Bedömning av muntliga prestationer

Storlek: px
Starta visningen från sidan:

Download "Bedömning av muntliga prestationer"

Transkript

1 Modul: Bedömning för lärande och undervisning i matematik Del 6: Muntliga bedömningssituationer Bedömning av muntliga prestationer Karin Rösmer, Karin Landtblom, Gunilla Olofsson och Astrid Pettersson, Stockholms universitet Elevers muntliga prestationer i matematik är en viktig aspekt såväl i undervisning som i bedömning. Enligt Lgy 11 gäller att undervisningen i ämnet matematik ska ge eleverna förutsättning att utveckla förmåga att [...] kommunicera matematiska tankegångar muntligt, skriftligt och i handling (s 90-91). Det innebär att eleverna i undervisningen ska tala matematik, vilket ofta kan göras på ett informellt sätt, bland annat när eleverna diskuterar lösningar i grupp eller i helklass. I sådana situationer kan lärarens roll vara att stimulera diskussionen och ge utmanande frågor som leder diskussionen framåt. Ruiz-Primo (2011) menar att den informella bedömningen är den som sker i farten i den vardagliga undervisningen i interaktionen mellan lärare och elev och denna form av bedömning är ett sätt att nå elevernas tänkande och ge en mer vardaglig form av återkoppling. Eftersom även elevernas muntliga prestationer ska bedömas enligt kunskapskraven innebär det att läraren måste planera in situationer där bedömning av muntliga prestationer är möjlig och eleverna måste vara medvetna om när den bedömningen sker. En mer formell situation kan vara det muntliga delprovet i ett nationellt prov eller liknande situationer iscensatta av läraren. Lärarens roll blir då att sätta samman grupper så att eleverna får de bästa förutsättningar att visa vad de kan, fördela talutrymmet och att vara medveten om vad som ska bedömas. Fokus måste vara att särskilt observera kvaliteter i elevernas visade prestationer och relatera dessa till kunskapskraven. Vilka kvaliteter som är möjliga att visa beror på uppgiftens potential som beskrivs mer utförligt i Del 2. Muntliga situationer i matematikundervisningen är, som vi har nämnt redan i Del 4, förknippade med både sociala och sociomatematiska normer. Det är viktigt att både lärare och elever är medvetna om sina roller i dessa situationer och dess potential för möjligheten till lärande. Både de sociala och de sociomatematiska normerna tar tid att utveckla i matematikklassrummet vilket innebär ett långsiktigt och medvetet arbete. Vilka utmaningar kan man då ställas inför när man ska genomföra muntliga bedömningssituationer? Valet av uppgift är en förutsättning för att arbetet ska ha största möjlighet att vara framgångsrikt. I den muntliga bedömningssituationen är lärarens roll främst att vara lyssnande och observerande samt om det behövs föra elevernas samtal framåt. Även hur arbetet organiseras är viktigt. För eleverna är det viktigt att återkommande få träna sig i att kommunicera matematik och föra matematiska resonemang även muntligt. För läraren är det viktigt att skapa situationer för att återkommande få möjlighet att bedöma elevernas muntliga prestationer. Organisatoriskt kan detta lösas genom återkommande muntliga situationer där läraren kan välja att lyssna på olika grupper av elever vid olika tillfällen, samtidigt som eleverna får regelbunden träning. Därefter kan ett tillfälle för muntlig prestation följas upp av en diskussion i helklass. En fördel med muntliga situationer är att eleverna får möjlighet att visa andra 1 (8)

2 kvaliteter av sitt kunnande än vad de visar vid skriftligt arbete. I en muntlig bedömningssituation kan man med fördel vara två lärare, åtminstone de första tillfällena, för att gemensamt kunna diskutera bedömningen av elevernas prestationer. En annan variant är att göra ljudupptagningar som sedan kan diskuteras i lärargruppen. Det finns inte särskilt mycket forskning som gäller överensstämmelse mellan olika lärares bedömning av muntliga prestationer i matematik. Reliabilitetsstudier av muntliga prov är relativt ovanliga, särskilt vad gäller matematisk kommunikationsförmåga. Palm (2008) har dock genomfört en studie gällande kommunikationsförmåga i kurs C för ett muntligt prov som gavs i slutet av talet. Studien visade att provet hade reliabilitetsproblem som framförallt kunde härröras från den då använda bedömningsmodellen. Även om bedömning av elevers muntliga prestationer kan vara mindre reliabla än vissa skriftliga bedömningar kan det, utifrån ett validitetsperspektiv och med nuvarande läroplansbetoning av muntlig kommunikation, tyckas viktigt att arbeta med bedömning av muntliga prestationer. Muntlig bedömning betraktas ibland som en form av alternativ bedömning. Skriftliga former av bedömning tycks dominera i summativ bedömning vid universitet. Muntlig bedömning har dock en lång och ärofull historia inom högre utbildning och är väl etablerat inom flera olika discipliner.(joughin, 1998). Sedan 1998 har det nationella provet i årskurs 9 innehållit ett muntligt delprov. Även för gymnasieskolans matematik kurs C och D har det sedan 2003 funnits ett frivilligt muntligt bedömningsstöd. Idag framhålls än tydligare elevens muntliga prestationer i matematik som en viktig aspekt i ämnesplanens syfte, förmågor och kunskapskrav. Med Lgy 11 infördes obligatoriska muntliga delprov i gymnasieskolans nationella prov i matematik 1 och 3. Muntliga bedömningssituationer Elever kan visa sina kunskaper i matematik på olika sätt: i handling, skriftligt eller muntligt. I den muntliga kommunikationen ingår att uttrycka sig begripligt och att använda korrekt och relevant matematisk terminologi. Dessutom ingår att ta del av andras argument och själv kunna argumentera för sina synpunkter. Elevers muntliga prestationer i matematik kan bedömas i olika typer av situationer. Dessa kan illustreras med följande bilder. Illustrationerna är hämtade från PRIM-gruppens material Tala om kunskap (2003). Förhör Eleven utreder problem eller svarar på frågor ställda av läraren. Föredrag, presentation Eleven håller en presentation, redovisar en problemlösning eller liknade inför en grupp eller en hel klass. 2 (8)

3 Grupparbete, samtal Eleverna löser och diskuterar problem tillsammans i grupp eller för ett samtal. Läraren följer eller leder samtalet. De muntliga delproven i kursproven för matematik 1 är skapade enligt den tredje modellen och i kurs 2-4 enligt den andra modellen. För närvarande är dessa delprov endast obligatoriska för proven i matematik 1 och kurs 3. Joughin (1998) har tagit fram sex olika dimensioner som kan fokuseras i olika utsträckning vid muntlig bedömning. De sex dimensionerna är: Huvudsaklig typ av innehåll Interaktion Autenticitet Struktur Bedömare Grad av muntlighet De olika muntliga delproven för matematik 1 och 3 skiljer sig i några av ovanstående dimensioner. I de muntliga delproven i kursproven för matematik 3 har man valt att lägga särskilt fokus på bedömning av kommunikationsförmågan som delats upp i några aspekter. De tre aspekterna av kommunikation som bedöms enligt denna modell är: Fullständighet, relevans och struktur. Hur fullständig, relevant och strukturerad elevens redovisning är. Beskrivningar och förklaringar. Förekomst av och utförlighet i beskrivningar och förklaringar. Matematisk terminologi. Hur väl eleven använder matematiska termer, symboler och konventioner. Mer om detta och de muntliga nationella delprov som utformats enligt denna modell kan ni läsa om på Skolverkets hemsida. En muntlig bedömningssituation I filmen ni ska se får ni följa tre skådespelande elever: Emma Julia och Marcus som genomför ett muntligt delprov i matematik 1. Uppgiften bygger på en statistisk undersökning om spelvanor på internet och är hämtad från det muntliga delprovet ur nationella provet i matematik 1 våren Läraren i filmen har valt ut ett antal frågor att ställa till eleverna, dessa frågor finns i uppgiften nedan och frågorna är numrerade så som de står i originalversionen. Hela denna version och ytterligare en version av delprovet finns på Bedömningsstöd för bedömning av muntliga prestationer enligt 3 (8)

4 modell 2 finns att ta del av på Skolverkets hemsida. Sätt dig in i uppgiften med tillhörande tabell, diagram och bedömningsmatris innan du ser på filmen. 4 (8)

5 Spelande på internet uppgiften Följande påståenden får eleverna Julia (J), Emma(E) och Marcus(M) i filmen ta ställning till utifrån tabell och diagram. 1.(J): 3.(E): 4.(M): 6.(J): 7.(M): 10.(E): Andelen av befolkningen i åldersgruppen år som spelade spel på internet en genomsnittlig dag minskade mellan år 2007 och år Ungefär en tredjedel av männen i åldern år spelade spel på internet en genomsnittlig dag år Andelen kvinnor som spelade spel på internet en genomsnittlig dag har mellan åren 2009 och 2010 nästan fördubblats. Andelen av befolkningen i åldersgruppen år som spelade spel på internet en genomsnittlig dag ökade mellan år 2004 och år 2010 med 400 %. I åldersgruppen 9 14 år var det tre gånger så många som spelade spel på internet år 2010 jämfört med år Andelen män som spelade spel på internet en genomsnittlig dag år 2004 utgjorde 1 % av den totala befolkningen. 12.(M): Dubbelt så många 30-åriga män som 30-åriga kvinnor spelade spel på internet år Följande frågor diskuterar eleverna i filmen. 1. Hur förhåller sig tabell och diagram till varandra? 3. Fanns det inga kvinnor och ingen i åldersgruppen år som spelade spel på internet en genomsnittlig dag år 2004? 6. Hur skulle man kunna förändra diagrammet för att förstärka skillnaden mellan andelen män och kvinnor som spelade spel på internet? 7. Hur skulle en speltillverkare kunna använda informationen i tabell och diagram för sin spelutveckling? 5 (8)

6 Spelande på internet tabell och diagram Tabellen visar hur stor andel av befolkningen som spelade spel på internet en genomsnittlig dag under tidsperioden (%). Källa: Nordicom-Sverige Diagrammet visar hur stor andel av befolkningen 9 79 år som spelade spel på internet en genomsnittlig dag år 2010 (%). 6 (8)

7 Spelande på internet bedömningsmatris, max 4/5/4 Du ska under tiden du ser på filmen bedöma de tre elevernas prestationer med hjälp av följande bedömningsmatris. 7 (8)

8 Referenser Joughin, G. (1998). Dimensions of oral assessment. Assessment & Evaluation in Higher Education, 23(4), 367. Palm, T. (2008). Interrater reliability in a national assessment of oral mathematical commnication. Nordic studies in mathematics education, 13(2), PRIM-gruppen. (2003). Tala om kunskap. Stockholm: Lärarhögskolan i Stockholm. Ruiz-Primo, A.M. (2011). Informal formative assessment. The role of instructional dialogues in assessing students learning. Studies in Educational Evaluation, 37, Skolverket. Provhäfte Del II, vt Tillgänglig augusti 2014 på: Skolverket. Bedömning av muntliga prestationer i matematik. Tillgänglig augusti 2014 på: utbildning/bedomningsstod/matematik/bedomning-av-muntliga-prestationer-i-matematik (8)

Bedömning av muntliga prestationer

Bedömning av muntliga prestationer Bedömningsstöd i matematik på gymnasial nivå Bedömning av muntliga prestationer Materialet har framställts under 2013 av PRIM-gruppen vid Stockholms universitet i samarbete med Institutionen för tillämpad

Läs mer

Av kursplanen och betygskriterierna,

Av kursplanen och betygskriterierna, KATARINA KJELLSTRÖM Muntlig kommunikation i ett nationellt prov PRIM-gruppen ansvarar för diagnosmaterial och de nationella proven i matematik för grundskolan. Här beskrivs de muntliga delproven i ämnesprovet

Läs mer

Kunskapskravens värdeord i matematik

Kunskapskravens värdeord i matematik DISKUSSIONSUNDERLAG FÖR GRUNDSKOLAN Diskutera Kunskapskravens värdeord i matematik Syftet med materialet är att ge lärare stöd för att diskutera kunskapskravens värdeord för resonemangsförmågan. Detta

Läs mer

Bedömning av kunskap för lärande och undervisning i matematik. PRIM-gruppen Gunilla Olofsson

Bedömning av kunskap för lärande och undervisning i matematik. PRIM-gruppen Gunilla Olofsson Bedömning av kunskap för lärande och undervisning i matematik PRIM-gruppen Gunilla Olofsson PRIM-gruppen Forskningsgruppen för bedömning av kunskap och kompetens Gruppen utvecklar olika instrument för

Läs mer

Resultat från kursprovet i matematik 1a, 1b och 1c våren 2014 Karin Rösmer, Katarina Kristiansson och Niklas Thörn PRIM-gruppen

Resultat från kursprovet i matematik 1a, 1b och 1c våren 2014 Karin Rösmer, Katarina Kristiansson och Niklas Thörn PRIM-gruppen Resultat från kursprovet i matematik 1a, 1b och 1c våren 014 Karin Rösmer, Katarina Kristiansson och Niklas Thörn PRIM-gruppen Inledning De nationella kursproven i matematik 1a, 1b och 1c konstrueras och

Läs mer

Kunskapskrav och nationella prov i matematik

Kunskapskrav och nationella prov i matematik Kunskapskrav och nationella prov i matematik Luleå universitet 16 mars 2012 PRIM-gruppen Astrid Pettersson Disposition PRIM-gruppens uppdrag Bedömning Lgr 11 och matematik Det nationella provsystemet PRIM-gruppens

Läs mer

Matematik. Bedömningsanvisningar. Vårterminen 2009 ÄMNESPROV. Delprov C ÅRSKURS

Matematik. Bedömningsanvisningar. Vårterminen 2009 ÄMNESPROV. Delprov C ÅRSKURS ÄMNESPROV Matematik ÅRSKURS 9 Prov som ska återanvändas omfattas av sekretess enligt 4 kap. 3 sekretesslagen. Avsikten är att detta prov ska kunna återanvändas t.o.m. 2009-06-30. Vid sekretessbedömning

Läs mer

Provbetyg E Provbetyg D Provbetyg C Provbetyg B Provbetyg A. Totalpoäng Minst 37 poäng Minst 59 poäng Minst 77 poäng Minst 95 poäng Minst 106 poäng

Provbetyg E Provbetyg D Provbetyg C Provbetyg B Provbetyg A. Totalpoäng Minst 37 poäng Minst 59 poäng Minst 77 poäng Minst 95 poäng Minst 106 poäng Ämnesprovet i matematik i årskurs 6, 2015 Astrid Pettersson och Marie Thisted PRIM-gruppen, Stockholms universitet Inledning Konstruktionen av de nationella proven utgår från syftet med dessa, d.v.s. att

Läs mer

Luleå universitet 16 mars 2012 PRIM-gruppen Astrid Pettersson

Luleå universitet 16 mars 2012 PRIM-gruppen Astrid Pettersson Kunskapskrav och nationella prov i matematik Luleå universitet 16 mars 2012 PRIM-gruppen Astrid Pettersson Disposition PRIM-gruppens uppdrag Bedömning Lgr 11 och matematik Det nationella provsystemet PRIM-gruppens

Läs mer

Utbildning i svenska för invandrare: Sammanställning av kunskapskrav kurs A (A1-/A1)

Utbildning i svenska för invandrare: Sammanställning av kunskapskrav kurs A (A1-/A1) Utbildning i svenska för invandrare: Sammanställning av kunskapskrav kurs A (A1-/A1) Betyget D innebär att kunskapskraven för E och till övervägande del för C är uppfyllda. Betyget B innebär att kunskapskraven

Läs mer

Bedömning för undervisning och lärande

Bedömning för undervisning och lärande Modul: Bedömning för lärande och undervisning i matematik Del 1: Bedömning för undervisning och lärande Bedömning för undervisning och lärande Mikael Holmquist, Göteborgs universitet och Astrid Pettersson,

Läs mer

Resultat från kursprovet i matematik 1a och 1b vårterminen 2015 Karin Rösmer, Katarina Kristiansson och Niklas Thörn PRIM-gruppen

Resultat från kursprovet i matematik 1a och 1b vårterminen 2015 Karin Rösmer, Katarina Kristiansson och Niklas Thörn PRIM-gruppen Resultat från kursprovet i matematik 1a och 1b vårterminen 2015 Karin Rösmer, Katarina Kristiansson och Niklas Thörn PRIM-gruppen Inledning De nationella kursproven i matematik 1a, 1b och 1c konstrueras

Läs mer

Matematik i Skolverket

Matematik i Skolverket SMaLs sommarkurs 2013 Matematik i Skolverket Helena Karis Margareta Oscarsson Reformer - vuxenutbildning 1 juli 2012 - Kursplaner - vuxenutbildning, grundläggande nivå - särskild utbildning för vuxna på

Läs mer

hälsa, naturbruk och ekologisk hållbarhet (i biologi) energi, teknik, miljö och samhälle (i fysik) energi, miljö, hälsa och samhälle (i kemi).

hälsa, naturbruk och ekologisk hållbarhet (i biologi) energi, teknik, miljö och samhälle (i fysik) energi, miljö, hälsa och samhälle (i kemi). FÖRMÅGAN ATT KOMMUNICERA Kursplanerna för de naturorienterande ämnena biologi, fysik och kemi är till stora delar likalydande frånsett det centrala innehållet och kan därför diskuteras tillsammans. Kursplanernas

Läs mer

Elever med funktionsnedsättning betyg och nationella prov. Helena Carlsson Maj Götefelt Roger Persson

Elever med funktionsnedsättning betyg och nationella prov. Helena Carlsson Maj Götefelt Roger Persson Elever med funktionsnedsättning betyg och nationella prov Helena Carlsson Maj Götefelt Roger Persson Betyg och nationella prov Strukturerad undervisning Bedömning och betyg Undantagsbestämmelsen Nationella

Läs mer

Beslut för gymnasieskola

Beslut för gymnasieskola Beslut 2012-11-23 Dnr 400-2011:6483 Huvudmannen för Jensen Uppsala Rektorn vid Jensen Uppsala Beslut för gymnasieskola efter riktad tillsyn av Jensen Uppsala i Uppsala kommun Skolinspektionen, Box 23069,

Läs mer

Problemlösning som metod

Problemlösning som metod Problemlösning som metod - för att lära matematik Fuengirola november 2014 eva.taflin@gu.se evat@du.se Problemlösningsmodulens övergripande syfte Att initiera utveckling av lärares egen undervisning utifrån

Läs mer

Ämnesprovet i matematik i årskurs 9, 2014 Margareta Enoksson PRIM-gruppen

Ämnesprovet i matematik i årskurs 9, 2014 Margareta Enoksson PRIM-gruppen Ämnesprovet i matematik i årskurs 9, 2014 Margareta Enoksson PRIM-gruppen Inledning Konstruktionen av de nationella ämnesproven utgår från syftet med dessa, d.v.s. att stödja en likvärdig och rättvis bedömning

Läs mer

Anna Öhman. Lic-forskarskolan i yrkesämnenas didaktik. Karlstads Universitet

Anna Öhman. Lic-forskarskolan i yrkesämnenas didaktik. Karlstads Universitet Anna Öhman Lic-forskarskolan i yrkesämnenas didaktik Karlstads Universitet Bedömningssamtal i frisörutbildningen Bedömning av yrkeskunnande inom hantverksprogrammets frisörutbildning Ett multimodalt perspektiv

Läs mer

NpMa3c Muntligt delprov Del A ht 2012

NpMa3c Muntligt delprov Del A ht 2012 Till eleven - Information inför det muntliga delprovet Du kommer att få en uppgift som du ska lösa skriftligt och sedan ska du presentera din lösning muntligt. Om du behöver får du ta hjälp av dina klasskamrater

Läs mer

2015-03-11. Kunskapskrav. Materialet består av flera olika komponenter.

2015-03-11. Kunskapskrav. Materialet består av flera olika komponenter. Bedömning för lärande i matematik Dagens innehåll Biennette i Malmö 15 mars 2015 Katarina Kjellström Olika bedömningsstöd i matematik Vad är syftet med bedömningsstödet för åk 1-9 Vilka har arbeta med

Läs mer

C. Stöd för lärarlagets lägesbedömning av undervisningsprocessen

C. Stöd för lärarlagets lägesbedömning av undervisningsprocessen C. Stöd för lärarlagets lägesbedömning av undervisningsprocessen Det här materialet är riktat till lärare och lärarlag och är ett stöd för skolans nulägesbeskrivning av matematikundervisning. Målet är

Läs mer

NpMa4 Muntligt delprov Del A vt 2013

NpMa4 Muntligt delprov Del A vt 2013 Till eleven - Information inför det muntliga delprovet Du kommer att få en uppgift som du ska lösa skriftligt och sedan ska du presentera din lösning muntligt. Om du behöver får du ta hjälp av dina klasskamrater

Läs mer

Välkommen till Att bedöma kunskap i matematik" - Olofström. Kursansvarig: Karin Sällström 0470-70 87 40 karin.sallstrom@lnu.se.

Välkommen till Att bedöma kunskap i matematik - Olofström. Kursansvarig: Karin Sällström 0470-70 87 40 karin.sallstrom@lnu.se. Välkommen till Att bedöma kunskap i matematik" - Olofström Kursansvarig: Karin Sällström 0470-70 87 40 karin.sallstrom@lnu.se Lärare: Karin Sällström karin.sallstrom@lnu.se Mikael Gustafsson mikael.gson@telia.com

Läs mer

Figur 1: Påverkan som processer. Vad tycker elever om matematik och matematikundervisning?

Figur 1: Påverkan som processer. Vad tycker elever om matematik och matematikundervisning? Modul: Problemlösning Del 1: Matematiska problem Känsla för problem Lovisa Sumpter När vi arbetar med matematik är det många faktorer som påverkar det vi gör. Det är inte bara våra kunskaper i ämnet som

Läs mer

Bedömning av matematiska förmågor. Per Berggren och Maria Lindroth 2012-01-26

Bedömning av matematiska förmågor. Per Berggren och Maria Lindroth 2012-01-26 Bedömning av matematiska förmågor Per Berggren och Maria Lindroth 2012-01-26 Matematiska förmågor Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla

Läs mer

Fuengirola den 8 november Matematiklyftet. Margareta Oscarsson #malyft

Fuengirola den 8 november Matematiklyftet. Margareta Oscarsson #malyft Fuengirola den 8 november 2014 Matematiklyftet Margareta Oscarsson 08 52733327 margareta.oscarsson@skolverket.se #malyft Dagens program Matematiklyftet i korthet Materialet på lärportalen De didaktiska

Läs mer

Att använda Bedömningsstöd i taluppfattning i årskurs 1 3 i specialskolan

Att använda Bedömningsstöd i taluppfattning i årskurs 1 3 i specialskolan Att använda Bedömningsstöd i taluppfattning i årskurs 1 3 i specialskolan Utgångspunkter För döva elever och elever med hörselnedsättning sker begreppsutveckling inom matematik på liknande sätt som för

Läs mer

Uppföljning betyg och ämnesprov årskurs 3,6 och 9 grundskolan Piteå kommun 2012

Uppföljning betyg och ämnesprov årskurs 3,6 och 9 grundskolan Piteå kommun 2012 Uppföljning betyg och ämnesprov årskurs 3,6 och 9 grundskolan Piteå kommun 2012 Anette Christoffersson Utvecklingsledare Sid 1 Innehåll Systematiskt kvalitetsarbete... 4 Nationella och lokala styrdokument...

Läs mer

Ämnesprovet i matematik för årskurs Hur gick det? Vad tyckte lärarna? Biennalen Umeå 7 februari 2014

Ämnesprovet i matematik för årskurs Hur gick det? Vad tyckte lärarna? Biennalen Umeå 7 februari 2014 Ämnesprovet i matematik för årskurs 9 2013 Hur gick det? Vad tyckte lärarna? Biennalen Umeå 7 februari 2014 Margareta Enoksson, Karin Pollack PRIM-gruppen Stockholms universitet Innehåll Syfte Hur gick

Läs mer

NpMa2b Muntlig del vt 2012

NpMa2b Muntlig del vt 2012 Till eleven - Information inför den muntliga provdelen Du kommer att få en uppgift som du ska lösa skriftligt och sedan ska du presentera din lösning muntligt. Om du behöver får du ta hjälp av dina klasskamrater

Läs mer

Matematiksatsning Stödinsatser. Matematiksatsning Stödinsatser. Bakgrund OECD. Undersökningar på olika nivåer. Vad kan observeras 11-04-29

Matematiksatsning Stödinsatser. Matematiksatsning Stödinsatser. Bakgrund OECD. Undersökningar på olika nivåer. Vad kan observeras 11-04-29 Stödinsatser Stödinsatser Att följa och dokumentera utvecklingsprojekt Insatser 1/11 2010-30/6 2013 Undersökningar på olika nivåer Regering Skolverk Skolor Bakgrund OECD TIMSS -Third International Mathematics

Läs mer

Variation i undervisning och bedömning. Per Berggren och Maria Lindroth 2013-04-23

Variation i undervisning och bedömning. Per Berggren och Maria Lindroth 2013-04-23 Variation i undervisning och bedömning Per Berggren och Maria Lindroth 2013-04-23 Bedömning Att göra det viktigaste bedömbart och inte det enkelt bedömbara till det viktigaste. Astrid Pettersson, PRIM-gruppen

Läs mer

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla. Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt

Läs mer

Att arbeta med öppna uppgifter

Att arbeta med öppna uppgifter Modul: Samband och förändring Del: 1 Öppna uppgifter Att arbeta med öppna uppgifter Ingemar Holgersson, Högskolan Kristianstad Kursplanen i matematik betonar att undervisningen ska leda till att eleverna

Läs mer

Bedömningsunderlag för Verksamhetsförlagd utbildning (VFU)

Bedömningsunderlag för Verksamhetsförlagd utbildning (VFU) Ht-16 Bedömningsunderlag för Verksamhetsförlagd utbildning (VFU) ÄMNES- OCH ÄMNESDIDAKTISKA STUDIER Kurs: Grundläggande engelska för grundlärare med inriktning mot arbete i grundskolans årskurs 4-6, I,

Läs mer

Bedömning för lärande i matematik i praktiken. Per Berggren och Maria Lindroth

Bedömning för lärande i matematik i praktiken. Per Berggren och Maria Lindroth Bedömning för lärande i matematik i praktiken Per Berggren och Maria Lindroth 2012-10-30 Matematiska förmågor Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar

Läs mer

Hur ska måluppfyllelsen öka? Matematiklyftet

Hur ska måluppfyllelsen öka? Matematiklyftet Matematiklyftet Ökad måluppfyllelse Hur ska måluppfyllelsen öka? Matematiklyftet Fortbildning i matematikdidaktik för alla matematiklärare Stöd för arbetet med matematik i förskolan och förskoleklassen

Läs mer

I figur 1 och 2 redovisas betygsfördelningen på delproven i svenska 1 respektive svenska som andraspråk 1.

I figur 1 och 2 redovisas betygsfördelningen på delproven i svenska 1 respektive svenska som andraspråk 1. Resultat från kursprov 1 våren 1 Tobias Dalberg, Kristina Eriksson, Harriet Uddhammar Institutionen för nordiska språk/fums Uppsala universitet Kursprov 1 vårterminen 1 hade temat I andras ögon. Provet

Läs mer

matematiska förmågor Per Berggren och Maria Lindroth 2013-05-21

matematiska förmågor Per Berggren och Maria Lindroth 2013-05-21 Varierad undervisning och bedömning av matematiska förmågor Per Berggren och Maria Lindroth 2013-05-21 5x5-spel Vad är mönstret värt? Kul Matematik Per Berggren och Maria Lindroth Matematiska förmågor

Läs mer

bedömning Per Berggren och Maria Lindroth 2014-05-23

bedömning Per Berggren och Maria Lindroth 2014-05-23 Varierad undervisning och bedömning Per Berggren och Maria Lindroth 2014-05-23 Matematiska förmågor Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla

Läs mer

Bedöma elevers förmågor i muntlig uppgift

Bedöma elevers förmågor i muntlig uppgift BEDÖMNINGSSTÖD I MATEMATIK Bedöma elevers förmågor i muntlig uppgift Innehåll Syftet med materialet sid. 2 Bedömning av muntliga prestationer i matematik sid. 2 Olika typer av bedömningssituationer sid.

Läs mer

Förstärkt tillsyn av skolors arbete med bedömning

Förstärkt tillsyn av skolors arbete med bedömning 1 (11) Förstärkt tillsyn av skolors arbete med bedömning och betygssättning Uppdraget Regeringen har i beslut 1 24 november 2011 givit Skolinspektionen i uppdrag att närmare granska hur väl betygssättningen

Läs mer

De nationella ämnesproven har som syfte att stödja en likvärdig och rättvis

De nationella ämnesproven har som syfte att stödja en likvärdig och rättvis Inger Ridderlind & Marie Thisted Ämnesprovet för årskurs 6 Under våren 2015 genomfördes för fjärde gången det nationella ämnesprovet i matematik för årskurs 6. Denna artikel utgår i huvudsak från ämnesprovet

Läs mer

Bedömning för lärande formativ klassrumspraktik Per Berggren och Maria Lindroth

Bedömning för lärande formativ klassrumspraktik Per Berggren och Maria Lindroth Bedömning för lärande formativ klassrumspraktik Per Berggren och Maria Lindroth 2016-05-10 Utvärdering av den nya betygsskalan samt kunskapskravens utformning Skolverket 2016 Resultat i sammanfattning

Läs mer

I arbetet hanterar eleven flera procedurer och löser uppgifter av standardkaraktär med säkerhet, både utan och med digitala verktyg.

I arbetet hanterar eleven flera procedurer och löser uppgifter av standardkaraktär med säkerhet, både utan och med digitala verktyg. Kunskapskrav Ma 2a Namn: Gy Betyg E D Betyg C B Betyg A 1. Begrepp Eleven kan översiktligt beskriva innebörden av centrala begrepp med hjälp av några representationer samt översiktligt beskriva sambanden

Läs mer

Elevers kunskapsutveckling i grundskolan

Elevers kunskapsutveckling i grundskolan 2016-11-27 1 (10) TJÄNSTESKRIVELSE UBN 2014/242-630 Utbildningsnämnden Elevers kunskapsutveckling i grundskolan Förslag till beslut 1. Utbildningsnämnden noterar informationen till protokollet. 2. Utbildningsnämnden

Läs mer

Upplägg och genomförande

Upplägg och genomförande Upplägg och genomförande Provet består av fyra delprov: Läsförståelse Hörförståelse Skriftlig produktion Muntlig produktion och interaktion Tid på respektive provdel bestäms utifrån erfarenheter vid utprövningarna

Läs mer

Inledning Kravgränser Provsammanställning... 18

Inledning Kravgränser Provsammanställning... 18 Innehåll Inledning... 3 Bedömningsanvisningar... 3 Allmänna bedömningsanvisningar... 3 Bedömningsanvisningar Del I... 4 Bedömningsanvisningar Del II... 5 Bedömningsanvisningar uppgift 8 (Max 5/4)... 12

Läs mer

Sammanfattning Rapport 2010:13. Undervisningen i matematik i gymnasieskolan

Sammanfattning Rapport 2010:13. Undervisningen i matematik i gymnasieskolan Sammanfattning Rapport 2010:13 Undervisningen i matematik i gymnasieskolan 1 Sammanfattning Skolinspektionen har granskat kvaliteten i undervisningen i matematik på 55 gymnasieskolor spridda över landet.

Läs mer

Verksamhetsrapport. Skolinspektionen. efter kvalitetsgranskning av undervisningen i matematik kurs 3c vid Westerlundska gymnasiet i Enköpings kommun

Verksamhetsrapport. Skolinspektionen. efter kvalitetsgranskning av undervisningen i matematik kurs 3c vid Westerlundska gymnasiet i Enköpings kommun Bilaga 1 Verksam hetsrapport 2015-03-13 efter kvalitetsgranskning av undervisningen i matematik kurs 3c vid Westerlundska gymnasiet i Enköpings kommun - 2015-03-13 1 (10) Innehåll Inledning Bakgrundsuppgifter

Läs mer

Problemlösning, öppna frågor och formativ bedömning, hur? Margareta Bynke & Anna Gullberg Malmö Högskola, 2013

Problemlösning, öppna frågor och formativ bedömning, hur? Margareta Bynke & Anna Gullberg Malmö Högskola, 2013 Problemlösning, öppna frågor och formativ bedömning, hur? Margareta Bynke & Anna Gullberg Malmö Högskola, 2013 www.mentimeter.com 1.Skapa en fråga. 2.Låt klassen få rösta. Tag fram mobiltelefonen (det

Läs mer

LMN120, Matematik för lärare, tidigare åldrar 30 högskolepoäng

LMN120, Matematik för lärare, tidigare åldrar 30 högskolepoäng Gäller fr.o.m. vt 10 LMN120, Matematik för lärare, tidigare åldrar 30 högskolepoäng Mathematics for teachers in Primary School, 30 higher education credits Grundnivå/First Cycle 1. Fastställande Kursplanen

Läs mer

Matematik. Kursprov, vårterminen 2012. Lärarinformation för muntlig del. Lärarmaterial Elevmaterial Elevmaterial, engelsk version

Matematik. Kursprov, vårterminen 2012. Lärarinformation för muntlig del. Lärarmaterial Elevmaterial Elevmaterial, engelsk version Kursprov, vårterminen 2012 Matematik Lärarinformation för muntlig del Lärarmaterial Elevmaterial Elevmaterial, engelsk version 1c Prov som återanvänds omfattas av sekretess enligt 17 kap. 4 offentlighets-

Läs mer

Dagens innehåll 2014-10-27. Bedömning för lärande i matematik. PRIM-gruppen. Katarina Kjellström Inger Ridderlind Anette Skytt

Dagens innehåll 2014-10-27. Bedömning för lärande i matematik. PRIM-gruppen. Katarina Kjellström Inger Ridderlind Anette Skytt Bedömning för lärande i matematik Mullsjö 16 juni 2014 Katarina Kjellström Inger Ridderlind Anette Skytt PRIM-gruppen Dagens innehåll Vad är syftet med detta bedömningsstöd Vilka har arbeta med materialet

Läs mer

Pedagogisk planering aritmetik (räkning)

Pedagogisk planering aritmetik (räkning) Pedagogisk planering aritmetik (räkning) Vi kommer att arbeta med de fyra räknesätten i matematik. Syfte (ur Skolverkets kursplan) Under det här arbetsområdet kommer vi att arbeta med att utveckla följande

Läs mer

Ämnesprovet i matematik i årskurs 9, 2013 Margareta Enoksson och Katarina Kristiansson PRIM-gruppen

Ämnesprovet i matematik i årskurs 9, 2013 Margareta Enoksson och Katarina Kristiansson PRIM-gruppen Ämnesprovet i matematik i årskurs 9, 2013 Margareta Enoksson och Katarina Kristiansson PRIM-gruppen I denna rapport om ämnesprovet i matematik beskrivs resultaten både på delprovs- och uppgiftsnivå samt

Läs mer

Olika proportionella samband, däribland dubbelt och hälften.

Olika proportionella samband, däribland dubbelt och hälften. Karin Landtblom & Anette De Ron Gruppera mera! Dubbelt och hälften är vanliga inslag i den tidiga matematikundervisningen. Elever ska ringa in hälften av något eller rita så att det blir dubbelt så många.

Läs mer

Bengt Drath. Högskolan i Skövde Stöpenskolan i Skövde kommun

Bengt Drath. Högskolan i Skövde Stöpenskolan i Skövde kommun Prata matematik Bengt Drath Högskolan i Skövde Stöpenskolan i Skövde kommun Matematikkunnande tikk Vad ingår i begreppet matematikkunnande? eller som elever skulle tänka: Hur skall en duktig elev i matte

Läs mer

Resultat från kursprovet i matematik kurs 1a, 1b och 1c våren 2013 Karin Rösmer och Samuel Sollerman PRIM-gruppen

Resultat från kursprovet i matematik kurs 1a, 1b och 1c våren 2013 Karin Rösmer och Samuel Sollerman PRIM-gruppen Resultat från kursprovet i matematik kurs 1a, 1b och 1c våren 2013 Karin Rösmer och Samuel Sollerman PRIM-gruppen Inledning De nationella kursproven i matematik kurs 1a, kurs 1b och kurs 1c konstrueras

Läs mer

Betyg och bedömning. Föreläsning den 18 februari Lars Nohagen, Cesam Centrum för de samhällsvetenskapliga ämnenas didaktik.

Betyg och bedömning. Föreläsning den 18 februari Lars Nohagen, Cesam Centrum för de samhällsvetenskapliga ämnenas didaktik. Betyg och bedömning - hur tar jag reda på vad elever kan? Föreläsning den 18 februari 2013 Lars Nohagen, Cesam Centrum för de samhällsvetenskapliga ämnenas didaktik Lars Nohagen 1 Vad är en bedömning -

Läs mer

Bedömning och betygssättning på Kungsholmens Gymnasium/Stockholms musikgymnasium

Bedömning och betygssättning på Kungsholmens Gymnasium/Stockholms musikgymnasium Bedömning och betygssättning på Kungsholmens Gymnasium/Stockholms musikgymnasium Inledning Denna text syftar till att klargöra regler kring bedömning och betygssättning och beskriva hur vi på Kungsholmens

Läs mer

Lokal pedagogisk planering Läsåret 2014-2015

Lokal pedagogisk planering Läsåret 2014-2015 Lokal pedagogisk planering Läsåret 2014-2015 Kurs: Engelska årskurs 6 Tidsperiod: Vårterminen 2015 vecka 3-16 Skola: Nordalsskolan, Klass: 6A, 6B och 6C Lärare: Kickie Nilsson Teveborg Kursen kommer att

Läs mer

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla. Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt

Läs mer

Matematik. Ämnesprov, läsår 2012/2013. Bedömningsanvisningar. Årskurs. Delprov B och Delprov C

Matematik. Ämnesprov, läsår 2012/2013. Bedömningsanvisningar. Årskurs. Delprov B och Delprov C Ämnesprov, läsår 2012/2013 Matematik Bedömningsanvisningar Delprov B och Delprov C Årskurs 9 Prov som återanvänds omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta prov återanvänds

Läs mer

Enhet / skola: Lindens skola i Lanna Åk: 1

Enhet / skola: Lindens skola i Lanna Åk: 1 Skolområde Väster Lokal Pedagogisk Planering Enhet / skola: Lindens skola i Lanna Åk: 1 Avsnitt / arbetsområde: Ämnen som ingår: Tema: Undersöka med Hedvig Svenska/svenska som andraspråk, matematik, bild,

Läs mer

Åsa Sebestyen, provutvecklare, IPS, Göteborgs universitet 1

Åsa Sebestyen, provutvecklare, IPS, Göteborgs universitet 1 Göteborgs Universitet Humanisten Språk och lärande 17 maj 2016 Åsa Sebestyen asa.sebestyen@gu.se Provutvecklare NAFS-projektet, GU Gymnasielärare (ty, eng, spa) ü NAFS-projektet vad är det? ü Prov och

Läs mer

Om Lgr 11 och Favorit matematik 4 6

Om Lgr 11 och Favorit matematik 4 6 Om Lgr 11 och Favorit matematik 4 6 TYDLIG OCH MEDVETEN MATEMATIKUNDERVISNING En stark koppling mellan läroplan/kunskaps mål, innehåll och bedömning finns för att medvetande göra eleverna om syftet med

Läs mer

Enhet / skola: Lindens skola i Lanna Åk: 3

Enhet / skola: Lindens skola i Lanna Åk: 3 Skolområde Väster Lokal Pedagogisk Planering Enhet / skola: Lindens skola i Lanna Åk: 3 Avsnitt / arbetsområde: Undersöka med Hedvig Ämnen som ingår: Svenska/svenska som andraspråk, matematik, bild, So,

Läs mer

Under senare år har flera alternativa

Under senare år har flera alternativa PETER NYSTRÖM & TORULF PALM Är det något fel med vanliga matteprov? Med utgångspunkt i de olika syften som prov och bedömning har, diskuteras värdet av varierade bedömningsformer. Artikeln består av två

Läs mer

Bedömning för lärande. Per Berggren och Maria Lindroth 2012-11-13

Bedömning för lärande. Per Berggren och Maria Lindroth 2012-11-13 Bedömning för lärande Per Berggren och Maria Lindroth 2012-11-13 Förmågor - Bild Genom undervisningen i ämnet bild ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att kommunicera

Läs mer

ÄMNESPROV. Matematik ÅRSKURS. Vårterminen 2009. Sekretess t.o.m. 2009-06-30. Lärarinformation om hela ämnesprovet Delprov A med bedömningsanvisningar

ÄMNESPROV. Matematik ÅRSKURS. Vårterminen 2009. Sekretess t.o.m. 2009-06-30. Lärarinformation om hela ämnesprovet Delprov A med bedömningsanvisningar ÄMNESPROV Matematik ÅRSKURS 9 Vårterminen 009 Sekretess t.o.m. 009-06-30 Lärarinformation om hela ämnesprovet Delprov A med bedömningsanvisningar Förvara detta provhäfte på ett betryggande sätt Prov som

Läs mer

Bedömning av kunskap för lärande och undervisning i matematik. PRIM-gruppen Katarina Kjellström

Bedömning av kunskap för lärande och undervisning i matematik. PRIM-gruppen Katarina Kjellström Bedömning av kunskap för lärande och undervisning i matematik PRIM-gruppen Katarina Kjellström PRIM-gruppen Forskningsgruppen för bedömning av kunskap och kompetens Gruppen utvecklar olika instrument för

Läs mer

Prata matematik. Bengt Drath. Stöpenskolan i Skövde kommun

Prata matematik. Bengt Drath. Stöpenskolan i Skövde kommun Prata matematik Bengt Drath Högskolan i Skövde Stöpenskolan i Skövde kommun Matematikkunnande Vad ingår i begreppet matematikkunnande? eller som elever skulle tänka: Hur skall en duktig elev i matte vara?

Läs mer

Iden första delen av denna artikel, som

Iden första delen av denna artikel, som PETER NYSTRÖM & TORULF PALM Muntlig kommunikation och självvärdering I förra numret inleddes denna artikelserie med Är det något fel med vanliga matteprov? Här diskuteras två ytterligare komplement till

Läs mer

Bedömningsexempel Matematik årskurs 3

Bedömningsexempel Matematik årskurs 3 Bedömningsexempel Matematik årskurs 3 Innehåll Inledning... 3 Bedömning... 3 Exempeluppgifter i årskurs 3, 2010... 5 Skriftliga räknemetoder... 5 Huvudräkning, multiplikation och division... 7 Likheter,

Läs mer

Matematiklyftet kollegialt lärande för matematiklärare. Grundskolan Gymnasieskolan Vuxenutbildningen

Matematiklyftet kollegialt lärande för matematiklärare. Grundskolan Gymnasieskolan Vuxenutbildningen Matematiklyftet kollegialt lärande för matematiklärare Grundskolan Gymnasieskolan Vuxenutbildningen Välkommen till Matematiklyftet en fortbildning i didaktik för dig som undervisar i matematik i grundskolan,

Läs mer

Kursplan - Grundläggande svenska som andraspråk

Kursplan - Grundläggande svenska som andraspråk 2012-11-06 Kursplan - Grundläggande svenska som andraspråk Grundläggande svenska som andraspråk innehåller fyra delkurser: Del 1, delkurs 1 (200 poäng) GRNSVAu Del 1, delkurs 2 (200 poäng) GRNSVAv Del

Läs mer

Ämnesprovet i matematik årskurs 3, 2016

Ämnesprovet i matematik årskurs 3, 2016 Ämnesprovet i matematik årskurs 3, 2016 PRIM- gruppen, Stockholms universitet Erica Aldenius, Heléne Sandström Inledning Syftet med de nationella proven är att stödja en likvärdig och rättvis bedömning

Läs mer

Skola och hemmet. Per Berggren och Maria Lindroth 2014-03-04

Skola och hemmet. Per Berggren och Maria Lindroth 2014-03-04 Skola och hemmet Per Berggren och Maria Lindroth 2014-03-04 Skolans uppdrag Att ge förutsättningar för: Goda medborgare Fortsatta studier Personlig utveckling Lgr11 - läroplan med kursplaner Första delen

Läs mer

MODERSMÅL FINSKA 1. Syfte

MODERSMÅL FINSKA 1. Syfte MODERSMÅL FINSKA 1 Sverigefinnar, judar, tornedalingar och romer är nationella minoriteter med flerhundraåriga anor i Sverige. Deras språk finska, jiddisch, meänkieli och romani chib är officiella nationella

Läs mer

Kursen kommer att handla om: Mål med arbetet från Lgr 11. Lokal Pedagogisk Planering Läsåret 12-13

Kursen kommer att handla om: Mål med arbetet från Lgr 11. Lokal Pedagogisk Planering Läsåret 12-13 Kurs: Storyline Market place Tidsperiod: Vecka 46- Skola: Åsens Skola Klass: F-5 Lärare: Alla Kursen kommer att handla om: Du kommer att få arbeta med Storylinen Market place där du ska få lära dig hur

Läs mer

Planering Matematik åk 8 Samband, vecka

Planering Matematik åk 8 Samband, vecka Planering Matematik åk 8 Samband, vecka 4 2016 Syfte Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med

Läs mer

Matematik. Kursprov, vårterminen 2012. Bedömningsanvisningar. för samtliga skriftliga provdelar

Matematik. Kursprov, vårterminen 2012. Bedömningsanvisningar. för samtliga skriftliga provdelar Kursprov, vårterminen 2012 Matematik Bedömningsanvisningar för samtliga skriftliga provdelar 1b Prov som återanvänds omfattas av sekretess enligt 17 kap. 4 offentlighets- och sekretesslagen. Detta prov

Läs mer

IDROTT OCH HÄLSA FÖR ÅK 7-9, 15 HÖGSKOLEPOÄNG PHYSICAL EDUCATION AND HEALTH FOR SCHOOL YEAR 7-9, 15 CREDITS

IDROTT OCH HÄLSA FÖR ÅK 7-9, 15 HÖGSKOLEPOÄNG PHYSICAL EDUCATION AND HEALTH FOR SCHOOL YEAR 7-9, 15 CREDITS KURSPLAN Uppdragsutbildning Lärarlyft II 1 (5) IDROTT OCH HÄLSA FÖR ÅK 7-9, 15 HÖGSKOLEPOÄNG PHYSICAL EDUCATION AND HEALTH FOR SCHOOL YEAR 7-9, 15 CREDITS Basdata Kursen är en uppdragsutbildning inom ramen

Läs mer

Utvecklingssamtalet och den skriftliga individuella utvecklingsplanen

Utvecklingssamtalet och den skriftliga individuella utvecklingsplanen SKOLVERKETS ALLMÄNNA RÅD Utvecklingssamtalet och den skriftliga individuella utvecklingsplanen för grundskolan, grundsärskolan, specialskolan och sameskolan Beställningsuppgifter: Fritzes kundservice 106

Läs mer

Matematiklyftet 2013/2014

Matematiklyftet 2013/2014 Matematiklyftet 2013/2014 Didaktiskt kontrakt Ruc 140522 AnnaLena Åberg 79 Matematiklärare 9 skolor? Elever 10 Rektorer 1 Förvaltningschef 2 Skolområdschefer 5 Matematikhandledare Hur ser ni på det didaktiska

Läs mer

Om ämnet Engelska. Bakgrund och motiv

Om ämnet Engelska. Bakgrund och motiv Om ämnet Engelska Bakgrund och motiv Ämnet engelska har gemensam uppbyggnad och struktur med ämnena moderna språk och svenskt teckenspråk för hörande. Dessa ämnen är strukturerade i ett system av språkfärdighetsnivåer,

Läs mer

Träff 1 Introduktion till Laborativ Matematik

Träff 1 Introduktion till Laborativ Matematik Träff 1 Introduktion till Laborativ Matematik Tid: Onsdagen den 30 januari kl 17.30-20.00 Skolinspektionen (2009). Undervisningen i matematik utbildningens innehåll och ändamålsenlighet. (28 s) Skolinspektionens

Läs mer

Matematiklyftet. Malmöbiennetten 2013. Nationellt centrum för Matematikutbildning Göteborgs Universitet. Anette Jahnke

Matematiklyftet. Malmöbiennetten 2013. Nationellt centrum för Matematikutbildning Göteborgs Universitet. Anette Jahnke Matematiklyftet Malmöbiennetten 2013 Nationellt centrum för Matematikutbildning Göteborgs Universitet Anette Jahnke #malyft Matematiklyftet Matematiklyftet Fortbildning av alla lärare som undervisar i

Läs mer

Formativ bedömning i matematikklassrummet

Formativ bedömning i matematikklassrummet Modul: Taluppfattning och tals användning Del 4: Formativ bedömning Formativ bedömning i matematikklassrummet Peter Nyström, NCM Termen bedömning, eller pedagogisk bedömning kan uppfattas väldigt olika,

Läs mer

Betyg och bedömning. Del 2. Föreläsning den 29 oktober 2012. Lars Nohagen, Cesam Centrum för de samhällsvetenskapliga ämnenas didaktik.

Betyg och bedömning. Del 2. Föreläsning den 29 oktober 2012. Lars Nohagen, Cesam Centrum för de samhällsvetenskapliga ämnenas didaktik. Betyg och bedömning - hur tar jag reda på vad elever kan? Del 2 Föreläsning den 29 oktober 2012 Lars Nohagen, Cesam Centrum för de samhällsvetenskapliga ämnenas didaktik Lars Nohagen 1 Vad ska bedömas?

Läs mer

Att arbeta med öppna uppgifter

Att arbeta med öppna uppgifter Modul: Samband och förändring Del 1: Öppna uppgifter Att arbeta med öppna uppgifter Ingemar Holgersson, Högskolan Kristianstad Kursplanen i matematik betonar att undervisningen ska leda till att eleverna

Läs mer

Sammanfattning Rapport 2012:10. Läsundervisning. inom ämnet svenska för årskurs 7-9

Sammanfattning Rapport 2012:10. Läsundervisning. inom ämnet svenska för årskurs 7-9 Sammanfattning Rapport 2012:10 Läsundervisning inom ämnet svenska för årskurs 7-9 Sammanfattning För att klara av studierna och nå en hög måluppfyllelse är det viktigt att eleverna har en god läsförmåga.

Läs mer

FORMATIV BEDÖMNING FÖR SKOLUTVECKLING: LIKVÄRDIG BEDÖMNING OCH REDSKAP FÖR LÄRANDE. Monica Liljeström Pedagogiska institutionen Umeå Universitet

FORMATIV BEDÖMNING FÖR SKOLUTVECKLING: LIKVÄRDIG BEDÖMNING OCH REDSKAP FÖR LÄRANDE. Monica Liljeström Pedagogiska institutionen Umeå Universitet FORMATIV BEDÖMNING FÖR SKOLUTVECKLING: LIKVÄRDIG BEDÖMNING OCH REDSKAP FÖR LÄRANDE Monica Liljeström Pedagogiska institutionen Umeå Universitet 1 Erfarenhet och forskning har visat att elevernas kunskapsutveckling

Läs mer

Rapport av genomförd "Lesson study" av en lektion med temat ekvationer i gymnasiets B-kurs. Bultar, muttrar och brickor

Rapport av genomförd Lesson study av en lektion med temat ekvationer i gymnasiets B-kurs. Bultar, muttrar och brickor Rapport av genomförd "Lesson study" av en lektion med temat ekvationer i gymnasiets B-kurs Bultar, muttrar och brickor Vågad problemlösning Förberedelser Ekvationssystem i matematik B ger progression från

Läs mer

Sammanställning av lärarenkäter för Hugget i sten?, kursprov i svenska 3 och svenska som andraspråk 3, ht 2014

Sammanställning av lärarenkäter för Hugget i sten?, kursprov i svenska 3 och svenska som andraspråk 3, ht 2014 Sammanställning av lärarenkäter för Hugget i sten?, kursprov i svenska 3 och svenska som andraspråk 3, ht 2014 Kursprovet i svenska 3 och svenska som andraspråk 3 höstterminen 2014 hade titeln Hugget i

Läs mer

Matematikpolicy Västra skolområdet i Linköping

Matematikpolicy Västra skolområdet i Linköping Matematikpolicy Västra skolområdet i Linköping Syfte Denna matematikpolicy är framtagen i syfte att underlätta och säkerställa arbetet med barns och elevers matematiska utveckling på förskolorna och skolorna

Läs mer

Aspekt Nivå 1 Nivå 2 Nivå 3

Aspekt Nivå 1 Nivå 2 Nivå 3 Bedömningsmatris i engelska Elev: Årskurs: Termin: Aspekt Nivå 1 Nivå 2 Nivå 3 Hörförståelse: Uppfattar det Förstår det huvudsakliga Förstår både helhet och förstå, återge huvudsakliga innehållet och några

Läs mer

Utmaning. Statsbidraget ger: Möjlighet till nedsättning i tid för handledaren på 10-20% Tillgång till handledarutbildning

Utmaning. Statsbidraget ger: Möjlighet till nedsättning i tid för handledaren på 10-20% Tillgång till handledarutbildning Dagens innehåll Utmaning Statsbidraget ger: Möjlighet till nedsättning i tid för handledaren på 10-20% Tillgång till handledarutbildning Aktivitetsplan- mer i detalj. Starkt önskemål om en ökad integrering

Läs mer