han måste ha för att kunna genomföra loppet b) Hur stor nedslagshastigheten f blir c) Vilken lutning backen bör ha id slutet a loppet för att ge ett mjukt nedslag Sar: a) = 37,44 m/s, b) f = 45,7 m/s, c) Θ = 35 o P. Carlsson 13

14 Maximal kastlängd Optimal utkastinkel är kopplad till utkasthöjden (och nedslagshöjden) Optimal utkastinkel = inkel för att få maximal kast- (hopp) längd etc. Samma kastlängd kan uppnås med tå olika utkastinklar! Samma utkasthastighet förutsätts! Inerkan a luftmotstånd P. Carlsson 14

15 Roterande rörelse Dierse samband Samband båglängd och inkel Θ s = Θr 1 ar = 36 gader = π radianer. Hastighetssamband fås efter deriering med aseende på tiden ds = r dθ = rω där ω är inkelhastigheten [rad/s]. Andra anliga mått på rotationshastigheten är t.ex. artalet n [ar/min]. Accelerationssamband fås efter ytterligare en deriering d dω = r a = rα Där α är inkelaccelerationen [rad/s ] Analogier mellan linjär och roterande rörelse (konstant a) Linjär rörelse = s t Roterande rörelse ω = Θ t = + a t = ω + α t ω = + a s ω = ω + α Θ s = 1 t + a t Θ = ω 1 t + α t P. Carlsson 15

16 Ex 7. En släggkastare sänger släggan i en cirkel med radien r = 1,4 m. Släggan släpps från ett läge 1,5 m oanför marken med utkastikeln 45 o, rör sig i en parabelbana och slår ner 68 m horisontellt från utgångspunkten. Beräkna släggans utgångshastighet, inkelhastighet id utkastet samt medelinkelaccelerationen om han roterat,5 ar från stillastående innan han nått max. inkelhastighet. Sar: = 5,55 m/s, ω = 18,5 rad/s, α = 1,6 rad/s P. Carlsson 16

17 Kroklinjig rörelse Vi talar här om en mer generell rörelse med arierande krökningsradier under rörelsen. Hastigheten under rörelsen kommer (som alltid) att ara riktad i tangentens riktning Accelerationen isar sig ara mer komplex, analys kommer att isa att det id rörelse i en krökt bana alltid kommer att finnas en accelerationskomponent i normalens riktning Detta gäller äen för rotationsrörelse med konstant hastighet! Naturliga riktningar Beskriningen a rörelsen (och därmed ekationerna) förenklas om man håller sig till de naturliga n- och t-riktningarna (normal- och tangentialriktningar). Under rörelsen förlopp passerar en partikel punkterna A, B och C. Som framgår a figuren kommer n- och t-riktningarna att ariera under banan. I arje punkt partikeln passerar under banan kan man lägga in en cirkel med en krökningsradie som öerensstämmer med banans krökning ρ i just den punkten. Det erkar alltså som att i kan analysera uppkomna accelerationer som de accelerationer en ren cirkelrörelse framkallar, och sedan öerföra resultaten till en goycklig rörelse, liknande den i figuren. Att obserera är att en acceleration inte bara behöer innebära att hastighetens belopp ändras. Det räcker att hastighetens riktning ändras, äen om hastigheten, till beloppet, fortfarande är lika stor! P. Carlsson 17

18 Härledning a accelerationskomponenter i n- och t-riktningar Vi antar att rörelsen under en iss punkt a banan beskris a cirkelrörelsen i figuren. Under analysen studerar i en smal tårtbit a cirkeln (obs att en sådan cirkel en momentan giltighet innan rörelsen beskris a en ny cirkel med annan radie och annat centrum). Vi ska isa att följande ekationer gäller för accelerationerna i n- och t-riktningarna: a a t n = d = r = rω dθ där ω = = Θ&, ds. inkelhastigheten som mäts i rad/s. P. Carlsson 18

19 Ex 8. För att simulera tyngdlöst tillstånd i kabinen flyger ett jettransportplan i en ertikal kura med en konstant hastighet a 8 km/h som isas i figuren. I ilken takt (inkeländringshastighet β & ) ska piloten låta synranden sjunka för att uppnå ett tyngdlöst tillstånd? Manöern sker på en höjd a 8 km öer marken och graitationen anses ara 9,79 m/s på den höjden. Jordens medeldiameter är 1.74 km. Sar: & β =,441 rad / s eller,5 grader/s Ex 9. Bilen C ökar sin hastighet med den konst. accelerationen 1,5 m/s medan den rundar kuran i figuren. Om storleken på den totala accelerationen är,5 m/s id punkt A, och kurans radie är m i den punkten, beräkna hur stor hastighet bilen har id A. Sar: = m/s eller 7 km/h P. Carlsson 19

m 1 + m 2 v 2 m 1 m 2 v 1 Mekanik mk, SG1102, Problemtentamen 2013 08 20, kl 14-18 KTH Mekanik 2013 08 20

m 1 + m 2 v 2 m 1 m 2 v 1 Mekanik mk, SG1102, Problemtentamen 2013 08 20, kl 14-18 KTH Mekanik 2013 08 20 KTH Mekanik 2013 08 20 Mekanik mk, SG1102, Problemtentamen 2013 08 20, kl 14-18 Uppgift 1: En bil börjar accelerera med ẍ(0) = a 0 från stillastående. Accelerationen avtar exponentiellt och ges av ẍ(t)

Läs mer

7,5 högskolepoäng. Provmoment: tentamen Ladokkod: TT081A Tentamen ges för: Högskoleingenjörer årskurs 1. Tentamensdatum: 2015-06-04 Tid: 9.00-13.

7,5 högskolepoäng. Provmoment: tentamen Ladokkod: TT081A Tentamen ges för: Högskoleingenjörer årskurs 1. Tentamensdatum: 2015-06-04 Tid: 9.00-13. Mekanik romoment: tentamen Ladokkod: TT81A Tentamen ges för: Högskoleingenjörer årskurs 1 7,5 högskolepoäng Tentamensdatum: 15-6-4 Tid: 9.-13. Hjälpmedel: Hjälpmedel id tentamen är hysics Handbook (Studentlitteratur),

Läs mer

Modul 6: Integraler och tillämpningar

Modul 6: Integraler och tillämpningar Institutionen för Matematik SF65 Envariabelanalys Läsåret 5/6 Modul 6: Integraler och tillämpningar Denna modul omfattar kapitel 6. och 6.5 samt kapitel 7 i kursboken Calculus av Adams och Essex och undervisas

Läs mer

Introduktion till Biomekanik, Dynamik - kinematik VT 2006

Introduktion till Biomekanik, Dynamik - kinematik VT 2006 Dynamik Handlar om kroppar med föränderlig rörelse. Dynamiken indelas traditionellt i kinematik och kinetik. Kinematik: Enbart rörelsebeskrivning, centrala begrepp är sträcka (vinkel) hastighet och acceleration.

Läs mer

Tentamen i SG1102 Mekanik, mindre kurs

Tentamen i SG1102 Mekanik, mindre kurs Tentamen i SG1102 Mekanik, mindre kurs 2014-03-20 Var noga med att skilja på skalärer och vektorer. Rita tydliga figurer och motivera lösningarna väl. Enda tillåtna hjälpmedel är papper, penna, linjal

Läs mer

När jag har arbetat klart med det här området ska jag:

När jag har arbetat klart med det här området ska jag: Kraft och rörelse När jag har arbetat klart med det här området ska jag: kunna ge exempel på olika krafter och kunna använda mina kunskaper om dessa när jag förklarar olika fysikaliska fenomen, veta vad

Läs mer

m/s3,61 m/s, 5,0 s och 1,5 m/s 2 får vi längden av backen, 3,611,5 5,011,1 m/s11,1 3,6 km/h40,0 km/h

m/s3,61 m/s, 5,0 s och 1,5 m/s 2 får vi längden av backen, 3,611,5 5,011,1 m/s11,1 3,6 km/h40,0 km/h Lina Rogström linro@ifm.liu.se Lösningar till Exempeltentamen, HT014, Fysik 1 för Basåret, BFL101 Del A A1. (p) En cyklist passerar ett backkrön. På backkrönet har han hastigheten 13 km/h och han accelererar

Läs mer

Tentamen i Fysik A, Tekniskt-Naturvetenskapligt basår

Tentamen i Fysik A, Tekniskt-Naturvetenskapligt basår Tentamen i Fysik A, Tekniskt-Naturvetenskapligt basår Datum: 05-01-20 Skrivtid: 16.00-22.00 Hjälpmedel: Räknare, formelsamling Lärare: A. Gustafsson, M. Hamrin, L. Lundmark och L-E. Svensson Namn: Grupp:

Läs mer

SF1620 Matematik och modeller

SF1620 Matematik och modeller KTH Teknikvetenskap, Institutionen för matematik 1 SF160 Matematik och modeller 007-09-10 Andra veckan Trigonometri De trigonometriska funktionerna och enhetscirkeln Redan vid förra veckans avsnitt var

Läs mer

Inlämningsuppgift: Introduktionskurs

Inlämningsuppgift: Introduktionskurs Inlämningsuppgift: Introduktionskurs Förnamn Efternamn Grupp 1, kandfys Uppsala Universitet 23 september 213 Sammanfattning Målet med rapporten är att visa att jag behärskar något ordbehandlingsprogram.

Läs mer

Sammanfattning av kursdag 2, 2013-03-07 i Stra ngna s och 2013-03-12 Eskilstuna

Sammanfattning av kursdag 2, 2013-03-07 i Stra ngna s och 2013-03-12 Eskilstuna Sammanfattning av kursdag 2, 2013-03-07 i Stra ngna s och 2013-03-12 Eskilstuna Sammanfattning och genomgång av lektion 1 samt hemläxa. -Hur ta ut en position i sjökortet? Mät med Passaren mellan positionen

Läs mer

4-6 Trianglar Namn:..

4-6 Trianglar Namn:.. 4-6 Trianglar Namn:.. Inledning Hittills har du arbetat med parallellogrammer. En sådan har fyra hörn och motstående sidor är parallella. Vad händer om vi har en geometrisk figur som bara har tre hörn?

Läs mer

David Wessman, Lund, 30 oktober 2014 Statistisk Termodynamik - Kapitel 5. Sammanfattning av Gunnar Ohléns bok Statistisk Termodynamik.

David Wessman, Lund, 30 oktober 2014 Statistisk Termodynamik - Kapitel 5. Sammanfattning av Gunnar Ohléns bok Statistisk Termodynamik. Sammanfattning av Gunnar Ohléns bok Statistisk Termodynamik. 1 Jämviktsvillkor Om vi har ett stort system som består av ett litet system i kontakt med en värmereservoar. Storheter för det lilla systemet

Läs mer

Exempelsamling :: Vektorintro V0.95

Exempelsamling :: Vektorintro V0.95 Exempelsamling :: Vektorintro V0.95 Mikael Forsberg :: 2 noember 2012 1. eräkna summan a ektorerna (1, 2) och (3, 1) mha geometrisk addition 2. Tå ektorer u = ( 2, 3) och adderas och blir ektorn w = (1,

Läs mer

4-3 Vinklar Namn: Inledning. Vad är en vinkel?

4-3 Vinklar Namn: Inledning. Vad är en vinkel? 4-3 Vinklar Namn: Inledning I det här kapitlet skall du lära dig allt om vinklar: spetsiga, trubbiga och räta vinklar. Och inte minst hur man mäter vinklar. Att mäta vinklar och sträckor är grundläggande

Läs mer

6.2 Partikelns kinetik - Tillämpningar Ledningar

6.2 Partikelns kinetik - Tillämpningar Ledningar 6.2 Partikelns kinetik - Tillämpningar Ledningar 6.13 Det som känns som barnets tyngd är den uppåtriktade kraft F som mannen påverkar barnet med. Denna fås ur Newton 2 för barnet. Svar i kilogram måste

Läs mer

Volymer av n dimensionella klot

Volymer av n dimensionella klot 252 Volymer av n dimensionella klot Mikael Passare Stockholms universitet Ett klot med radien r är mängden av punkter vars avstånd till en given punkt (medelpunkten) är högst r. Låt oss skriva B 3 (r)

Läs mer

Mätning av effekter. Vad är elektrisk effekt? Vad är aktiv-, skenbar- reaktiv- medel- och direkteffekt samt effektfaktor?

Mätning av effekter. Vad är elektrisk effekt? Vad är aktiv-, skenbar- reaktiv- medel- och direkteffekt samt effektfaktor? Mätning av effekter Vad är elektrisk effekt? Vad är aktiv-, skenbar- reaktiv- medel- och direkteffekt samt effektfaktor? Denna studie ger vägledning om de grundläggande parametrarna för 3-fas effektmätning.

Läs mer

4-9 Rymdgeometri Namn:.

4-9 Rymdgeometri Namn:. 4-9 Rymdgeometri Namn:. Inledning Rymden har alltid fascinerat. Men vad menas med rymd i matematisk eller geometrisk mening? Här skall du få studera 3- dimensionella figurer och hur man beräknar volymen

Läs mer

Institutionen för matematik Envariabelanalys 1. Jan Gelfgren Datum: Fredag 9/12, 2011 Tid: 9-15 Hjälpmedel: Inga (ej miniräknare)

Institutionen för matematik Envariabelanalys 1. Jan Gelfgren Datum: Fredag 9/12, 2011 Tid: 9-15 Hjälpmedel: Inga (ej miniräknare) Umeå universitet Dugga i matematik Institutionen för matematik Envariabelanalys 1 och matematisk statistik IE, ÖI, Stat. och Frist. Jan Gelfgren Datum: Fredag 9/12, 2011 Tid: 9-15 Hjälpmedel: Inga (ej

Läs mer

3.1 Linjens ekvation med riktningskoefficient. y = kx + l.

3.1 Linjens ekvation med riktningskoefficient. y = kx + l. Kapitel Analytisk geometri Målet med detta kapitel är att göra läsaren bekant med ekvationerna för linjen, cirkeln samt ellipsen..1 Linjens ekvation med riktningskoefficient Vi utgår från ekvationen 1

Läs mer

Projekt benböj på olika belastningar med olika lång vila

Projekt benböj på olika belastningar med olika lång vila Projekt benböj på olika belastningar med olika lång vila Finns det några skillnader i effektutveckling(kraft x hastighet) mellan koncentriskt och excentriskt arbete på olika belastningar om man vilar olika

Läs mer

INSTITUTIONEN FÖR FYSIK OCH ASTRONOMI. Mekanik baskurs, Laboration 1. Bestäm tyngdaccelerationen på tre olika sätt

INSTITUTIONEN FÖR FYSIK OCH ASTRONOMI. Mekanik baskurs, Laboration 1. Bestäm tyngdaccelerationen på tre olika sätt INSTITUTIONEN FÖR FYSIK OCH ASTRONOMI Mekanik baskurs, Laboration 1 Läge, hastighet och acceleration Bestäm tyngdaccelerationen på tre olika sätt Uppsala 2015-09-29 Instruktioner Om laborationen: Innan

Läs mer

Stockholms Tekniska Gymnasium 2014-11-19. Prov Fysik 2 Mekanik

Stockholms Tekniska Gymnasium 2014-11-19. Prov Fysik 2 Mekanik Prov Fysik 2 Mekanik För samtliga uppgifter krävs om inte annat står antingen en tydlig och klar motivering eller fullständig lösning och att det går att följa lösningsgången. Fråga 1: Keplers tredje lag

Läs mer

Rallylydnad Nybörjarklass

Rallylydnad Nybörjarklass Rallylydnad_Mom_Nyborjarklass.doc Remiss på Nya beskrivningar, börjar gälla 2017-01-01 Sida 1 (5) Mom nr Skylt Rallylydnad Nybörjarklass Beskrivning Start Här börjar banan. Startpositionen vid skylten

Läs mer

Kurs: HF1012, Matematisk statistik Lärare: Armin Halilovic Datum: Måndag 30 mars 2015 Skrivtid: 8:15-10:00

Kurs: HF1012, Matematisk statistik Lärare: Armin Halilovic Datum: Måndag 30 mars 2015 Skrivtid: 8:15-10:00 KONTROLLSKRIVNING 1 version A Kurs: HF1012, Matematisk statistik Lärare: Armin Halilovic Datum: Måndag 30 mars 2015 Skrivtid: 8:15-10:00 Tillåtna hjälpmedel: Miniräknare av vilken typ som helst. Förbjudna

Läs mer

Lathund, procent med bråk, åk 8

Lathund, procent med bråk, åk 8 Lathund, procent med bråk, åk 8 Procent betyder hundradel, men man kan också säga en av hundra. Ni ska kunna omvandla mellan bråkform, decimalform och procentform. Nedan kan ni se några omvandlingar. Bråkform

Läs mer

Möbiustransformationer.

Möbiustransformationer. 224 Om Möbiustransformationer Torbjörn Kolsrud KTH En Möbiustransformation är en komplexvärd funktion f av en komplex variabel z på formen f(z) = az + b cz + d. Här är a b c och d komplexa tal. Ofta skriver

Läs mer

Repetition av cosinus och sinus

Repetition av cosinus och sinus Repetition av cosinus och sinus Av Eric Borgqvist, 00-08-6, Lund Syftet med detta dokument är att få en kort och snabb repetition av vissa egenskaper hos de trigonometriska funktionerna sin och cos. Det

Läs mer

2005-01-31. Hävarmen. Peter Kock

2005-01-31. Hävarmen. Peter Kock 2005-01-31 Hävarmen Kurs: WT0010 Peter Kock Handledare: Jan Sandberg Sammanfattning Om man slår upp ordet hävarm i ett lexikon så kan man läsa att hävarm är avståndet mellan kraften och vridningspunkten.

Läs mer

Tentamen i mekanik TFYA16

Tentamen i mekanik TFYA16 TEKNISKA HÖGSKOLAN I LINKÖPING Institutionen ör Fysik, Kei och Biologi Galia Pozina Tentaen i ekanik TFYA16 Tillåtna Hjälpedel: Physics Handbook utan egna anteckningar, aprograerad räknedosa enligt IFM:s

Läs mer

SEPARABLA DIFFERENTIALEKVATIONER

SEPARABLA DIFFERENTIALEKVATIONER SEPARABLA DIFFERENTIALEKVATIONER En differentialekvation (DE) av första ordningen sägs vara separabel om den kan skrivas på formen P ( y) Q( ) () Den allmänna lösningen till () erhålles genom att integrera

Läs mer

Tentamen i Mekanik (FK2002, FK2005, FK2006)

Tentamen i Mekanik (FK2002, FK2005, FK2006) Tentamen i Mekanik (FK00, FK005, FK006) 013-10-04 kl 9-14 i FR4, AlbaNova. 1. En astronaut som väger 60 kg behöver konsultera sin fysikbok under en rymdpromenad. Hennes kollega kastar boken, som väger

Läs mer

Scoot Boot - frågor & svar

Scoot Boot - frågor & svar Scoot Boot - frågor & svar Hur vet jag att jag har rätt storlek? När du satt på bootsen så försöker du rotera på dem. Vrid på bootsen åt båda håll. Om de rör sig MINDRE än 5 mm så bör din Scootboot ha

Läs mer

Kapitel 6. f(x) = sin x. Figur 6.1: Funktionen sin x. 1 Oinas-Kukkonen m.fl. Kurs 6 kapitel 1

Kapitel 6. f(x) = sin x. Figur 6.1: Funktionen sin x. 1 Oinas-Kukkonen m.fl. Kurs 6 kapitel 1 Kapitel 6 Gränsvärde 6. Definition av gränsvärde När vi undersöker gränsvärdet av en funktion undersöker vi vad som händer med funktionsvärdet då variabeln, x, går mot ett visst värde. Frågeställningen

Läs mer

Facit med lösningsförslag kommer att anslås på vår hemsida www.ebersteinska.norrkoping.se. Du kan dessutom få dem via e-post, se nedan.

Facit med lösningsförslag kommer att anslås på vår hemsida www.ebersteinska.norrkoping.se. Du kan dessutom få dem via e-post, se nedan. Detta häfte innehåller uppgifter från fyra olika områden inom matematiken. Meningen är att de ska tjäna som en självtest inför gymnasiet. Klarar du dessa uppgifter så är du väl förberedd inför gymnasiestudier

Läs mer

Pesach Laksman är lärarutbildare i matematik och matematikdidaktik vid Malmö högskola.

Pesach Laksman är lärarutbildare i matematik och matematikdidaktik vid Malmö högskola. 111a Geometri med snöre Pesach Laksman är lärarutbildare i matematik och matematikdidaktik vid Malmö högskola. Areabegreppet När elever får frågan vad area betyder ges mestadels svar som antyder hur man

Läs mer

konstanterna a och b så att ekvationssystemet x 2y = 1 2x + ay = b 2 a b

konstanterna a och b så att ekvationssystemet x 2y = 1 2x + ay = b 2 a b Tentamen i Inledande matematik för V och AT, (TMV25), 20-0-26. Till denna uppgift skulle endast lämnas svar, men här ges kortfattade lösningar. a) Bestäm { konstanterna a och b så att ekvationssystemet

Läs mer

x 2 + px = ( x + p 2 x 2 2x = ( x + 2

x 2 + px = ( x + p 2 x 2 2x = ( x + 2 Inledande kurs i matematik, avsnitt P.3 P.3. Bestäm en ekvation för cirkeln med mittpunkt i (0, 0) och radie 4. Med hjälp av kvadratkompletteringsformeln + p = ( + p ) ( p ) En cirkel med mittpunkt i (

Läs mer

Träningsprogram - sommaren 2010

Träningsprogram - sommaren 2010 Träningsprogram - sommaren 2010 ALLMÄNT OM TRÄNINGSPROGRAMMET Det finns två huvudsakliga syften med detta träningsprogram. Det första och kanske viktigaste syftet, är att det ska hålla dig borta från skador

Läs mer

Träning i bevisföring

Träning i bevisföring KTHs Matematiska Cirkel Träning i bevisföring Andreas Enblom Institutionen för matematik, 2005 Finansierat av Marianne och Marcus Wallenbergs Stiftelse 1 Mängdlära Här kommer fyra tips på hur man visar

Läs mer

1. Frekvensfunktionen nedan är given. (3p)

1. Frekvensfunktionen nedan är given. (3p) TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF14 TEN 11 kl 1.15-.15 Hjälpmedel: Formler och tabeller i statistik, räknedosa Fullständiga lösningar erfordras till samtliga uppgifter. Lösningarna skall

Läs mer

Axiell Arena. Samarbeta om bilder Regionbiblioteket i Kalmar län

Axiell Arena. Samarbeta om bilder Regionbiblioteket i Kalmar län Axiell Arena Samarbeta om bilder Regionbiblioteket i Kalmar län Introduktion Det finns möjlighet att samarbeta om bilder i Axiell Arena. Samarbetet kan läggas upp på olika sätt, men i denna lathund beskrivs

Läs mer

BÅGSKYTTEFÖRBUNDET MEMBER OF SVERIGES RIKSIDROTTSFÖRBUND AND FÉDERATION INTERNATIONALE DE TIR A L ARC

BÅGSKYTTEFÖRBUNDET MEMBER OF SVERIGES RIKSIDROTTSFÖRBUND AND FÉDERATION INTERNATIONALE DE TIR A L ARC VAD ÄR EN SKJUTPLAN?? En skjutplan kan både ses som en lista av moment som ska gås igenom eller som ett cykliskt beteende som ska upprepas vid varje skott oavsett vad som hänt tidigare. Själva momenten

Läs mer

Manual Gamla Akka-plattan

Manual Gamla Akka-plattan Manual Gamla Akka-plattan Manual för Akkaplattan Figur 1 1. 1. Uttag för laddare. Akkaplattan bör stå på laddning när den inte används men inte under för långa perioder dvs. flera veckor i sträck. Figur

Läs mer

Bestäm den sida som är markerad med x.

Bestäm den sida som är markerad med x. 7 trigonometri Trigonometri handlar om sidor och inklar i trianglar. Ordet kommer från grekiskans trigonon (tre inklar) och métron (mått). Trigonometri har anänts under de senaste 2000 åren inom astronomi,

Läs mer

Omvandla Vinklar. 1 Mattematiskt Tankesätt

Omvandla Vinklar. 1 Mattematiskt Tankesätt Omvandla Vinklar 1 Mattematiskt Tankesätt (Kan användas till mer än bara vinklar) 2 Omvandla med hjälp av Huvudräkning (Snabbmetod i slutet av punkt 2) 3 Omvandla med Miniräknare (Casio) Läs denna Först

Läs mer

Facit åk 6 Prima Formula

Facit åk 6 Prima Formula Facit åk 6 Prima Formula Kapitel 3 Algebra och samband Sidan 95 1 a 12 cm (3 4 cm) b Han vet inte att uttrycket 3s betyder 3 s eller s + s + s 2 a 5x b 6y c 12z 3 a 30 cm (5 6 cm) b 30 cm (6 5 cm) Sidan

Läs mer

OM KOMPLEXA TAL. 1 Om a är ett positivt reellt tal så betecknar a det positiva reella tal vars kvadrat är a men det är

OM KOMPLEXA TAL. 1 Om a är ett positivt reellt tal så betecknar a det positiva reella tal vars kvadrat är a men det är OM KOMPLEXA TAL Inledning. Vilka olika talområden finns det? Jag gör en snabb genomgång av vad ni tidigare stött på, bl.a. för att repetera standardbeteckningarna för de olika talmängderna. Positiva heltal,

Läs mer

1 Navier-Stokes ekvationer

1 Navier-Stokes ekvationer Föreläsning 5. 1 Navier-Stokes ekvationer I förra föreläsningen härledde vi rörelsemängdsekvationen Du j Dt = 1 τ ij + g j. (1) ρ x i Vi konstaterade också att spänningstensorn för en inviskös fluid kan

Läs mer

a n = A2 n + B4 n. { 2 = A + B 6 = 2A + 4B, S(5, 2) = S(4, 1) + 2S(4, 2) = 1 + 2(S(3, 1) + 2S(3, 2)) = 3 + 4(S(2, 1) + 2S(2, 2)) = 7 + 8 = 15.

a n = A2 n + B4 n. { 2 = A + B 6 = 2A + 4B, S(5, 2) = S(4, 1) + 2S(4, 2) = 1 + 2(S(3, 1) + 2S(3, 2)) = 3 + 4(S(2, 1) + 2S(2, 2)) = 7 + 8 = 15. 1 Matematiska Institutionen KTH Lösningar till tentamensskrivning på kursen Diskret Matematik, moment A, för D och F, SF161 och SF160, den juni 008 kl 08.00-1.00. DEL I 1. (p) Lös rekursionsekvationen

Läs mer

Enda tillåtna hjälpmedel är papper, penna, linjal och suddgummi. Skrivtid 4 h. OBS: uppgifterna skall inlämnas på separata papper.

Enda tillåtna hjälpmedel är papper, penna, linjal och suddgummi. Skrivtid 4 h. OBS: uppgifterna skall inlämnas på separata papper. KTH Mekanik Fredrik Lundell Mekanik mindre kurs för E1 och Open1 Läsåret 05/06 Tentamen i 5C110 Mekanik mk, kurs E1 och Open 1 006-03-15 Var noga med att skilja på skalärer och vektorer. Rita tydliga figurer

Läs mer

Linjära system av differentialekvationer

Linjära system av differentialekvationer CTH/GU LABORATION MVE0-0/03 Matematiska vetenskaper Linjära system av differentialekvationer Inledning Vi har i envariabelanalysen sett på allmäna system av differentialekvationer med begynnelsevillkor

Läs mer

Start. Mål. Rallylydnad Nybörjarklass. Mom nr Skylt Beskrivning

Start. Mål. Rallylydnad Nybörjarklass. Mom nr Skylt Beskrivning Svenska Brukshundkl ubben Rallylydnad_Mom_Nyborjarklass.doc Sida 1 (5) Rallylydnad Nybörjarklass Mom nr Skylt Beskrivning Start Här börjar banan. Startpositionen vid skylten är att föraren står och hunden

Läs mer

Algebra, polynom & andragradsekvationer en pampig rubrik på ett annars relativt obetydligt dokument

Algebra, polynom & andragradsekvationer en pampig rubrik på ett annars relativt obetydligt dokument Algebra, polynom & andragradsekvationer en pampig rubrik på ett annars relativt obetydligt dokument Distributiva lagen a(b + c) = ab + ac 3(x + 4) = 3 x + 3 4 = 3x + 12 3(2x + 4) = 3 2x + 3 4 = 6x + 12

Läs mer

Tomi Alahelisten Lärare Idrott & Hälsa - Internationella Skolan Atlas i Linköping. Orientering

Tomi Alahelisten Lärare Idrott & Hälsa - Internationella Skolan Atlas i Linköping. Orientering Orientering 1. Inledning Orientering härstammar från Norden i slutet på 1800-talet. Ursprungligen var orientering en militär övning, men tidigt såg man nyttan med att sprida denna kunskap till allmänheten

Läs mer

Vad är egentligen tid?

Vad är egentligen tid? Vad är egentligen tid? Omvälvningen - från klassisk till modern fysik... eller vad visste man egentligen i slutet av 1800-talet? 1600-talet: Newtons rörelselagar, mekanik! Kroppars rörelse under påverkan

Läs mer

Lab 31 - Lauekamera TFFM08 - Experimentell Fysik

Lab 31 - Lauekamera TFFM08 - Experimentell Fysik Lab 31 - Lauekamera TFFM08 - Experimentell Fysik Joakim Lindén, Gustaf Winroth 3 oktober 2005 Applied Physics and Electrical Engineering c Lindén, Winroth 2005 1 Inledning - Syfte Laborationen med en lauekamera

Läs mer

LEDNINGAR TILL PROBLEM I KAPITEL 2 OBS! En fullständig lösning måste innehålla en figur!

LEDNINGAR TILL PROBLEM I KAPITEL 2 OBS! En fullständig lösning måste innehålla en figur! LEDNINGR TILL ROLEM I KITEL OS! En fullständig lösning måste innehålla en figur! L.1 Kroppen har en rotationshastighet. Kulan beskrier en cirkelrörelse. För ren rotation gäller = r = 5be O t Eftersom och

Läs mer

L(9/G)MA10 Kombinatorik och geometri Gruppövning 1

L(9/G)MA10 Kombinatorik och geometri Gruppövning 1 L(9/G)MA10 Kombinatorik och geometri Gruppövning 1 Lisa och Pelle leker med svarta och vita byggklossar. Deras pedagogiska föräldrar vill att de lär sig matematik samtidigt som de håller på och leker.

Läs mer

Sammanfattning på lättläst svenska

Sammanfattning på lättläst svenska Sammanfattning på lättläst svenska Utredningen skulle utreda och lämna förslag i vissa frågor som handlar om svenskt medborgarskap. Svenskt medborgarskap i dag Vissa personer blir svenska medborgare när

Läs mer

Virkade tofflor. Storlek 35 37 & 38 40. By: Pratamedrut. pratamedrut.se/blog/virkade tofflor 1

Virkade tofflor. Storlek 35 37 & 38 40. By: Pratamedrut. pratamedrut.se/blog/virkade tofflor 1 Virkade tofflor Storlek 35 37 & 38 40 By: Pratamedrut pratamedrut.se/blog/virkade tofflor 1 Innehåll Lite tips sid 3 Material sid 3 Maskor och förkortningar sid 3 Tillvägagångssätt Sulor sid 4 Skor, nedre

Läs mer

Snabbslumpade uppgifter från flera moment.

Snabbslumpade uppgifter från flera moment. Snabbslumpade uppgifter från flera moment. Uppgift nr Ställ upp och dividera utan hjälp av miniräknare talet 48 med 2 Uppgift nr 2 Skriv talet 3 8 00 med hjälp av decimalkomma. Uppgift nr 3 Uppgift nr

Läs mer

Kurvlängd och geometri på en sfärisk yta

Kurvlängd och geometri på en sfärisk yta 325 Kurvlängd och geometri på en sfärisk yta Peter Sjögren Göteborgs Universitet 1. Inledning. Geometrin på en sfärisk yta liknar planets geometri, med flera intressanta skillnader. Som vi skall se nedan,

Läs mer

D A B A D B B D. Trepoängsproblem. Kängurutävlingen 2012 Benjamin

D A B A D B B D. Trepoängsproblem. Kängurutävlingen 2012 Benjamin Kängurutävlingen enjamin Trepoängsproblem. Skrivtavlan i klassrummet är 6 meter bred. Mittdelen är m bred. De båda yttre delarna är lika breda. Hur bred är den högra delen? A: m :,5 m C:,5 m D:,75 m E:

Läs mer

DEMONSTRATIONER MAGNETISM II. Helmholtzspolen Elektronstråle i magnetfält Bestämning av e/m

DEMONSTRATIONER MAGNETISM II. Helmholtzspolen Elektronstråle i magnetfält Bestämning av e/m FyL VT6 DEMONSTRATIONER MAGNETISM II Helmholtzspolen Elektronstråle i magnetfält Bestämning av e/m Uppdaterad den 19 januari 6 Introduktion FyL VT6 I litteraturen och framför allt på webben kan du enkelt

Läs mer

Tentamen i matematisk statistik (9MA241/9MA341/LIMAB6, STN2) 2012-01-09 kl 08-13

Tentamen i matematisk statistik (9MA241/9MA341/LIMAB6, STN2) 2012-01-09 kl 08-13 LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (9MA241/9MA341/LIMAB6, STN2) 212-1-9 kl 8-13 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är

Läs mer

Repetitivt arbete ska minska

Repetitivt arbete ska minska Repetitivt arbete ska minska Ett repetitivt arbete innebär att man upprepar en eller några få arbetsuppgifter med liknande arbetsrörelser om och om igen. Ofta med ett högt arbetstempo. Ett repetitivt arbete

Läs mer

Innehållet i detta häfte är sekretessbelagt t o m den 9 juni 2006.

Innehållet i detta häfte är sekretessbelagt t o m den 9 juni 2006. Innehållet i detta häfte är sekretessbelagt t o m den 9 juni 2006. Efter varje uppgift anges maximala antalet poäng som du kan få för din lösning. T ex betyder (2/1) att uppgiften kan ge 2 g-poäng och

Läs mer

KNÄKONTROLL FOTBOLL (ÖVNINGARNA HÄMTADE FRÅN SVENSKA FOTBOLLSFÖRBUNDET)

KNÄKONTROLL FOTBOLL (ÖVNINGARNA HÄMTADE FRÅN SVENSKA FOTBOLLSFÖRBUNDET) KNÄKONTROLL FOTBOLL (ÖVNINGARNA HÄMTADE FRÅN SVENSKA FOTBOLLSFÖRBUNDET) Var noggranna när Ni gör övningarna. Det som står med kursiv stil är extra viktigt att tänka på under alla övningar (A, B, C, D)

Läs mer

Notera att illustrationerna i denna broschyr är förenklade.

Notera att illustrationerna i denna broschyr är förenklade. Cykelöverfarter Informationen i denna broschyr baseras på Trafikförordningen (1998:1276) Vägmärkesförordningen (2007:90) Lag om vägtrafikdefinitioner (2001:559) Förordning om vägtrafikdefinitioner (2001:651).

Läs mer

VÄSBY DUATHLON 1 MAJ, 2015

VÄSBY DUATHLON 1 MAJ, 2015 VÄSBY DUATHLON 1 MAJ, 2015 TÄVLINGS-PM VÄLKOMMEN! Väsby Duathlon har i år SM-status, men som vanligt välkomnar vi alla, motionärer såväl som elit! I det här dokumentet hittar du all den information du

Läs mer

Vad är ljud? Ljud skapas av vibrationer

Vad är ljud? Ljud skapas av vibrationer Vad är ljud? Ljud skapas av vibrationer När en gitarrist spelar på en sträng börjar den att svänga snabbt fram och tillbaka - den vibrerar och du hör ett ljud. När du sjunger är det dina stämband som vibrerar

Läs mer

Skriva B gammalt nationellt prov

Skriva B gammalt nationellt prov Skriva B gammalt nationellt prov Skriva B.wma Då fortsätter vi skrivträningen. Detta avsnitt handlar om att anpassa sin text till en särskild situation, en speciell texttyp och särskilda läsare. Nu ska

Läs mer

Laborativ matematik som bedömningsform. Per Berggren och Maria Lindroth 2016-01-28

Laborativ matematik som bedömningsform. Per Berggren och Maria Lindroth 2016-01-28 Laborativ matematik som bedömningsform Per Berggren och Maria Lindroth 2016-01-28 Kul matematik utan lärobok Vilka förmågor tränas Problemlösning (Förstå frågan i en textuppgift, Använda olika strategier

Läs mer

NATIONELLA MATEMATIKTÄVLING

NATIONELLA MATEMATIKTÄVLING NATIONELLA MATEMATIKTÄVLING PRATA OM SPELS EN KURS I SANNOLIKHET 1 INLEDNING Sannolikhetskursen består av sju olika steg där det sista steget utgörs av själva tävlingsmomentet. Det är upp till pedagogen

Läs mer

Kontrollskrivning i Linjär algebra 2014 10 30, 14 18.

Kontrollskrivning i Linjär algebra 2014 10 30, 14 18. LINKÖPINGS UNIVERSITET Matematiska Institutionen Ulf Janfalk Kurskod: TATA Provkod: KTR Kontrollskrivning i Linjär algebra, 8. Inga hjälpmedel. Ej räknedosa. På uppgift skall endast svar ges. Varje rätt

Läs mer

Individuellt Mjukvaruutvecklingsprojekt

Individuellt Mjukvaruutvecklingsprojekt Individuellt Mjukvaruutvecklingsprojekt RPG-spel med JavaScript Författare Robin Bertram Datum 2013 06 10 1 Abstrakt Den här rapporten är en post mortem -rapport som handlar om utvecklandet av ett RPG-spel

Läs mer

Linjära system av differentialekvationer

Linjära system av differentialekvationer CTH/GU STUDIO 6 MVE6 - /6 Matematiska vetenskaper Inledning Linjära system av differentialekvationer Vi har i studioövning sett på allmäna system av differentialekvationer med begynnelsevillkor u (t) =

Läs mer

Kondition + spänstträning, 1-2 pass/vecka

Kondition + spänstträning, 1-2 pass/vecka Hej! För att underhålla och bibehålla formen du kämpat dig till under vintern och våren gäller det att hålla igång även under sommaren. Vad som är bra är att det räcker med 2 pass i veckan för att just

Läs mer

Tentamen Mekanik F del 2 (FFM520)

Tentamen Mekanik F del 2 (FFM520) Tentamen Mekanik F del 2 (FFM520) Tid och plats: Lördagen den 1 september 2012 klockan 08.30-12.30 i M. Hjälpmedel: Physics Handbook, Beta, Typgodkänd miniräknare samt en egenhändigt skriven A4 med valfritt

Läs mer

Energi & Miljötema Inrikting So - Kravmärkt

Energi & Miljötema Inrikting So - Kravmärkt Energi & Miljötema Inrikting So - Kravmärkt 21/5 2010 Sofie Roxå 9b Handledare Torgny Roxå Mentor Fredrik Alven 1 Innehållsförteckning Inledning s. 3 Bakgrund s. 3 Syfte s. 3 Hypotes s. 3 Metod s. 4 Resultat

Läs mer

Box 79 Hantverksvägen 15 Tel. +46 (0)176-208920 Web www.vetek.se 76040 Väddö, Sverige Fax +46 (0)176-208929 Email info@vetek.se 2

Box 79 Hantverksvägen 15 Tel. +46 (0)176-208920 Web www.vetek.se 76040 Väddö, Sverige Fax +46 (0)176-208929 Email info@vetek.se 2 Manual FM-622-220X WEIGHT Vägningsläge HEIGHT Längdmått BMI BMI läge >0< Visar om vågen är inställd på noll NET Tara funktionen STA Visar om vikten är används stabil HOLD Låser värdet Ikon för kroppsfett

Läs mer

SF1625 Envariabelanalys

SF1625 Envariabelanalys Modul 2: Derivata Institutionen för matematik KTH 8 september 2015 Derivata Innehåll om derivata (bokens kapitel 2). Definition vad begreppet derivata betyder Tolkning hur man kan tolka derivata Deriveringsregler

Läs mer

UPPVÄRMNING. Ta med styrketräningen på semestern:

UPPVÄRMNING. Ta med styrketräningen på semestern: Ta med styrketräningen på semestern: SUPERSTARK I Gymmet och träningskompisarna kan kännas långt borta på semestern, men träningen finns alltid nära till hands. I FORM tog hjälp av personliga tränaren

Läs mer

Bered en buffertlösning. Niklas Dahrén

Bered en buffertlösning. Niklas Dahrén Bered en buffertlösning Niklas Dahrén Grundprincipen vid beredning av en buffertlösning ü När vi bereder en buffertlösning blandar vi en svag syra med dess korresponderande bas (den bas som syran också

Läs mer

SKOGLIGA TILLÄMPNINGAR

SKOGLIGA TILLÄMPNINGAR STUDIEAVSNITT 3 SKOGLIGA TILLÄMPNINGAR I detta avsnitt ska vi titta på några av de skogliga tillämpningar på geometri som finns. SKOGSKARTAN EN MODELL AV VERKLIGHETEN Arbetar man i skogen klarar man sig

Läs mer

Matematik och modeller Övningsuppgifter

Matematik och modeller Övningsuppgifter Matematik och modeller Övningsuppgifter Beräkna a) d) + 6 b) 7 (+) + ( 9 + ) + 9 e) 8 c) ( + (5 6)) f) + Förenkla följande uttryck så långt som möjligt a) ( ) 5 b) 5 y 6 5y c) y 5 y + y y d) +y y e) (

Läs mer

Lathund till Annonsportalen

Lathund till Annonsportalen Lathund till Annonsportalen * För uppdrags-/arbetsgivare * www.gu.se/samverkan/annonsportalen/ Snabbvägar: 1. Klicka på För arbetsgivare 2. Sök efter arbetsgivarens namn i sökrutan. a. Om namnet finns

Läs mer

ANVÄNDARHANDLEDNING FÖR

ANVÄNDARHANDLEDNING FÖR ANVÄNDARHANDLEDNING FÖR TILLSÄTTARE/LAGLEDARE OCH DOMARE Cleverservice ett smart sätt att hantera matcher, domartillsättningar, samt utbetalningar av arvoden 2015 ANVÄNDARHANDLEDNING - CLEVERSERVICE Cleverservice

Läs mer

CAEBBK01 Drag och tryckarmering

CAEBBK01 Drag och tryckarmering Drag och tryckarmering Användarmanual 1 Eurocode Software AB Innehåll 1 INLEDNING 3 1.1 ANVÄNDNINGSOMRÅDEN 3 1.2 TEKNISK BESKRIVNING 3 1.3 ARMERINGENS INLÄGGNING 4 1.4 ARBETSKURVA BETONG 4 2 INSTRUKTIONER

Läs mer

Övningshäfte Algebra, ekvationssystem och geometri

Övningshäfte Algebra, ekvationssystem och geometri Stockholms Tekniska Gmnasium --9 Övningshäfte Algebra, ekvationssstem och geometri Nivå: rätt svårt Fråga : f är ett polnom. Beräkna värdet av f, f och fπ Fråga : Ingångslönen på företaget Börjes Gurkinläggning

Läs mer

ÖSS jolles Seglarsaga

ÖSS jolles Seglarsaga ÖSS jolles Seglarsaga Det här är ÖSS lilla seglarsaga för dig som skall börja segla! Läs den gärna tillsammans med dina föräldrar under tiden du går i seglarskola. Längst bak finns en lista där du kan

Läs mer

Index vid lastbilstransporter

Index vid lastbilstransporter index vid lastbilstransporter Matematiken Snabbhjälpen för att räkna rätt Index vid lastbilstransporter Innehåll A. Tre steg för att räkna rätt Sidan 1 B. Förändring enligt index 2 C. Andelskorrigering

Läs mer

Frågor och svar för föreningar om nya ansökningsregler för aktivitetsbidrag från och med 1 januari 2017

Frågor och svar för föreningar om nya ansökningsregler för aktivitetsbidrag från och med 1 januari 2017 Frågor och svar för föreningar om nya ansökningsregler för aktivitetsbidrag från och med 1 januari 2017 Innehåll Generella frågor... 2 Vad är det som ändras 1 januari 2017?... 2 Vad behöver min förening

Läs mer

Tentamen i Linjär algebra (TATA31/TEN1) 2013 08 24, 14 19.

Tentamen i Linjär algebra (TATA31/TEN1) 2013 08 24, 14 19. LINKÖPINGS UNIVERSITET Matematiska Institutionen Ulf Janfalk Kurskod: TATA Provkod: TEN Tentamen i Linjär algebra (TATA/TEN 8, 9. Inga hjälpmedel. Ej räknedosa. För godkänt räcker 9 poäng och minst uppgifter

Läs mer

Regler för Standard/Mini-Sumo under Robot-SM 2011

Regler för Standard/Mini-Sumo under Robot-SM 2011 Regler för Standard/Mini-Sumo under Robot-SM 2011 Sammanfattning av reglerna Riktlinjerna för standard/mini-sumo är grundade på det som kallas för "Sumo, Japansk klass". Tävlingen går helt enkelt ut på

Läs mer

skuldkollens ordlista

skuldkollens ordlista skuldkollens ordlista en ordlista om skulder och krediter Vår vardagsekonomi är full av ord som kan kännas svåra och främmande. Det är lätt att känna sig osäker och maktlös inför till exempel avtalens

Läs mer

Nämnarens adventskalendern 2007

Nämnarens adventskalendern 2007 Nämnarens adventskalendern 2007 1 När det närmar sig jul är det kallt. Då behöver de tre tomtenissarna både halsduk och mössa när de leker i snön. I korgen ligger en röd, en blå och en randig halsduk.

Läs mer