Handledning Det didaktiska kontraktet. 19 september 2012

Storlek: px
Starta visningen från sidan:

Download "Handledning Det didaktiska kontraktet. 19 september 2012"

Transkript

1 Handledning Det didaktiska kontraktet 19 september 2012

2 Dagens teman Begreppsföreställning och begreppskunskap igen Handledning Det didaktiska kontraktet

3 Begreppsföreställning och begreppsdefinition Begreppsföreställning och begreppsdefinition är inte färdig och mogen matematisk kunskap, utan provisorisk. Begreppsföreställningen skapas genom generalisering från exempel och användning av begreppet i olika sammanhang och behöver inte vara sammanhängande eller konsistent. Olika delar av begreppsföreställningen aktiveras i olika situationer. Delar som inte aktiveras tenderar att försvagas. Begreppsdefinitionen skapas antingen genom att ytinriktat, mekaniskt lärande av en formell eller informell definition eller genom en meningsskapande, personlig rekonstruktion av den formella eller informella definitionen. Begreppsföreställning och begreppskunskap kan ge motstridiga resultat vid en matematisk undersökning.

4 God begreppskunskap God kunskap betyder här användbar och livskraftig kunskap samt att kunskapen inte skapar hinder för fortsatt begreppsutveckling. Begreppsföreställningen innehåller flera olika representationer av begreppet. Begreppsföreställningen är rik på relationer till processer och till andra begrepp. Begreppsdefinitionen kan anpassas till olika representationer och tvärtom. Begreppsdefinitionen är generell. Begreppsdefinitionen kan förstås utifrån den (av andra) accepterade formella eller informella definitionen.

5 Något om Masons perspektiv Matematik lärs endast genom att den lärande aktivt engagerar sig i ämnet vilket innebär att aktivt skapa sin egen mening åt definitioner, satser och bevis tänka matematiskt, dvs generalisera och specialisera förmoda och övertyga föreställa sig och uttrycka organisera och klassificera formulera och lösa problem (Inledningen sid v till Masons bok)

6 Handledning Fyra sätt att interagera med studenten vid handledning (enligt Mason sig vii): Klargöra: Bege dig in i studentens begreppsvärld och arbeta i den. Låt studenten förklara. Utforska: Led studenterna i fruktbara riktningar när de försöker göra reda för detaljer och själva finna sammanhang. Öva: Led studenterna så att de förstärker metoder och teorier genom repetition och övning. Uttrycka: Led studenterna till att uttrycka sina insikter både muntligt och skriftligt. Undvik så kallad lotsning.

7 Interaktionen Studenten har alltid ansvar för sitt eget lärande. Exempel 1: Svara med en motfråga när en student ber dig förklara och visa hur man gör. Visa mig hur långt har du kommit.vad har du gjort? Vad skulle du kunna börja med? Kan du hitta något exempel i boken som du kan använda? Eller svara med någon strategi för problemlösning: Skriv ner vad du vet och vad du vill visa. Rita en figur.

8 Interaktionen Exempel 2: Svara alltid med en motfråga eller en uppmaning på frågan hur man förstår ett visst steg i en färdig lösning (t ex i boken). Förstår du hur de har kommit hit? Förklara för mig! Visa mig din lösning! Visa mig hur du skulle vilja (börja) lösa uppgiften! Träna dig som lärare att lämna över ansvaret till studenten.

9 Interaktionen Exempel 3: Svara alltid med en motfråga på uppmaningen att förklara igen. Vad står det i boken och anteckningarna? Läs högt! Kommer du ihåg vad jag/föreläsaren sa på föreläsningen? Vad tycker du att du förstår? Sätt fingret på just det som du inte förstår!

10 Aktivitet Kräv aktivitet av studenten. Exempel 1: Om du ställer upp och besvarar frågor på en mottagningstid: Begränsa tiden för varje student (ge mer tid om de är flera). Kräv att studenten har arbetat med problemet hemma och kan visa vad hon/han gjort och varför hon/han inte kommer vidare (konkret visa sitt arbete). Exempel 2: Genomför inte beräkningar och förenklingar åt studenten som du vet att hon/han kan klara själv. Här krävs det tålamod och ibland är det lämpligt att lämna studenten och komma tillbaka. Om nödvändigt, så ge endast ett första steg på vägen och återkom senare om det behövs. Exempel 3: Använd listor där studenterna prickar av vilka uppgifter de löst, vilka uppgifter de önskar få kommenterade och vilka de inte försökt lösa.

11 Kroppsspråk och kommunikation vid handledning Stå stadigt och rör dig lugnt - det ger en lugn och trygg atmosfär. Behåll en tydlig distans i rummet för att inte inkräkta på andras integritetsutrymme. Inta gärna en position på samma höjd som den du talar med. Sitt mittemot om det är möjligt. Det skapar en känsla av jämlikhet; om du står och den andra sitter blir den andra automatiskt underordnad. Se till att ha ögonkontakt. När du ställer en fråga så behåll koncentrationen på frågan och den som får frågan genom att rikta blicken. Undvik att fokusera på något annat, t ex dina anteckningar. Tveka inte att invänta ett svar, även om det tar tid. Om du kommunicerar med en liten grupp av studenter, så rikta budskapet omväxlande mot de olika personerna i gruppen. Om någon har ordet, så rikta uppmärksamheten mot henne/honom. Skriv inte i studenternas block. Matematikdidaktik Använd egna den 19papper september 2012 som du

12 Metoder Skapa en atmosfär av förmodanden. Acceptera förslag som du vet inte leder framåt. Peka på svårigheter eller orimliga konsekvenser. Be om en modifierad förmodan i stället för att avfärda en som felaktig. Ge aldrig negativ feedback på ett förslag eller en förmodan (dumt, onödigt, fel, borde du ha lärt dig i gymnasiet, gick vi igenom förra veckan,...). Uppmuntra studenten när hon/han har gjort en förmodan, gett ett förslag eller arbetar matematiskt.

13 Metoder Skapa debatt. Formulera ett problem med ja- och nejsvar (kan man hitta en funktion med den och den egenskapen? ska man använda den eller den fördelningen i ett visst fall?). Ha omröstning om svaret med efterföljande diskussion med argument, exempel och motexempel. Låt eventuellt studenterna diskutera i par först (kan vara tryggare). Diskutera lösningar som studenterna visar på tavlan. Hur tänkte du? Var det någon som löste uppgiften på något annat sätt? Eller låt flera studenter visa olika lösningar på samma uppgift. Diskutera för- och nackdelar med dem.

14 Metoder Arbeta med termer och begrepp. Ge studenterna ett antal nyckelord från satser, definitioner och metoder. Be dem göra fullständiga meningar i vilka orden ingår. Boken ska vara stängd! Låt dem arbeta i grupp och låt grupperna dela med sig till varandra. Ge studenterna ett antal viktiga egenskaper och be dem konstruera exempel på objekt som har egenskaperna. Be studenterna om exempel på ett objekt med vissa specifika egenskaper (eventuellt numeriska värden); ett vanligt och ett underligt.

15 Metoder Arbeta med metoder och algoritmer Låt studenterna skapa uppgifter som man löser med en viss metod. Be dem lösa varandras uppgifter. (Det här är ofta mycket lärorikt!) Be studenterna analysera övningsuppgifter som de löst. Vad illustrerar uppgifterna och vad kan man lära sig av dem? Har en viss uppgiften någon speciell knorr eller är det en standarduppgift på en viss metod? Fråga studenterna varför de tror att vi rekommenderar att de löser en viss uppgift. Be studenterna göra övningen ovan innan de löser uppgifterna. Be studenterna själva avgöra efter varje avsnitt hur pass säkra de känner sig på en viss metod, eventuellt på en skala från 1 till 5.

16 Det didaktiska kontraktet Enligt Brousseau är det didaktiska kontraktet en tyst överenskommelse som träder i kraft i varje didaktisk situation och som innebär att eleven/studenten inte handlar utifrån lärarens intentioner för lärandet, utan utifrån de specifika uppgifter som föreläggs och de specifika krav som ställs av läraren. Det kan vara mycket svårt att bryta det didaktiska kontraktet.

17 Det didaktiska kontraktet Några exempel på (oftast outtalade) överenskommelser som kan ingå i det didaktiska kontraktet mellan föreläsare och studenter: Föreläsaren går igenom allt som kommer att examineras; föreläsaren poängterar det som är särskilt viktigt genom att lägga mer tid eller större tryck på detta. Föreläsaren presenterar teorin så sammanhängande att anteckningarna kan ersätta kurslitteraturen. Ingen aktivitet (få frågor, tänka över något, ställa frågor) kan förväntas av studenterna under föreläsningen.

18 Det didaktiska kontraktet Frågor från studenterna ställs och besvaras utförligt ställs och besvaras kortfattat eller avfärdas ställs aldrig Deltagande alla studenter som deltar är närvarande i stort sett vid alla föreläsningar studenterna kommer och går (deltar i vissa föreläsningar, men uteblir från andra)

19 Att läsa Mason: Mathematics Teaching Practices Förordet v-viii Tutoring, s Mathematical powers, s Alsina, C. (2001). Why the professor must be a stimulating teacher. Towards a new paradigm of teaching mathematics at university level. In Holton, Derek (ed.) The teaching and learning of mathematics at university level: AN ICMI Study. Kluwer 3-12

Figur 1: Påverkan som processer. Vad tycker elever om matematik och matematikundervisning?

Figur 1: Påverkan som processer. Vad tycker elever om matematik och matematikundervisning? Modul: Problemlösning Del 1: Matematiska problem Känsla för problem Lovisa Sumpter När vi arbetar med matematik är det många faktorer som påverkar det vi gör. Det är inte bara våra kunskaper i ämnet som

Läs mer

Tekniska hjälpmedel. 19 september 2012

Tekniska hjälpmedel. 19 september 2012 Föreläsande Tekniska hjälpmedel 19 september 2012 Det didaktiska kontraktet Enligt Brousseau är det didaktiska kontraktet en tyst överenskommelse som träder i kraft i varje didaktisk situation och som

Läs mer

Lärande i matematik - olika teoretiska perspektiv

Lärande i matematik - olika teoretiska perspektiv Lärande i matematik - olika teoretiska perspektiv Föreläsning i kursen Matematikdidaktik för högskolan Matematikcentrum, Lunds universitet Gerd Brandell Den didaktiska triangeln Tre parter är engagerade

Läs mer

Likhetstecknets innebörd

Likhetstecknets innebörd Likhetstecknets innebörd Följande av Görel Sterner översatta och bearbetade text bygger på boken: arithmetic & algebra in elementary school. Portsmouth: Heinemann Elever i åk 1 6 fick följande uppgift:

Läs mer

Av kursplanen och betygskriterierna,

Av kursplanen och betygskriterierna, KATARINA KJELLSTRÖM Muntlig kommunikation i ett nationellt prov PRIM-gruppen ansvarar för diagnosmaterial och de nationella proven i matematik för grundskolan. Här beskrivs de muntliga delproven i ämnesprovet

Läs mer

Problemlösning, öppna frågor och formativ bedömning, hur? Margareta Bynke & Anna Gullberg Malmö Högskola, 2013

Problemlösning, öppna frågor och formativ bedömning, hur? Margareta Bynke & Anna Gullberg Malmö Högskola, 2013 Problemlösning, öppna frågor och formativ bedömning, hur? Margareta Bynke & Anna Gullberg Malmö Högskola, 2013 www.mentimeter.com 1.Skapa en fråga. 2.Låt klassen få rösta. Tag fram mobiltelefonen (det

Läs mer

Likhetstecknets innebörd

Likhetstecknets innebörd Modul: Algebra Del 5: Algebra som språk Likhetstecknets innebörd Följande av Görel Sterner (2012) översatta och bearbetade text bygger på boken: Carpenter, T. P., Franke, M. L. & Levi, L. (2003). Thinking

Läs mer

En metod för aktiv redovisning av matematikuppgifter

En metod för aktiv redovisning av matematikuppgifter En metod för aktiv redovisning av matematikuppgifter Magnus Jacobsson och Inger Sigstam Matematiska institutionen 1. Introduktion Matematik på grundnivå är till stor del ett övningsämne, man lär sig matematik

Läs mer

Förstår studenter vad jag säger? Svar på minuten. Att använda mobiltelefoner för direkt studentåterkoppling

Förstår studenter vad jag säger? Svar på minuten. Att använda mobiltelefoner för direkt studentåterkoppling Förstår studenter vad jag säger? Svar på minuten. Att använda mobiltelefoner för direkt studentåterkoppling Annika Andersson, Kalle Räisänen, Anders Avdic - Informatik, Handelshögskolan 2012-10-25 1 Agenda

Läs mer

I arbetet hanterar eleven flera procedurer och löser uppgifter av standardkaraktär med säkerhet, både utan och med digitala verktyg.

I arbetet hanterar eleven flera procedurer och löser uppgifter av standardkaraktär med säkerhet, både utan och med digitala verktyg. Kunskapskrav Ma 2a Namn: Gy Betyg E D Betyg C B Betyg A 1. Begrepp Eleven kan översiktligt beskriva innebörden av centrala begrepp med hjälp av några representationer samt översiktligt beskriva sambanden

Läs mer

Behövs ett nytt perspektiv på relationen undervisning-lärande? och kan Learning activity bidra med något?

Behövs ett nytt perspektiv på relationen undervisning-lärande? och kan Learning activity bidra med något? Behövs ett nytt perspektiv på relationen undervisning-lärande? och kan Learning activity bidra med något? INGER ERIKSSON Institutionen för de humanistiska och samhällsvetenskapliga ämnenas didaktik & Stockholm

Läs mer

VFU i matematik ht 2015 MÅL

VFU i matematik ht 2015 MÅL VFU i matematik ht 2015 MÅL Syftet med kursen är att studenten ska förvärva kunskaper om och utveckla förmågan att leda och undervisa i matematik utifrån ett vetenskapligt förhållningssätt i relation till

Läs mer

Vad innebär det att undervisa i algebra i årskurs 1 3? Vart ska dessa

Vad innebär det att undervisa i algebra i årskurs 1 3? Vart ska dessa Åsa Brorsson Algebra för lågstadiet I denna artikel beskriver en lärare hur hon arbetar med algebra redan i de tidiga skolåren. Det är ett arbete som hjälper elever att förstå likhetstecknets betydelse,

Läs mer

Problemlösning Fk- åk 3 19/ Pia Eriksson

Problemlösning Fk- åk 3 19/ Pia Eriksson Problemlösning Fk- åk 3 19/12 2013 Pia Eriksson Fyra glaskulor och tre pappersstjärnor väger 63 gram. Tre glaskulor och två pappersstjärnor väger 46 gram. Alla glaskulor väger lika mycket och alla pappersstjärnor

Läs mer

IBSE Ett självreflekterande(självkritiskt) verktyg för lärare. Riktlinjer för lärare

IBSE Ett självreflekterande(självkritiskt) verktyg för lärare. Riktlinjer för lärare Fibonacci / översättning från engelska IBSE Ett självreflekterande(självkritiskt) verktyg för lärare Riktlinjer för lärare Vad är det? Detta verktyg för självutvärdering sätter upp kriterier som gör det

Läs mer

Avdelningen för fackspråk och kommunikation på Chalmers. Språk och kommunikation på Matematisk orientering (MVE235) ht- 16

Avdelningen för fackspråk och kommunikation på Chalmers. Språk och kommunikation på Matematisk orientering (MVE235) ht- 16 Språk och kommunikation på Matematisk orientering (MVE235) ht- 16 Hans Malmström Avdelningen för fackspråk och kommunikation Chalmers tekniska högskola mahans@chalmers.se Avdelningen för fackspråk och

Läs mer

Sandra Johansson The student seminar: a powerful tool for in-depth, critical discussion. Fritt översatt av Kajsa Eklund

Sandra Johansson The student seminar: a powerful tool for in-depth, critical discussion. Fritt översatt av Kajsa Eklund Sandra Johansson The student seminar: a powerful tool for in-depth, critical discussion Fritt översatt av Kajsa Eklund Seminarium En generell beskrivning Under utbildningen förekommer seminarier som en

Läs mer

Visible teaching visible learning. Formativ bedömning en väg till bättre lärande

Visible teaching visible learning. Formativ bedömning en väg till bättre lärande Bedömning Summativ Formativ bedömning en väg till bättre lärande Gunilla Olofsson Formativ ------------------------------------------------- Bedömning som en integrerad del av lärandet Allsidig bedömning

Läs mer

Om mentorsverksamheten i matematik

Om mentorsverksamheten i matematik Om mentorsverksamheten i matematik Varje mentorstillfälle ska vara schemalagt en gång i veckan, med minst en föreläsning och en lektion innan varje tillfälle. Detta ger att studenterna kommer till mötet

Läs mer

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla. Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt

Läs mer

Hands-On Math. Matematikverkstad. Förskolans nya läroplan 1 juli 2011. Matematik är en abstrakt och generell vetenskap

Hands-On Math. Matematikverkstad. Förskolans nya läroplan 1 juli 2011. Matematik är en abstrakt och generell vetenskap Hands-On Math Matematikverkstad 09.00 10.30 & 10.45 12.00 Elisabeth.Rystedt@ncm.gu.se Lena.Trygg@ncm.gu.se eller ett laborativt arbetssätt i matematik Laborativ matematikundervisning vad vet vi? Matematik

Läs mer

BEDÖMNINGSSTÖD till TUMMEN UPP! svenska åk 3

BEDÖMNINGSSTÖD till TUMMEN UPP! svenska åk 3 BEDÖMNINGSSTÖD till TUMMEN UPP! svenska åk 3 Det här är ett BEDÖMNINGSSTÖD till Tummen upp! svenska som hjälper dig att göra en säkrare bedömning av elevernas kunskaper i årskurs 3. Av tradition har man

Läs mer

MATEMATIK- OCH FYSIKDIDAKTISKA ASPEKTER

MATEMATIK- OCH FYSIKDIDAKTISKA ASPEKTER MATEMATIK- OCH FYSIKDIDAKTISKA ASPEKTER Xantcha 2013 2014 Examination. För godkänt betyg i kursen krävs: Samtliga skriftliga inlämningsuppgifter. Närvaro och aktivt deltagande under lektionerna. Frånvaro

Läs mer

Att kommunicera med personer med demenssjukdom

Att kommunicera med personer med demenssjukdom Att kommunicera med personer med demenssjukdom Kommunikation är en viktig del i våra relationer och ett grundläggande behov. Vår identitet är nära sammankopplad med vårt språk. Vem vi är som person, skapas

Läs mer

Rapport av genomförd lesson study av en lektion med temat bråk i gymnasiets A-kurs

Rapport av genomförd lesson study av en lektion med temat bråk i gymnasiets A-kurs Rapport av genomförd lesson study av en lektion med temat bråk i gymnasiets A-kurs Klippa gräset Jenny klipper gräsmattan hos Bo på 2 timmar. Måns gör det på 4 timmar. Förberedelser Utifrån en diskussion

Läs mer

Enkätresultat. Kursenkät, Flervariabelanalys. Datum: 2010-03-29 08:47:04. Aktiverade deltagare (MMGF20, V10, Flervariabelanalys) Grupp:

Enkätresultat. Kursenkät, Flervariabelanalys. Datum: 2010-03-29 08:47:04. Aktiverade deltagare (MMGF20, V10, Flervariabelanalys) Grupp: Enkätresultat Enkät: Status: Kursenkät, Flervariabelanalys stängd Datum: 2010-03-29 08:47:04 Grupp: Besvarad av: 13(40) (32%) Aktiverade deltagare (MMGF20, V10, Flervariabelanalys) Helheten Mitt helhetsomdöme

Läs mer

Det goda boksamtalet- en ömsesidig dialog Våra gemensamma tankar för att boksamtalet ska bli bra, Sa 1a och Språkintroduktionen.

Det goda boksamtalet- en ömsesidig dialog Våra gemensamma tankar för att boksamtalet ska bli bra, Sa 1a och Språkintroduktionen. Våra gemensamma tankar för att boksamtalet ska bli bra, Sa 1a och Språkintroduktionen. I boksamtalet vill jag att de andra i gruppen ska- ha ett mordiskt intresse, brinnande blick, öronen på skaft och

Läs mer

Att leda en elevintervju

Att leda en elevintervju Att leda en elevintervju En översiktsdiagnos, i form av ett skriftligt test till en klass, kan ge läraren användbar information. Det kan sätta ljuset på starka och svaga områden, i klassen som helhet identifiera

Läs mer

DD2458-224344 - 2014-12-19

DD2458-224344 - 2014-12-19 KTH / KURSWEBB / PROBLEMLÖSNING OCH PROGRAMMERING UNDER PRESS DD2458-224344 - 2014-12-19 Antal respondenter: 26 Antal svar: 18 Svarsfrekvens: 69,23 % RESPONDENTERNAS PROFIL (Jag är: Man) Det var typ en

Läs mer

KOMMUNIKATION ATT SKAPA ETT BRA SAMTAL

KOMMUNIKATION ATT SKAPA ETT BRA SAMTAL KOMMUNIKATION Detta dokument tar upp kommunikation, feeback och SMART:a mål, som ska verka som ett stöd under utvecklingssamtalet. Kommunikation är konsten att förmedla tankegångar, information och känslor

Läs mer

Matematiklyftet 2013/2014

Matematiklyftet 2013/2014 Matematiklyftet 2013/2014 Didaktiskt kontrakt Ruc 140522 AnnaLena Åberg 79 Matematiklärare 9 skolor? Elever 10 Rektorer 1 Förvaltningschef 2 Skolområdschefer 5 Matematikhandledare Hur ser ni på det didaktiska

Läs mer

Lgr 11 matriser i Favorit matematik 4 6

Lgr 11 matriser i Favorit matematik 4 6 Lgr 11 matriser i Favorit matematik 4 6 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla förmågan att De matematiska förmågor

Läs mer

Om Lgr 11 och Favorit matematik 4 6

Om Lgr 11 och Favorit matematik 4 6 Om Lgr 11 och Favorit matematik 4 6 TYDLIG OCH MEDVETEN MATEMATIKUNDERVISNING En stark koppling mellan läroplan/kunskaps mål, innehåll och bedömning finns för att medvetande göra eleverna om syftet med

Läs mer

Pedagogiskt café. Problemlösning

Pedagogiskt café. Problemlösning Pedagogiskt café Problemlösning Vad är ett matematiskt problem? Skillnad mellan uppgift och problem - Uppgift är något som eleven träffat på tidigare, kan lösa med vanliga standardmetoder - Matematiskt

Läs mer

7E Ma Planering v45-51: Algebra

7E Ma Planering v45-51: Algebra 7E Ma Planering v45-51: Algebra Arbetsform under en vecka: Måndagar (40 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa: Läsa på anteckningar

Läs mer

Introduktion och Praxisseminarium LG10MA och L910MA VFU1

Introduktion och Praxisseminarium LG10MA och L910MA VFU1 Introduktion och Praxisseminarium LG10MA och L910MA VFU1 Lärare åk 7-9 och Gy i matematik, 4,5 högskolepoäng Lärare: Bengt Andersson, Eva Taflin Introduktion: 19 November -13 VFU1 koppling till tidigare

Läs mer

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla. Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt

Läs mer

Jag ska göra en skiss. Jag gör ett diagram. Jag ska gissa!

Jag ska göra en skiss. Jag gör ett diagram. Jag ska gissa! s. 2 PROBLEMLÖSNING Kapitel 4 PROBLEMLÖSNING ARBETSGÅNG Hmmm...vad är det egentligen som är mitt problem? Hur ska ni lösa problemet? Tänk fritt! Jag ska ställa upp en ekvation Jag ska göra en skiss Jag

Läs mer

Svåra Samtal DISPOSITION. Bakgrund & Intervjuteknik. Workshop Svåra Samtal Pennskaftets Årliga Konferens Världskulturmuséet 5 mars 2008

Svåra Samtal DISPOSITION. Bakgrund & Intervjuteknik. Workshop Svåra Samtal Pennskaftets Årliga Konferens Världskulturmuséet 5 mars 2008 Pennskaftskonferens 2008 Världskulturmuseet 5 mars Svåra Samtal Anneli Larsson Lecturer, The Swedish National Police Academy Affiliated Researcher, University of Cambridge E-mail: 1 DISPOSITION 13.00 13.45

Läs mer

Anteckningsstöd. Pedagogiskt stöd, Lunds universitet

Anteckningsstöd. Pedagogiskt stöd, Lunds universitet Anteckningsstöd Pedagogiskt stöd, Lunds universitet 2 3 Information till dig som ger anteckningsstöd ATT FÖRBEREDA FÖRELÄSNINGARNA Både som student och anteckningsstöd är det bra om du alltid förbereder

Läs mer

Bedömning av muntliga prestationer

Bedömning av muntliga prestationer Modul: Bedömning för lärande och undervisning i matematik Del 6: Muntliga bedömningssituationer Bedömning av muntliga prestationer Karin Rösmer, Karin Landtblom, Gunilla Olofsson och Astrid Pettersson,

Läs mer

MELLAN GYMNASIET OCH UNIVERSITETET

MELLAN GYMNASIET OCH UNIVERSITETET STADIEÖVERGÅNGEN MELLAN GYMNASIET OCH UNIVERSITETET Erika Stadler Linnéuniversitetet Gymnasieelever om matematik och matematikundervisning i i En typisk mattelektion är att läraren går igenom på tavlan

Läs mer

Guide Studieteknik. Tips för lättare studier!

Guide Studieteknik. Tips för lättare studier! Guide Studieteknik Tips för lättare studier! 1 Läs- och anteckningsteknik Att läsa och att anteckna Det finns goda skäl till att göra anteckningar när du läser en text, lyssnar på en föreläsning, förbereder

Läs mer

Lära matematik med datorn

Lära matematik med datorn Lära matematik med datorn Ulrika Ryan Matematik för den digitala generationen Malmö högskola, Lunds Universitet, Göteborgs Universitet och NCM 3 gymnasieskolor och 2 grundskolor i Lunds kommun Matematik

Läs mer

7F Ma Planering v2-7: Geometri

7F Ma Planering v2-7: Geometri 7F Ma Planering v2-7: Geometri Arbetsform under en vecka: Måndagar (50 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa (30 min): Läsa på anteckningar

Läs mer

Rapport av genomförd "Lesson study" av en lektion med temat ekvationer i gymnasiets B-kurs. Bultar, muttrar och brickor

Rapport av genomförd Lesson study av en lektion med temat ekvationer i gymnasiets B-kurs. Bultar, muttrar och brickor Rapport av genomförd "Lesson study" av en lektion med temat ekvationer i gymnasiets B-kurs Bultar, muttrar och brickor Vågad problemlösning Förberedelser Ekvationssystem i matematik B ger progression från

Läs mer

Problemlösning som metod

Problemlösning som metod Problemlösning som metod - för att lära matematik Fuengirola november 2014 eva.taflin@gu.se evat@du.se Problemlösningsmodulens övergripande syfte Att initiera utveckling av lärares egen undervisning utifrån

Läs mer

TIPS & TRIX. Praktiska tips för att träna dig själv och andra i ett motiverande ledarskap

TIPS & TRIX. Praktiska tips för att träna dig själv och andra i ett motiverande ledarskap TIPS & TRIX Praktiska tips för att träna dig själv och andra i ett motiverande ledarskap 1 mod subst. ~et ORDLED: mod-et 1 förmåga att handla utan fruktan för följder vanl. för ett gott syfte och med insikt

Läs mer

Intervjuguide. Del 1. Att göra inför intervjun: Kort om intervjuguiden: a. Uppfattningar och intentioner. [8 min / 8 min]

Intervjuguide. Del 1. Att göra inför intervjun: Kort om intervjuguiden: a. Uppfattningar och intentioner. [8 min / 8 min] Intervjuguide Att göra inför intervjun: Tänk igenom den besökta lektionen så att du kan beskriva den kort och neutralt. Titta på den använda läroboken så att du kan diskutera den med läraren. Ha ett anteckningspapper

Läs mer

På vilka sätt kan mönster vara en ingång till att utveckla förmågan att uttrycka och argumentera för generaliseringar algebraiskt?

På vilka sätt kan mönster vara en ingång till att utveckla förmågan att uttrycka och argumentera för generaliseringar algebraiskt? På vilka sätt kan mönster vara en ingång till att utveckla förmågan att uttrycka och argumentera för generaliseringar algebraiskt? Jenny Fred, lärare på Ekensbergsskolan och doktorand vid Forskarskolan

Läs mer

Studiehandledning M0038M Matematik I Differentialkalkyl Lp 1, 2016

Studiehandledning M0038M Matematik I Differentialkalkyl Lp 1, 2016 Studiehandledning M0038M Matematik I Differentialkalkyl Lp 1, 2016 Kursansvarig/Examinator: Staffan Lundberg, TVM Telefon: 0920-49 18 69 Rum: E882 E-post: Lärare i Skellefteå: Eva Lövf, tfn. 0910-58 53

Läs mer

Matematiska undersökningar med kalkylprogram

Matematiska undersökningar med kalkylprogram Matematik Grundskola årskurs 7-9 Modul: Matematikundervisning med digitala verktyg Del 7: Matematiska undersökningar med kalkylprogram Matematiska undersökningar med kalkylprogram Håkan Sollervall, Malmö

Läs mer

Lösningsfokuserad terapi

Lösningsfokuserad terapi Lösningsfokuserad terapi Jeanette Niehof Leg. psykolog / logoped KBT terapeut steg 1 &2 EMDR terapeut Handledare 16 oktober 2013 Livet är som att cykla. För att hålla balansen måste du vara i rörelse.

Läs mer

Funktioner, Algebra och Ekvationer År 9

Funktioner, Algebra och Ekvationer År 9 Undervisning Funktioner, Algebra och Ekvationer År 9 Mål att uppnå i år 9, ur Lpo 94 Utvecklar intresse för matematik samt tilltro till det egna tänkandet och den egna förmågan att lära sig matematik och

Läs mer

Dynamisk programvara, ett didaktiskt verktyg?

Dynamisk programvara, ett didaktiskt verktyg? Dynamisk programvara, ett didaktiskt verktyg? På SMDF:s årsmöte 24 jan 2003 höll Sveriges första professor i matematikdidaktik, Rudolf Strässer, ett föredrag rubricerat Learning Geometry in Secondary Schools.

Läs mer

Utmanande uppgifter som utvecklar. Per Berggren och Maria Lindroth

Utmanande uppgifter som utvecklar. Per Berggren och Maria Lindroth Utmanande uppgifter som utvecklar Per Berggren och Maria Lindroth 2014-11-12 Vilka förmågor ska utvecklas Problemlösning (Förstå frågan i en textuppgift, Använda olika strategier när jag löser ett problem,

Läs mer

Explorativ övning 5 MATEMATISK INDUKTION

Explorativ övning 5 MATEMATISK INDUKTION Explorativ övning 5 MATEMATISK INDUKTION Syftet med denna övning är att introducera en av de viktigaste bevismetoderna i matematiken matematisk induktion. Termen induktion är lite olycklig därför att matematisk

Läs mer

Kursplan för Matematik

Kursplan för Matematik Sida 1 av 5 Kursplan för Matematik Inrättad 2000-07 SKOLFS: 2000:135 Ämnets syfte och roll i utbildningen Grundskolan har till uppgift att hos eleven utveckla sådana kunskaper i matematik som behövs för

Läs mer

8F Ma Planering v2-7 - Geometri

8F Ma Planering v2-7 - Geometri 8F Ma Planering v2-7 - Geometri Arbetsform under en vecka: Tisdagar (50 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa (30 min): Läsa på anteckningar

Läs mer

Hur lär barn bäst? Mats Ekholm Karlstads universitet

Hur lär barn bäst? Mats Ekholm Karlstads universitet Hur lär barn bäst? Mats Ekholm Karlstads universitet Ståndpunkter som gäller de ungas motivation o För att lära bra behöver de unga belönas för vad de gör. Betyg är den främsta sporren för lärande. o För

Läs mer

Bedömning av matematiska förmågor. Per Berggren och Maria Lindroth 2012-01-26

Bedömning av matematiska förmågor. Per Berggren och Maria Lindroth 2012-01-26 Bedömning av matematiska förmågor Per Berggren och Maria Lindroth 2012-01-26 Matematiska förmågor Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla

Läs mer

DD1393 Mjukvarukonstruktion. Presentationsteknik. Linda Söderlindh, ECE/Språk Universitetsadjunkt i Retorik & teknikvetenskaplig kommunikation

DD1393 Mjukvarukonstruktion. Presentationsteknik. Linda Söderlindh, ECE/Språk Universitetsadjunkt i Retorik & teknikvetenskaplig kommunikation DD1393 Mjukvarukonstruktion Presentationsteknik Linda Söderlindh, ECE/Språk Universitetsadjunkt i Retorik & teknikvetenskaplig kommunikation Kommunikation på DD1393 1,5hp Föreläsning 1 Presentationsteknik

Läs mer

Kursplan. Kurskod GIX711 Dnr MSI 01/02:65 Beslutsdatum 2002-03-01

Kursplan. Kurskod GIX711 Dnr MSI 01/02:65 Beslutsdatum 2002-03-01 Matematiska och systemtekniska institutionen (MSI) Kursplan Kurskod GIX711 Dnr MSI 01/02:65 Beslutsdatum 2002-03-01 Kursens benämning Engelsk benämning Ämne Inriktning matematik/matematikdidaktik för de

Läs mer

Deltagare från förskoleenhet Skärholmen: Maria Franjic, Gorana Lukic, David Matus Leiva och Gunilla Sjögrund Handledare: Birgitta Furuhagen Väga lika

Deltagare från förskoleenhet Skärholmen: Maria Franjic, Gorana Lukic, David Matus Leiva och Gunilla Sjögrund Handledare: Birgitta Furuhagen Väga lika Deltagare från förskoleenhet Skärholmen: Maria Franjic, Gorana Lukic, David Matus Leiva och Gunilla Sjögrund Handledare: Birgitta Furuhagen Väga lika EKVATION i förskolan Förberedelser: litteratur-kursplaner

Läs mer

Studiestrategier för dig som är visuell

Studiestrategier för dig som är visuell Studiestrategier för dig som är visuell Om du har en visuell (V) lärstil är synen din starkaste kanal för att ta in ny kunskap. Prova att använda en del eller alla av följande metoder: Stryk under och

Läs mer

Tränarguide del 2. Mattelek. www.flexprogram.se

Tränarguide del 2. Mattelek. www.flexprogram.se Tränarguide del 2 Mattelek www.flexprogram.se 1 ANTALSUPPFATTNING - MINST/STÖRST ANTAL Övningarna inom detta område tränar elevernas uppfattning av antal. Ett antal objekt presenteras i två separata rutor.

Läs mer

Presentationsteknik 2013-12- 02. Presenta.onsteknik. Presenta.onsteknik. Kom ihåg a* det är fullständigt ointressant vad du säger i din presenta7on

Presentationsteknik 2013-12- 02. Presenta.onsteknik. Presenta.onsteknik. Kom ihåg a* det är fullständigt ointressant vad du säger i din presenta7on Presentationsteknik Jonas Möller Kom ihåg a* det är fullständigt ointressant vad du säger i din presenta7on det är vad åhörarna tror a* du säger som är intressant! Hjälpmedel Dator - Power Point - OH kanon

Läs mer

9E Ma Planering v2-7 - Geometri

9E Ma Planering v2-7 - Geometri 9E Ma Planering v2-7 - Geometri Arbetsform under en vecka: Måndagar (50 min): Genomgång av gemensamma svårigheter i begrepp och metoder. Arbete i grupp med begrepp och metoder. Läxa (45 min): Läsa på anteckningar

Läs mer

Matematik. Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret. Mål som eleverna skall ha uppnått i slutet av det femte skolåret

Matematik. Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret. Mål som eleverna skall ha uppnått i slutet av det femte skolåret Balderskolan, Uppsala musikklasser 2009 Matematik Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret läsa och skriva tal inom talområdet 0 10 000 räkna de fyra räknesätten med olika metoder

Läs mer

RAPPORT FÖR UTVÄRDERING AV AVSLUTAD KURS/DELKURS

RAPPORT FÖR UTVÄRDERING AV AVSLUTAD KURS/DELKURS UPPSALA UNIVERSITET Institutionen för musikvetenskap RAPPORT FÖR UTVÄRDERING AV AVSLUTAD KURS/DELKURS Kurs: Musikteori 1/Musikvetenskap A Delkurs: Satslära/funktionsanalys Termin: VT 211 Totalt besvarade

Läs mer

ACT- Att hantera stress och främja hälsa

ACT- Att hantera stress och främja hälsa ACT- Att hantera stress och främja hälsa (ACT = Acceptance and Commitment Training) Kollegial handledning För att kontinuerligt bli bättre i rollen som gruppledare är det viktigt att öva. Det här är ett

Läs mer

Intervjuguide - förberedelser

Intervjuguide - förberedelser Intervjuguide - förberedelser Din grundläggande förberedelse Dags för intervju? Stort grattis. Glädje och nyfikenhet är positiva egenskaper att fokusera på nu. För att lyckas på intervjun är förberedelse

Läs mer

Risk, säkerhet och rättslig analys för migrering till molnet ÖVERSIKT: VERBAL KOMMUNIKATION

Risk, säkerhet och rättslig analys för migrering till molnet ÖVERSIKT: VERBAL KOMMUNIKATION Risk, säkerhet och rättslig analys för migrering till molnet ÖVERSIKT: VERBAL KOMMUNIKATION ÖVERSIKT 1. Verbal kommunikation 2. Effektiv kommunikation Definition Muntlig kommunikationinnebärkommunikationvia

Läs mer

LMN120, Matematik för lärare, tidigare åldrar 30 högskolepoäng

LMN120, Matematik för lärare, tidigare åldrar 30 högskolepoäng Gäller fr.o.m. vt 10 LMN120, Matematik för lärare, tidigare åldrar 30 högskolepoäng Mathematics for teachers in Primary School, 30 higher education credits Grundnivå/First Cycle 1. Fastställande Kursplanen

Läs mer

Algebra och Ekvationer År 7

Algebra och Ekvationer År 7 Undervisning Algebra och Ekvationer År 7 Lärandemål (konkretisering av syfte och centralt innehåll ur Lgr 11) Rimlighetsbedömning vid uppskattningar och beräkningar i vardagliga och situationer och inom

Läs mer

Mona Røsseland Författare till Pixel. Vad innebär den nya läroplanen? Hur möter ni den nya utmaningen med Pixel

Mona Røsseland Författare till Pixel. Vad innebär den nya läroplanen? Hur möter ni den nya utmaningen med Pixel Temat för föreläsningen Ny läroplan, nya utmaningar! Vad innebär den nya läroplanen? Hur möter ni den nya utmaningen med Pixel Mona Røsseland Författare till Pixel Hur lyfter PIXEL matematiken? Läraren

Läs mer

Formativ bedömning i matematikklassrummet

Formativ bedömning i matematikklassrummet Modul: Taluppfattning och tals användning Del 4: Formativ bedömning Formativ bedömning i matematikklassrummet Peter Nyström, NCM Termen bedömning, eller pedagogisk bedömning kan uppfattas väldigt olika,

Läs mer

Kursinformation. Statistik och geometri, 7 hp. inom kursen 973G10, 15 hp för Lärare i årskurs 4-6

Kursinformation. Statistik och geometri, 7 hp. inom kursen 973G10, 15 hp för Lärare i årskurs 4-6 Kursinformation Statistik och geometri, 7 hp inom kursen 973G10, 15 hp för Lärare i årskurs 4-6 Kursen startar vecka 15 den 7 april 2014 Kursperiod Vecka 15-20 (7 april 17 maj) 2014 Lärare (kursansvarig

Läs mer

GUBBÄNGSSKOLAN: Retorik utvecklar REPORTAGE FOTO MIKAEL M JOHANSSON GRUNDSKOLETIDNINGEN 6 / 2014

GUBBÄNGSSKOLAN: Retorik utvecklar REPORTAGE FOTO MIKAEL M JOHANSSON GRUNDSKOLETIDNINGEN 6 / 2014 GUBBÄNGSSKOLAN: Retorik utvecklar 32 FOTO MIKAEL M JOHANSSON tänkandet Retorikundervisningen blir en chans för eleverna att träna och utveckla sitt språk menar Linnéa Skogqvist-Kasurinen. Genom undervisning

Läs mer

KURSPLAN Matematik för gymnasielärare, 61-90 hp, 30 högskolepoäng

KURSPLAN Matematik för gymnasielärare, 61-90 hp, 30 högskolepoäng 1(5) KURSPLAN Matematik för gymnasielärare, 61-90 hp, 30 högskolepoäng Mathematics för Teachers, 61-90 credits, 30 credits Kurskod: LMGN12 Fastställd av: Utbildningsledare 2012-06-15 Gäller fr.o.m.: HT

Läs mer

Tal i bråkform. Kapitlet behandlar. Att förstå tal

Tal i bråkform. Kapitlet behandlar. Att förstå tal Tal i bråkform Kapitlet behandlar Test Användning av hälften och fjärdedel 2 Representation i bråkform av del av antal och av del av helhet 3, Bråkform i vardagssituationer Stambråk, bråkuttryck med 1

Läs mer

Kompetenser och matematik

Kompetenser och matematik ola helenius Kompetenser och matematik Att försöka skapa strukturer i vad det innebär att kunna matematik är en mångårig internationell trend. Denna artikel anknyter till Vad är kunskap i matematik i förra

Läs mer

Kursinformation och studiehandledning, M0038M Matematik I Differentialkalkyl, Lp I 2012.

Kursinformation och studiehandledning, M0038M Matematik I Differentialkalkyl, Lp I 2012. Kursinformation och studiehandledning, M0038M Matematik I Differentialkalkyl, Lp I 2012. Kursansvarig och examinator: Staffan Lundberg, TVM. Telefon: 0920-49 18 69. Rum: E 882. E-post: lund@ltu.se Lärare

Läs mer

Tillfällen att utveckla fördjupad förståelse en bristvara?

Tillfällen att utveckla fördjupad förståelse en bristvara? Modul: Undervisa matematik utifrån förmågorna Del 5: Resonemangsförmåga Tillfällen att utveckla fördjupad förståelse en bristvara? Örjan Hansson, Högskolan Kristianstad Matematiklärande är en komplex process

Läs mer

SF Numeriska metoder, grundkurs

SF Numeriska metoder, grundkurs - Numeriska metoder, grundkurs Introduktionsföreläsning, September 1, 2014 KTH Royal Institute of Technology Dept. of Mathematics - NA division 1/16 Föreläsning 1 Om föreläsaren Om ämnet Om kursen Matlab

Läs mer

NOKflex. Smartare matematikundervisning

NOKflex. Smartare matematikundervisning NOKflex Smartare matematikundervisning Med NOKflex får du tillgång till ett heltäckande interaktivt matematikläromedel som ger stöd både för elevens individuella lärande och för lärarledd undervisning.

Läs mer

Bedömning av matematiska förmågor. Per Berggren och Maria Lindroth

Bedömning av matematiska förmågor. Per Berggren och Maria Lindroth Bedömning av matematiska förmågor Per Berggren och Maria Lindroth 2013-01-08 Matematiska förmågor Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla

Läs mer

Matematiken i Lpfö 98 och Lpo 94

Matematiken i Lpfö 98 och Lpo 94 Matematiken i Lpfö 98 och Lpo 94 Rumsuppfattning lära sig hitta och lokalisera sig i rummet, utveckla inre rumsuppfattning, förstå lägen och placeringar och att föremål kan se olika ut om de avbildas från

Läs mer

Matematikutveckling med stöd av alternativa verktyg

Matematikutveckling med stöd av alternativa verktyg Matematikutveckling med stöd av alternativa verktyg Vad ska man ha matematik till? Vardagslivet Yrkeslivet Skönheten och konsten Underbart att veta att det finns räcker inte det+ LGR11 Undervisningen ska

Läs mer

Kursinformation och studiehandledning, M0038M Matematik I Differentialkalkyl, Lp I 2013.

Kursinformation och studiehandledning, M0038M Matematik I Differentialkalkyl, Lp I 2013. Kursinformation och studiehandledning, M0038M Matematik I Differentialkalkyl, Lp I 2013. Kursansvarig och examinator: Staffan Lundberg, TVM. Telefon: 0920-49 18 69. Rum: E 882. E-post: lund@ltu.se Lärare

Läs mer

Mona Røsseland Författare till Pixel. Vad innebär den nya läroplanen? Hur möter ni den nya utmaningen med Pixel

Mona Røsseland Författare till Pixel. Vad innebär den nya läroplanen? Hur möter ni den nya utmaningen med Pixel Temat för föreläsningen Ny läroplan, nya utmaningar! Vad innebär den nya läroplanen? Hur möter ni den nya utmaningen med Pixel Mona Røsseland Författare till Pixel Hur lyfter PIXEL matematiken? Läraren

Läs mer

MUEP:

MUEP: MUEP: http://hdl.handle.net/2043/18169 Lyckas??? Lärande??? Att lyckas förändra undervisningskulturen i ett matematikklassrum Information från eleverna kring svårigheterna att förändra undervisningskulturen.

Läs mer

Addition och subtraktion generalisering

Addition och subtraktion generalisering Modul: Algebra Del 8: Avslutande reflektion och utvärdering Addition och subtraktion generalisering Håkan Lennerstad, Blekinge Tekniska Högskola & Cecilia Kilhamn, Göteborgs Universitet Detta lärandeobjekt

Läs mer

Allmän studieplan för utbildning på forskarnivå i

Allmän studieplan för utbildning på forskarnivå i ÖREBRO UNIVERSITET Allmän studieplan för utbildning på forskarnivå i MATEMATIK Mathematics Studieplanen är utfärdad den 8 december 2015 (dnr ORU 5.1-04970/2015). 1 Med stöd av 6 kap. 26 högskoleförordningen

Läs mer

1. Inledning, som visar att man inte skall tro på allt man ser. Betrakta denna följd av tal, där varje tal är dubbelt så stort som närmast föregående

1. Inledning, som visar att man inte skall tro på allt man ser. Betrakta denna följd av tal, där varje tal är dubbelt så stort som närmast föregående MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Christian Gottlieb Gymnasieskolans matematik med akademiska ögon Induktion Dag 1 1. Inledning, som visar att man inte skall tro på allt man ser. Betrakta

Läs mer

Matematik 92MA41 (15hp) Vladimir Tkatjev

Matematik 92MA41 (15hp) Vladimir Tkatjev Matematik 92MA41 (15hp) Vladimir Tkatjev Projektarbete: bakgrund och idéer Etymologi Proicio: kasta fram, sträcka fram (latin) Projektarbetets historia Historiskt sätt har projektarbetet som arbetsform

Läs mer

Kursmanual för SG1102 Mekanik, mindre kurs (6 hp)

Kursmanual för SG1102 Mekanik, mindre kurs (6 hp) Version: 2016-12-19 Kursmanual för SG1102 Mekanik, mindre kurs (6 hp) Innehåll 1. Anmälningstider (tentor & KS:ar) 2. Lärandemål 3. Kurslitteratur 4. Föreläsningar 5. Övningar 6. Inlämningsuppgifter 7.

Läs mer

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla. Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt

Läs mer

Små barns matematik, språk och tänkande går hand i hand. Görel Sterner Eskilstuna 2008

Små barns matematik, språk och tänkande går hand i hand. Görel Sterner Eskilstuna 2008 Små barns matematik, språk och tänkande går hand i hand Görel Sterner Eskilstuna 2008 Rollek - Nalle ska gå på utflykt. - Nu är hon ledsen, hon vill inte ha den tröjan. - Nalle ska ha kalas, då ska hon

Läs mer

Statens skolverks författningssamling

Statens skolverks författningssamling Statens skolverks författningssamling ISSN 1102-1950 Skolverkets föreskrifter om betygskriterier i svenskundervisning för invandrare; SKOLFS 2009:22 Utkom från trycket den 28 maj 2009 beslutade den 15

Läs mer