Datorövning 4. För att få tillgång till några mer avancerade ritkommandon skriv

Storlek: px
Starta visningen från sidan:

Download "Datorövning 4. För att få tillgång till några mer avancerade ritkommandon skriv"

Transkript

1 Datorövning 4 Kontinuerliga system vt 2015 Inledning I denna datorövning ska vi precis som i de tidigare använda maple. Övningen är till stor del upplagd som en räkneövning, där syftet är att du skall se hur maple kan användas för att visualisera svängningsfenomen. Först dock ett avsnitt om greenfunktioner. Övningen är upplagd så att det finns tolv ordinarie uppgifter. Dessutom finns två trevliga längre avsnitt Extra A och Extra B som försöker ge en introduktion till två aktuella problem med olinjär vågutbredning, solitoner och chocker. Dessa är helt frivilliga. För att underlätta utförandet finns det på kurshemsidan ett maple worksheet som heter Datorovning_4.mw. Ladda ner denna och öppna inifrån maple. Den innehåller flertalet av de kommandon som finns i handledningen med syfte att minska risken för avskrivningsfel. Förberedelser Tag med lärobok och övningshäfte till övningen ty flera exempel är hämtade därur. Läs igenom handledningen samt de avsnitt i boken som det hänvisas till Start Starta maple! För att få de beteckningar som används i kursen för några standardistributioner skriv alias(delta=dirac,theta=heaviside); För att få tillgång till några mer avancerade ritkommandon skriv with(plots); och när man ändå håller på att ladda ner extra kommandon så kan man skriva with(linalg); också så glömmer man inte detta senare. 1 Fundamentallösningar och Greenfunktioner En fundamentallösning till laplaceoperatorn K i R n löser Δ K = δ 0. Dessa är kända (se boken sidan 158). Greenfunktionen till laplaceoperatorn i området Ω är för α Ω lösningen till { Δ u = δα i Ω, u = 0 på Ω. 1

2 Dessa kan för enkla områden konstrueras med hjälp av speglingar och kända fundamentallösningar Skriv in fundamentallösningarna till laplaceoperatorn i 2 respektive 3 dimensioner. K2 := (x,y) -> -log(xˆ2+yˆ2)/(4*pi); K3 := (x,y,z) -> 1/sqrt(xˆ2+yˆ2+zˆ2)/(4*Pi); Ange en fundamentallösning i 1 dimension. Skriv även in denna. Titta på en 3dplot av K 2. Undersök om maple kan beräkna ΔK 2 och ΔK 3. För att göra detta måste man skriva with(linalg);. Skriv sen laplacian(k3(x,y,z),[x,y,z]); och förenkla. Beräkna även grad K 3, (grad(k3(x,y,z),[x,y,z]);). Räknar maple ut ΔK 3 rätt? Jämför sats 5.1. För vilka (x, y, z) har maple beräknat ΔK 3? Är grad K 3 är ett känt fält, i så fall vilket? Gör motsvarande med K 3 utbytt mot K 2. Beräkna även Δ K Konjugerade punkter. Enligt boken sidan 167 är funktionen G 2 (x; α) = 1 ( ) ln x α ln x α ln α ) 2π = K 2 (x α) (K 2 (x α) 1 2π ln( α )) Greenfunktion till laplaceoperatorn på enhetscirkeln, där α är konjugerad punkt till α. Vi skall nu undersöka funktionen G 2. Välj α = (a, 0) där 0 < a < 1 och bestäm motsvarande α. Vad blir koordinaterna för α? Skriv G2 := (x,y,a) -> K2(x-a,y)-K2(x-1/a,y)+log(a)/(2*Pi); Gör en 3dplot av G för några olika värden på a, med till exempel plot3d(g2(x,y,0.3),x=-3..7,y=-5..5,numpoints=2000,axes=normal); Genom att välja Style Patch and contour kan man se nivåkurvor på ytan. Med hjälp av kommandot implicitplot kan man undersöka var G 2 = 0. (För att få tillgång till detta kommando måste man skriva with(plots);) Skriv sen implicitplot(g2(x,y,0.3)=0, x=-1..1, y=-1..1); och välj Scaling Constrained. Vilken egenskap hos Greenfunktioner illustreras i den figur du just ritat? Pröva med några andra värden på a. 2

3 4.3. I tre dimensioner kan vi inte plotta funktionsgrafer. Däremot kan vi rita nivåytor med kommandot implicitplot3d. Sätt G 3 (x; α) = 1 1 4π x α π α x α = K 3(x α) 1 α K 3(x α). Enligt boken, sidan 169, är G 3 Greenfunktion till Dirichlets problem på enhetsklotet. Välj α = (a, 0, 0) för något värde på a, 0 < a < 1, och bestäm α. Skriv in G 3 och titta på nivåytan G 3 = 0, skriv G3 := (x,y,z,a) -> K3(x-a,y,z)-K3(x-1/a,y,z)/a; implicitplot3d(g3(x,y,z,0.2)=0, x=-1..1, y=-1..1, z=-1..1); Välj Projection Constrained. Vilken egenskap hos Greenfunktioner illustreras i den figur du just ritat? Gör samma sak för något annat värde på a. 2 Vågutbredning, reflektion d Alemberts formel För vågekvationen i R modellerande en endimensionell oändlig sträng u tt c 2 u xx = 0, x R, t > 0, u(x, 0) = g(x), x R, u t(x, 0) = h(x), x R, kan lösningen direkt skrivas med d Alemberts formel u(x, t) = 1 2 (g(x ct) + g(x + ct)) + 1 2c x+ct x ct Vi ska nu använda maple till att åskådliggöra dessa lösningar. h(y) dy Gör en animering av lösningen i exempel 7.1, sidan 206 i boken. Skriv in och plotta begynnelsefunktionen g(x): g := x -> (1-x)*(theta(x)-theta(x-1))+(1+x)*(theta(x+1)-theta(x)); Varning: Heavisidefunktionen i maple är ej definierad i origo. Det kan därför hända att man får felmeddelandet: Plotting error, non-numeric vertex definition då man försöker plotta eller animera g. Detta kan undvikas genom att man ändrar intervallets gränser eller (i animationerna) antalet indelningspunkter (numpoints eller frames). En rörlig bild av lösningen fås sedan med animate((g(x+t)+g(x-t))/2,x= ,t=0..10,numpoints=200,frames=100); Animationen startar då man klickar på grafen och sedan på den långsträckta pilen i menyn. Man kan variera rörelsehastigheten genom att klicka på dubbelpilarna. 3

4 4.5. Animera på liknande sätt lösningen till exempel 7.2 (sidan 207). Starta med att skriva in begynnelsehastigheten h(x). Välj till exempel h(x) = θ(x 1) θ(x 2). Skriv animate(int(h(y),y=x-t..x+t),x= ,t=0..10,numpoints=200, frames=100,thickness=2); Stega först fram animeringen genom att klicka på knappen upprepade gånger. Iakttag speciellt vad som händer i början av animeringen. Pröva också h(x) = δ(x 1). Ser man någon skillnad mellan fallen h(x) = θ(x 1) θ(x 2) och h(x) = δ(x 1)? Reflektion, upprepade speglingar 4.6. Vi skall nu titta på vågutbredning i en sträng med ändlig längd, speciellt reflektioner i ändpunkterna, jämför sidan 212 i läroboken med L = 10. Antag att stängens begynnelseutböjning ges av funktionen g 1 (x) i figuren nedan och att begynnelsehastigheten är noll Observera att funktionen g 1 (x) = g(x 4), där g redan är definierad. Skriv g1 := x -> g(x-4); Om strängen har fasta ändar gör vi en udda spegling av g 1 enligt figuren på sidan 213, gu := x -> g1(x)-g1(-x); Kontrollera med en plot över intervallet ( 10, 10) att funktionen är rätt speglad. Om f (x) är en funktion som är definerad på intervallet [a, a + T ] så kan f utvidgas till en T periodisk funktion fp med fp(x) = f (x T (x a)/t ) där x betecknar heltalsdelen av x (golvfunktionen) som är det största heltal x. Exempelvis är 2 = 2, π = 3 och π = 4. Uttrycket x T (x a)/t subtraherar lämpligt antal perioder från x så man återförs till intervallet där f är definierad. Golvfunktionen skrivs floor(x) i maple. Alltså blir gp := x -> gu(x - 20*floor((x+10)/20)); en 20-periodisk utvidgning av gu. Kontrollera genom att rita en figur över intervallet ( 100, 100) att det ser rätt ut. Sedan kan vi se rörelsen i strängen med animate((gp(x+t)+gp(x-t))/2,x=0..10,t=0..40,numpoints=200,frames=100); 4

5 4.7. Har strängen fria ändar skall man i stället spegla jämnt. Gör det och titta på rörelsen. Ändarna är fästa vid ringar som löper fritt längs en glatt stav, jämför övning Tänk efter hur man skall spegla om den ena änden (x = 0) är fri och den andra är fast. Pröva sedan med en animering Titta på strängen från exempel 3.2, sidan 77, med begynnelseutböjningen Skriv in begynnelsefunktionen, spegla och animera på samma sätt som i uppgift Visa att begynnelsefunktionerna g k (x) = sin kx, k = 1, 2,... ger stående vågor på en sträng med längden π om man animerar (g k (x t) + g k (x + t))/2. (Jämför boken sidan 213.) Även uppgifter där hastigheten är given kan animeras som strängen i exempel 7.5 sidan 214. Här kan den primitiva funktionen beräknas direkt, skriv H := x -> theta(x-0.5) - theta(x-1.5); med periodisk fortsättning Hp := x -> H(x - 4*floor((x+2)/4)); Rita denna och beräkna derivatan. Jämför med figuren i boken. Lösningen ges av u := (x,t) -> (Hp(x+t)-Hp(x-t))/2; som kan animeras med animate(u(x,t),x=-1..1,t=0..10,numpoints=200,frames=100); Studera lösningen till ballongexemplet, exempel 7.7, sidan 221. Skriv in funktionen g i figuren i boken, gm := r -> r*(theta(r+1)-theta(r-1)); Animera lösningsfunktionen för trycket u(r, t), som ges av formeln u(r, t) = 1 2r (g (r ct) + g (r + ct)), r > 0, t > 0. Observera tryckvariationen i centrum, se anmärkningen sidan

6 Extra A. Solitoner En speciell typ av vågor observerades och 1834 av en skotsk ingenjör, John Scott Russell: I was observing the motion of a boat which was rapidly drawn along a narrow channel by a pair of horses, when the boat suddenly stopped not so the mass of water in the channel which it had put in motion; it accumulated round the prow of the vessel in a state of violent agitation, then suddenly leaving it behind, rolled forward with great velocity, assuming the form of a large solitary elevation, a rounded, smooth and well-defined heap of water, which continued its course along the channel apparently without change of form or diminution of speed. I followed it on horseback, and overtook it still rolling on at a rate of some eight or nine miles an hour, preserving its original figure some thirty feet long and a foot to a foot and a half in height. Its height gradually diminished, and after a chase of one or two miles I lost it in the windings of the channel. Russell lyckades i experiment återskapa sådana vågrörelser och fann bla att utbredningshastigheten tycks vara proportionell mot höjden. Detta är en olinjär effekt, som inte kan uppträda för lösningar till en linjär vågekvation. Russels observation av sk solitoner kan förklaras på följande sätt. Vågutbredning på grunt vatten beskrivs av Korteweg-de Vries ekvation u t + 6u u x + u xxx = 0. Här kan man faktiskt explicit ange vissa lösningar av formen u(x, t) = f (x ct). Insättning ger c f (s) + 6 f (s) f (s) + f (s) = 0. Integration, med randvillkoret noll i oändligheten, ger c f + 3 f 2 + f = 0. Multiplikation med 2f och ytterligare en integration ger Denna differentialekvation är separabel c f f 3 + (f ) 2 = 0. df f c 2f = ds. Be maple bestämma en primitiv funktion till vänster led, genom int(1/sqrt(c-2*f)/f,f); 6

7 Detta leder till 2 ( arctanh 1 2f ) = s + d, c c där d är en konstant. För d = 0 löser vi ut f som funktion av s genom att skriva Detta ger solve(s=-2*arctanh(sqrt((c-2*f)/c))/sqrt(c),f); f (s) = c 2 Med detta f har vi visat att ( 1 tanh 2( s c 2 ) ) = c 2 u(x, t) = f (x ct) 1 cosh 2( s c 2 löser Korteveg-de Vries ekvation. En sådan lösning kallas soliton. Olinjär vågutbredning är idag ett stort forskningsområde, såväl inom matematiken som inom tillämpade vetenskaper. Solitoner förekommer även vid andra medier än vatten, till exempel optiska fibrer, och man försöker använda dem för signalöverföring. Det finns också hypoteser om att nervimpulser kan beskrivas av solitoner. Bilda f := (s,c) -> c/(2*cosh(s*sqrt(c)/2)ˆ2); och sätt c1 := 0.05; c2 := 0.1;. Plotta en soliton genom plot(f(s,c1), s= );. Sätt sedan u := (x,t) -> f(x-c*t,c); Uppgift: Kontrollera med hjälp av maple att u(x, t) satisfierar Korteveg-de Vries differentialekvation. Använd simplify om det inte trillar ut direkt. Som vi ser av lösningsformeln är solitonens utbredningshastighet proportionell mot amplituden. Av figuren ser vi att solitoner har begränsad utsträckning i rummet. Ett märkligt fenomen är att trots att differentialekvationen är olinjär så gäller för dess lösningar, solitonvågorna, en slags superpositionseffekt, där en våg kan komma ikapp en annan våg, kollidera, och sedan komma ut ur kollisionen med oförändrad form. Detta illustreras av följande animering: animate(f(x+50-c1*t,c1)+f(x+100-c2*t,c2),x= ,t= , numpoints=200,frames=100); Anmärkning: Här har vi fuskat. Summan av de två vågorna satisfierar inte differentialekvationen, trots att varje term gör det. Animeringen illustrerar alltså inte lösningar till Korteveg-de Vries differentialekvation. Påståendet ovan, om vågorna som efter att ha kolliderat fortsätter med oförändrad form, är ett mera avancerat matematiskt resultat. Man kan i alla fall göra detta troligt genom att sätta in F := (x,t) -> f(x+50-c1*t,c1)+f(x+100-c2*t,c2); i vänsterledet i differentialekvationen och se hur nära den är uppfylld. Skriv d := (x,t )-> diff(f(x,t),t)+6*f(x,t)*diff(f(x,t),x)+diff(f(x,t),x,x,x); animate(d(x,t),x= ,t= ,numpoints=200); och jämför storleksordningen av d med termernas. ). 7

8 Extra B. Chockvågor Från kapitel 1 kommer vi ihåg kontinuitetsekvationen i en rumsdimension u t + j x = 0 där u = u(x, t) är densitet och j = j(x, t) är strömtäthet, eller flux. För vanlig värmeledning och diffusion har man Fouriers resp Ficks lag j = ν u x, där ν är en materialkonstant. Antag nu att det förutom denna linjära diffusionseffekt uppträder en olinjär effekt, så att j = ν u x + u2 2. Strömtätheten påverkas alltså inte bara av densitetsgradienter utan även av densiteten. Detta leder till den så kallade Burgers ekvation u t + u u x = ν u xx. Burgers ekvation spelar en mycket viktig roll i studiet av olinjära partiella differentialekvationer. Den olinjära termen gör att helt nya fenomen uppträder, t ex chocker, som vi nu skall titta lite närmare på. Burgers ekvation fungerar som en slags modellekvation vid studiet av vågutbredning som uppfyller konservationslagar, tack vare att man har ett analytiskt uttryck för lösningen, vilket är extremt ovanligt. Vi skall nu ta fram detta uttryck. Inför U (x, t) som en primitiv funktion till u(x, t) i x-led, u = U x. Burgers ekvation övergår i U t (U x) 2 = ν U xx. Om man i denna ekvation gör variabelbytet U = 2ν log w, så får man, helt oväntat, en linjär diffusionsekvationen i w, w t = ν w xx. För denna känner vi lösningen. Med Greenfunktionen G(x, t) = 1 4πνt e x2 /4νt gäller, som vi vet, w(x, t) = G(x s, t)w 0 (s) ds, där w 0 (x) = w(x, 0) är begynnelsevärdet för w. Återgår man sedan till U och därefter till u så finner man (den fantastiska) lösningsformeln u(x, t) = 2ν [ x log 1 ] e U0(y)/2ν e (x y)2 /4νt dy, 4πνt där U 0 (x) = x u(s, 0) ds. 8

9 Anmärkning: Här skulle man gärna vilja kontrollera att detta verkligen är lösning till Burgers ekvation. Tyvärr klarar maple inte detta, och man ger sig knappast på att visa det för hand. Välj nu begynnelsevärdet { sin(x) för π < x < π u 0 (x) = 0 för övrigt. { Då gäller 1 cos(x) för π < x < π U 0 (x) = 0 för övrigt. Vi vill studera fallet med svag diffusion, dvs litet ν. Välj nu := 0.01;. Börja med att titta på fallet då den olinjära termen u u x i Burgers ekvation saknas, så att man får lösningen med hjälp av Greenfunktionen. Om man beräknar denna för t = 8, G := (x,t) -> exp( -xˆ2/(4*nu*t)) / sqrt(4*pi*nu*t); plot( int( G(x-s,8)*sin(s), s=-pi..pi), x=-8..8); så finner man den vänstra figuren nedan. Vi ser att diffusionprocessen är igång, trots den lilla värdet på ν, och att störningen u spridit sig i x-led i förhållande till begynnelsetillståndet, samtidigt som den minskat i storlek. Övergå sedan till Burgers ekvation, med den olinjära termen. I uttrycket för U nedan har vi gjort en omskrivning av lösningsformeln, som utnyttjar att U 0 = 0 utanför intervallet [ π, π]. Skriv U0 := y -> -1-cos(y); U :=( x,t) -> -2*nu*ln( (sqrt( Pi*nu*t)*erfc( (Pi+x)/sqrt( 4*nu*t))+ sqrt( Pi*nu*t)*erfc( (Pi-x)/sqrt( 4*nu*t))+ int( exp(-(x-y)ˆ2/(4*nu*t))*exp(-u0(y)/(2*nu)), y=-pi..pi))/sqrt( 4*Pi*nu*t)); plot( diff( U(x,8), x), x=-8..8); Vi får efter en stunds räknande (det kan ta flera minuter för sista ritkomandot) den högra figuren nedan. Trots att vi har ett kontinuerligt begynnelsevillkor så tenderar lösningen att få språng, så kallade chocker. Denna effekt blir mer och mer uttalad vid större t, och vid mindre ν. Lösningen har karaktären av en chockvåg x x Uppgift: Studera chockvågens form och utbredning, genom att variera t och ν. 9

Solitära vågor och matematiska mirakel. Hans Lundmark

Solitära vågor och matematiska mirakel. Hans Lundmark Solitära vågor och matematiska mirakel Hans Lundmark En våg kommer sällan ensam...? 2 (Alla foton: Wikimedia Commons.) Många vågor är periodiska svängningar. Sinusvåg (harmonisk svängning): y y = sin x

Läs mer

Datorövning 2. För att få tillgång till några mer avancerade ritkommandon kör

Datorövning 2. För att få tillgång till några mer avancerade ritkommandon kör Kontinuerliga system vt 2019 Datorövning 2 Inledning Detta är en textversion av det ett maple worksheet som heter Datorovning_2.mw och som kan laddas ner från hemsidan. Den ska öppnas inifrån maple. Då

Läs mer

Extra datorövning med Maple, vt2 2014

Extra datorövning med Maple, vt2 2014 Extra datorövning med Maple, vt2 2014 FMA430 Flerdimensionell analys Denna datorövning är avsett för självstudie där vi skall lösa uppgifter i övningshäftet med hjälp av Maple. Vi skall beräkna partiella

Läs mer

3.3. Symboliska matematikprogram

3.3. Symboliska matematikprogram 3.3. Symboliska matematikprogram Vi skall nu övergå till att behandla de vanligaste matematikprogrammen, och börja med de symboliska. Av dessa kan både Mathematica och Maple användas på flere UNIX-datorer.

Läs mer

Inlämningsuppgift 4 NUM131

Inlämningsuppgift 4 NUM131 Inlämningsuppgift 4 NUM131 Modell Denna inlämningsuppgift går ut på att simulera ett modellflygplans rörelse i luften. Vi bortser ifrån rörelser i sidled och studerar enbart rörelsen i ett plan. De krafter

Läs mer

Datorövning 2 med Maple

Datorövning 2 med Maple Datorövning 2 med Maple Flerdimensionell analys, ht 2008, Lp1 15 september 2008 Under denna datorövning skall vi lösa uppgifter i övningshäftet med hjälp av Maple. Vi skall beräkna partiella derivator,

Läs mer

R AKNE OVNING VECKA 1 David Heintz, 31 oktober 2002

R AKNE OVNING VECKA 1 David Heintz, 31 oktober 2002 RÄKNEÖVNING VECKA David Heintz, 3 oktober 22 Innehåll Uppgift 27. 2 Uppgift 27.8 4 3 Uppgift 27.9 6 4 Uppgift 27. 9 5 Uppgift 28. 5 6 Uppgift 28.2 8 7 Uppgift 28.4 2 Uppgift 27. Determine primitive functions

Läs mer

1 Cirkulation och vorticitet

1 Cirkulation och vorticitet Föreläsning 7. 1 Cirkulation och vorticitet Ett mycket viktigt teorem i klassisk strömningsmekanik är Kelvins cirkulationsteorem, som man kan härleda från Eulers ekvationer. Teoremet gäller för en inviskös

Läs mer

Frågorna 1 till 6 ska svaras med sant eller falskt och ger vardera 1

Frågorna 1 till 6 ska svaras med sant eller falskt och ger vardera 1 ATM-Matematik Mikael Forsberg 6-64 89 6 Matematik med datalogi, mfl. Skrivtid:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift på ny sida. Använd ej baksidor.

Läs mer

FÖRELÄSNING 1 ANALYS MN1 DISTANS HT06

FÖRELÄSNING 1 ANALYS MN1 DISTANS HT06 FÖRELÄSNING ANALYS MN DISTANS HT06 JONAS ELIASSON Detta är föreläsningsanteckningar för distanskursen Matematik A - analysdelen vid Uppsala universitet höstterminen 2006. Förberedande material Här har

Läs mer

Facit till Några extra uppgifter inför tentan Matematik Baskurs. x 2 x 3 1 2.

Facit till Några extra uppgifter inför tentan Matematik Baskurs. x 2 x 3 1 2. KTH Matematik Lars Filipsson Facit till Några extra uppgifter inför tentan Matematik Baskurs 1. Låt f(x) = ln 2x + 4x 2 + 9 + ln 2x 4x 2 + 9. Bestäm definitionsmängd och värdemängd till f och rita kurvan

Läs mer

Studiehandledning till. MMA121 Matematisk grundkurs. Version 2012-09-03

Studiehandledning till. MMA121 Matematisk grundkurs. Version 2012-09-03 Studiehandledning till MMA Matematisk grundkurs läsåret 0/ Version 0-09-0 Kursinformation för MMA Mål Avsikten med kursen MMA Matematisk grundkurs är att ge grundläggande kunskaper i matematik, av betydelse

Läs mer

Sammanfattning Föreliggande uppsats handlar om Korteweg-de Vries-ekvationen (KdV-ekvationen) och dess solitonlösning, som är en våg på grunt vatten. E

Sammanfattning Föreliggande uppsats handlar om Korteweg-de Vries-ekvationen (KdV-ekvationen) och dess solitonlösning, som är en våg på grunt vatten. E Sammanfattning Föreliggande uppsats handlar om Korteweg-de Vries-ekvationen (KdV-ekvationen) och dess solitonlösning, som är en våg på grunt vatten. En lösning till KdV-ekvationen är solitonvågen som med

Läs mer

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIAL EKVATIONER i) En differentialekvation

Läs mer

En trafikmodell. Leif Arkeryd. Göteborgs Universitet. 0 x 1 x 2 x 3 x 4. Fig.1

En trafikmodell. Leif Arkeryd. Göteborgs Universitet. 0 x 1 x 2 x 3 x 4. Fig.1 10 En trafikmodell Leif Arkeryd Göteborgs Universitet Tänk dig en körfil på en landsväg eller motorväg, modellerad som x axeln i positiv riktning (fig.1), och med krysset x j som mittpunkten för bil nummer

Läs mer

Kontinuerliga system, Datorövning 4

Kontinuerliga system, Datorövning 4 Vårterminen 2002 Kontinuerliga system, Datorövning 4 1 Inledning I denna laboration skall vi använda Maple. Detta gjordes redan i laboration 2, där vi huvudsakligen använde Maples grundläggande färdigheter.

Läs mer

Matematik E (MA1205)

Matematik E (MA1205) Matematik E (MA105) 50 p Betygskriterier med eempeluppgifter Värmdö Gymnasium Mål och betygskriterier Ma E (MA105) Matematik Läsåret 003-004 Betygskriterier enligt Skolverket KRITERIER FÖR BETYGET GODKÄND

Läs mer

Introduktion. Exempel Övningar Lösningar 1 Lösningar 2 Översikt

Introduktion. Exempel Övningar Lösningar 1 Lösningar 2 Översikt KTHs Sommarmatematik 2003 Exempel Övningar Lösningar 1 Lösningar 2 Översikt 5.1 Introduktion Introduktion Exponentialfunktionen e x och logaritmfunktionen ln x är bland de viktigaste och vanligast förekommande

Läs mer

NpMaD ht 2000. Anvisningar. Grafritande räknare och Formler till nationellt prov i matematik kurs C, D och E.

NpMaD ht 2000. Anvisningar. Grafritande räknare och Formler till nationellt prov i matematik kurs C, D och E. NpMaD ht 000 Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen fram till utgången av december 010. Anvisningar

Läs mer

2. För vilka värden på parametrarna α och β har det linjära systemet. som satisfierar differensekvationen

2. För vilka värden på parametrarna α och β har det linjära systemet. som satisfierar differensekvationen MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MAA13 Differentialekvationer och transformmetoder

Läs mer

Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna 11-14, 16/11-28/

Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna 11-14, 16/11-28/ Uppsala Universitet Matematiska Institutionen Bo Styf Transformmetoder, 5 hp gy, IT, W, X 2011-10-26 Sammanfattning av föreläsningarna 11-14, 16/11-28/11 2012. Här lär vi oss använda transformer för att

Läs mer

Repetitionsuppgifter i Matematik inför Basår. Matematiska institutionen Linköpings universitet 2014

Repetitionsuppgifter i Matematik inför Basår. Matematiska institutionen Linköpings universitet 2014 Repetitionsuppgifter i Matematik inför Basår Matematiska institutionen Linköpings universitet 04 Innehåll De fyra räknesätten Potenser och rötter 7 Algebra 0 4 Funktioner 7 Logaritmer 9 6 Facit 0 Repetitionsuppgifter

Läs mer

Laborationer i kursmomentet Datoranvändning E1. Laboration nr 3: Matematikverktyget Maple

Laborationer i kursmomentet Datoranvändning E1. Laboration nr 3: Matematikverktyget Maple Sid 1 Laborationer i kursmomentet Datoranvändning E1 http://www.etek.chalmers.se/~hallgren/eda/ : Matematikverktyget Maple 1 Introduktion 1992-1997 Magnus Bondesson 1998 och 99-09-16 Thomas Hallgren Syftet

Läs mer

Lennart Carleson. KTH och Uppsala universitet

Lennart Carleson. KTH och Uppsala universitet 46 Om +x Lennart Carleson KTH och Uppsala universitet Vi börjar med att försöka uppskatta ovanstående integral, som vi kallar I, numeriskt. Vi delar in intervallet (, ) i n lika delar med delningspunkterna

Läs mer

G VG MVG Programspecifika mål och kriterier

G VG MVG Programspecifika mål och kriterier Betygskriterier Matematik C MA10 100p Respektive programmål gäller över kurskriterierna MA10 är en nationell kurs oc skolverkets kurs- oc betygskriterier finns på ttp://www.skolverket.se/ Detta är vår

Läs mer

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP Armin Halilovic: EXTRA ÖVNINGAR DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner. ORDINÄRA DIFFERENTIALEKVATIONER

Läs mer

Kurvlängd och geometri på en sfärisk yta

Kurvlängd och geometri på en sfärisk yta 325 Kurvlängd och geometri på en sfärisk yta Peter Sjögren Göteborgs Universitet 1. Inledning. Geometrin på en sfärisk yta liknar planets geometri, med flera intressanta skillnader. Som vi skall se nedan,

Läs mer

Statistikens grunder 1 och 2, GN, 15 hp, deltid, kvällskurs

Statistikens grunder 1 och 2, GN, 15 hp, deltid, kvällskurs Statistikens grunder 1 och 2, GN, 15 hp, deltid, kvällskurs TE/RC Datorövning 4 Syfte: 1. Lära sig beräkna konfidensintervall och täckningsgrad 2. Lära sig rita en exponentialfördelning 3. Lära sig illustrera

Läs mer

Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18.

Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18. Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18.1 Delkapitlet introducerar en del terminologi och beteckningar som används.

Läs mer

MAPLE MIKAEL STENLUND

MAPLE MIKAEL STENLUND MAPLE MIKAEL STENLUND. Introduktion I dina inlämningsuppgifter skall ett program som heter Maple användas för att lösa ett antal matematiska problem. Maple är ett symbolhanterande program som har ett antal

Läs mer

6.2 Partikelns kinetik - Tillämpningar Ledningar

6.2 Partikelns kinetik - Tillämpningar Ledningar 6.2 Partikelns kinetik - Tillämpningar Ledningar 6.13 Det som känns som barnets tyngd är den uppåtriktade kraft F som mannen påverkar barnet med. Denna fås ur Newton 2 för barnet. Svar i kilogram måste

Läs mer

Var försiktig med elektricitet, laserstrålar, kemikalier osv. Ytterkläder får av säkerhetsskäl inte förvaras vid laborationsuppställningarna.

Var försiktig med elektricitet, laserstrålar, kemikalier osv. Ytterkläder får av säkerhetsskäl inte förvaras vid laborationsuppställningarna. Laborationsregler Förberedelser Läs (i god tid före laborationstillfället) igenom laborationsinstruktionen och de teoriavsnitt som laborationen behandlar. Till varje laboration finns ett antal förberedelseuppgifter.

Läs mer

varandra. Vi börjar med att behandla en linjes ekvation med hjälp av figur 7 och dess bildtext.

varandra. Vi börjar med att behandla en linjes ekvation med hjälp av figur 7 och dess bildtext. PASS 8 EKVATIONSSYSTEM OCH EN LINJES EKVATION 8 En linjes ekvation En linjes ekvation kan framställas i koordinatsystemet Koordinatsystemet består av x-axeln och yaxeln X-axeln är vågrät och y-axeln lodrät

Läs mer

Tentamen del 2 SF1511, , kl , Numeriska metoder och grundläggande programmering

Tentamen del 2 SF1511, , kl , Numeriska metoder och grundläggande programmering KTH Matematik Tentamen del 2 SF1511, 2018-03-16, kl 8.00-11.00, Numeriska metoder och grundläggande programmering Del 2, Max 50p + bonuspoäng (max 4p). Rättas ast om del 1 är godkänd. Betygsgränser inkl

Läs mer

Sidor i boken 110-113, 68-69 2, 3, 5, 7, 11,13,17 19, 23. Ett andragradspolynom Ett tiogradspolynom Ett tredjegradspolynom

Sidor i boken 110-113, 68-69 2, 3, 5, 7, 11,13,17 19, 23. Ett andragradspolynom Ett tiogradspolynom Ett tredjegradspolynom Sidor i boken 110-113, 68-69 Räkning med polynom Faktorisering av heltal. Att primtalsfaktorisera ett heltal innebär att uppdela heltalet i faktorer, där varje faktor är ett primtal. Ett primtal är ett

Läs mer

Datorövning 2 med Maple, vt

Datorövning 2 med Maple, vt Flerdimensionell analys, vt 1 2009 Datorövning 2 med Maple, vt 1 2009 Under denna datorövning skall vi lösa uppgifter i övningshäftet med hjälp av Maple. Vi skall beräkna partiella derivator, transformera

Läs mer

LABORATIONSHÄFTE NUMERISKA METODER GRUNDKURS 1, 2D1210 LÄSÅRET 03/04. Laboration 3 3. Torsionssvängningar i en drivaxel

LABORATIONSHÄFTE NUMERISKA METODER GRUNDKURS 1, 2D1210 LÄSÅRET 03/04. Laboration 3 3. Torsionssvängningar i en drivaxel Lennart Edsberg Nada, KTH December 2003 LABORATIONSHÄFTE NUMERISKA METODER GRUNDKURS 1, 2D1210 M2 LÄSÅRET 03/04 Laboration 3 3. Torsionssvängningar i en drivaxel 1 Laboration 3. Differentialekvationer

Läs mer

MATEMATIK Datum: 2014-01-14 Tid: förmiddag Hjälpmedel: inga. Mobiltelefoner är förbjudna. A.Heintz Telefonvakt: Christo er Standar, Tel.

MATEMATIK Datum: 2014-01-14 Tid: förmiddag Hjälpmedel: inga. Mobiltelefoner är förbjudna. A.Heintz Telefonvakt: Christo er Standar, Tel. MATEMATIK Datum: -- Tid: förmiddag Chalmers Hjälpmedel: inga. Mobiltelefoner är förbjudna. A.Heintz Telefonvakt: Christo er Standar, Tel.: 7-88 Lösningar till tenta i TMV Analys och linjär algebra K/Bt/Kf,

Läs mer

Svar och arbeta vidare med Student 2008

Svar och arbeta vidare med Student 2008 Student 008 Svar och arbeta vidare med Student 008 Det finns många intressanta idéer i årets Känguruaktiviteter. Problemen kan inspirera undervisningen under flera lektioner. Här ger vi några förslag att

Läs mer

TAIU07 Matematiska beräkningar med Matlab

TAIU07 Matematiska beräkningar med Matlab TAIU07 Matematiska beräkningar med Matlab Datorlektion 2. Villkor och Repetition 1 Logiska uttryck Uppgift 1.1 Låt a=3 och b=6 Vad blir resultatet av testerna ab? Uppgift 1.2 Låt a, b,

Läs mer

Lektion 3. Partiella derivator, differentierbarhet och tangentplan till en yta, normalen i en punkt till en yta, kedjeregeln

Lektion 3. Partiella derivator, differentierbarhet och tangentplan till en yta, normalen i en punkt till en yta, kedjeregeln Lektion 3 Partiella derivator, differentierbarhet och tangentplan till en yta, normalen i en punkt till en yta, kedjeregeln Innehål 1. Partiella derivator (12.3) 2. Differentierbarhet och tangentplan till

Läs mer

SF1620 Matematik och modeller

SF1620 Matematik och modeller KTH Teknikvetenskap, Institutionen för matematik 1 SF160 Matematik och modeller 007-09-10 Andra veckan Trigonometri De trigonometriska funktionerna och enhetscirkeln Redan vid förra veckans avsnitt var

Läs mer

= y(0) för vilka lim y(t) är ändligt.

= y(0) för vilka lim y(t) är ändligt. Lösningsförslag till tentamensskrivning i SF633 Differentialekvationer I och SF637 Differentialekvationer och transformer III Lördagen den 4 februari, kl 4-9 Hjälpmedel: BETA, Mathematics Handbook Redovisa

Läs mer

NATIONELLT PROV I MATEMATIK KURS D VÅREN 1997. Tidsbunden del

NATIONELLT PROV I MATEMATIK KURS D VÅREN 1997. Tidsbunden del Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen till och med utgången av november 1997. NATIONELLT

Läs mer

4x 2 dx = [polynomdivision] 2x x + 1 dx. (sin 2 (x) ) 2. = cos 2 (x) ) 2. t = cos(x),

4x 2 dx = [polynomdivision] 2x x + 1 dx. (sin 2 (x) ) 2. = cos 2 (x) ) 2. t = cos(x), Lunds Tekniska Högskola Matematik Helsingborg Lösningar Analys, FMAA5 9-8-9. a) e sinx) cosx) dx e sinx) + C. b) 4x dx polynomdivision] x + x + x + dx x x + ] ln x + + ) ln) + ) ln) ln). c) Trigonometriska

Läs mer

Geometri och Trigonometri

Geometri och Trigonometri Kapitel 5 Geometri och Trigonometri I detta kapitel kommer vi att koncentrera oss på de trigonometriska funktionerna sin x, cos x och tan x. 5. Repetition Här repeteras några viktiga trigonometriska definitioner

Läs mer

Fysikaliska krumsprång i spexet eller Kemister och matematik!

Fysikaliska krumsprång i spexet eller Kemister och matematik! Fysikaliska krumsprång i spexet eller Kemister och matematik! Mats Linder 10 maj 2009 Ingen sammanfattning. Sammanfattning För den hugade har vi knåpat ihop en liten snabbguide till den fysik och kvantmekanik

Läs mer

Partiklars rörelser i elektromagnetiska fält

Partiklars rörelser i elektromagnetiska fält Partiklars rörelser i elektromagnetiska fält Handledning till datorövning AST213 Solär-terrest fysik Handledare: Magnus Wik (2862125) magnus@lund.irf.se Institutet för rymdfysik, Lund Oktober 2003 1 Inledning

Läs mer

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA671 2005-08-26. DAG: Fredag 26 augusti 2005 TID: 8.30-12.

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA671 2005-08-26. DAG: Fredag 26 augusti 2005 TID: 8.30-12. Institutionen för Matematik Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 5-8-6 DAG: Fredag 6 augusti 5 TID: 8.3-.3 SAL: V Ansvarig: Ivar Gustafsson, tel: 77 94 Förfrågningar: Ivar Gustafsson

Läs mer

Syftet med den här laborationen är att du skall bli mer förtrogen med följande viktiga områden inom matematisk statistik

Syftet med den här laborationen är att du skall bli mer förtrogen med följande viktiga områden inom matematisk statistik LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, AK FÖR I, FMS 01, HT-07 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen, enkla punktskattningar

Läs mer

Den matematiska analysens grunder

Den matematiska analysens grunder KTH:s Matematiska Cirkel Den matematiska analysens grunder Katharina Heinrich Dan Petersen Institutionen för matematik, 2012 2013 Finansierat av Marianne och Marcus Wallenbergs Stiftelse Innehåll 1 Grundläggande

Läs mer

Signalanalys med snabb Fouriertransform

Signalanalys med snabb Fouriertransform Laboration i Fourieranalys, MVE030 Signalanalys med snabb Fouriertransform Den här laborationen har två syften: dels att visa lite på hur den snabba Fouriertransformen fungerar, och lite om vad man bör

Läs mer

Matematiska Institutionen, K T H. B. Krakus. Differential- och integralkalkyl, del 2. Maplelaboration 1.

Matematiska Institutionen, K T H. B. Krakus. Differential- och integralkalkyl, del 2. Maplelaboration 1. Matematiska Institutionen, K T H. B. Krakus Differential- och integralkalkyl, del. Maplelaboration 1. Exempel 1. Vart tog den lilla sträckan vägen? Maple är utrustad med ett avanserat ritprogram. Programet

Läs mer

Datorövning 2. - Tag med lärobok och övningshäfte till övningen. - Fyll före övningenen i svaren på frågorna på sidan 5 i denna handledning.

Datorövning 2. - Tag med lärobok och övningshäfte till övningen. - Fyll före övningenen i svaren på frågorna på sidan 5 i denna handledning. Kontinuerliga system vt 2015 Datorövning 2 Inledning Syftet med denna datorövning är att du med hjälp av Maple skall få ökad förståelse av vissa begrepp presenterade i kapitel H. Exempelvis behandlas skalärprodukt,

Läs mer

TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer

TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer Johan Thim 0 januari 207 Introduktion En differentialekvation (DE) i en variabel är en ekvation som innehåller både

Läs mer

NATIONELLT PROV I MATEMATIK KURS E HÖSTEN 1996

NATIONELLT PROV I MATEMATIK KURS E HÖSTEN 1996 Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen till och med utgången av mars 1997. NATIONELLT PROV

Läs mer

SF1626 Flervariabelanalys Tentamen Måndagen den 27 maj, 2013

SF1626 Flervariabelanalys Tentamen Måndagen den 27 maj, 2013 SF626 Flervariabelanalys Tentamen Måndagen den 27 maj, 23 Skrivtid: 8:-3: Tillåtna hjälpmedel: inga Examinator: Mattias Dahl Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng. De tre

Läs mer

Betygskriterier Matematik E MA1205 50p. Respektive programmål gäller över kurskriterierna

Betygskriterier Matematik E MA1205 50p. Respektive programmål gäller över kurskriterierna Betygskriterier Matematik E MA105 50p Respektive programmål gäller över kurskriterierna MA105 är en nationell kurs och skolverkets kurs- och betygskriterier finns på http://www3.skolverket.se/ Detta är

Läs mer

SF1633, Differentialekvationer I Tentamen, torsdagen den 7 januari Lösningsförslag. Del I

SF1633, Differentialekvationer I Tentamen, torsdagen den 7 januari Lösningsförslag. Del I Institutionen för matematik, KTH Serguei Shimorin SF6, Differentialekvationer I Tentamen, torsdagen den 7 januari 26 Lösningsförslag Del I Moduluppgift En liter av lösningen som innehåller 2 gram av kemiska

Läs mer

Kontrollskrivning KS1T

Kontrollskrivning KS1T Kontrollskrivning KS1T Matematik 2 Kurskod HF100 Skrivtid 8:15-11:15 måndagen 9 februari 2009 Tentamen består av 4 sidor Hjälpmedel: Utdelat formelblad. Räknedosa. Formelsamling Korrekt löst uppgift ger

Läs mer

Dagens tema. Fasplan(-rum), fasporträtt, stabilitet (forts.) (ZC sid 340-1, ZC10.2) Om högre ordnings system (Tillägg)

Dagens tema. Fasplan(-rum), fasporträtt, stabilitet (forts.) (ZC sid 340-1, ZC10.2) Om högre ordnings system (Tillägg) Dagens tema Fasplan(-rum), fasporträtt, stabilitet (forts.) (ZC sid 340-1, ZC10.2) Om högre ordnings system (Tillägg) Fasplan(-rum), trajektorier, fasporträtt ZC sid 340-1, ZC10.2 Definitioner: Lösningarna

Läs mer

Mathematica. Utdata är Mathematicas svar på dina kommandon. Här ser vi svaret på kommandot från. , x

Mathematica. Utdata är Mathematicas svar på dina kommandon. Här ser vi svaret på kommandot från. , x Mathematica Första kapitlet kommer att handla om Mathematica det matematiska verktyg, som vi ska lära oss hantera under denna kurs. Indata När du arbetar med Mathematica ger du indata i form av kommandon

Läs mer

Fria matteboken: Matematik 2b och 2c

Fria matteboken: Matematik 2b och 2c Fria matteboken: Matematik 2b och 2c Det här dokumentet innehåller sammanfattning av teorin i matematik 2b och 2c, för gymnasiet. Dokumentet är fritt att använda, modifiera och sprida enligt Creative Commons

Läs mer

SF1626 Flervariabelanalys Bedömningskriterier till tentamen Tisdagen den 7 juni 2016

SF1626 Flervariabelanalys Bedömningskriterier till tentamen Tisdagen den 7 juni 2016 SF1626 Flervariabelanalys Bedömningskriterier till tentamen Tisdagen den 7 juni 2016 Allmänt gäller följande: För full poäng på en uppgift krävs att lösningen är väl presenterad och lätt att följa. Det

Läs mer

Matematiska Institutionen, K T H. B. Krakus. Matematik 1. Maplelaboration 2.

Matematiska Institutionen, K T H. B. Krakus. Matematik 1. Maplelaboration 2. Matematiska Institutionen, K T H. B. Krakus Matematik. Maplelaboration. . Kommandon, funktioner och konstanter i denna laboration: expand(uttryck) simplify(uttryck) utvecklar uttrycket. T.ex. expand((x+)*(x-)^);

Läs mer

9.1 Mer om differentialekvationer

9.1 Mer om differentialekvationer 9.1 Mer om differentialekvationer 9.1.1 Olika typer Ordinär differentialekvationer.ode innehåller derivator med avseende på endast en variabel. Partiella differentialekvationer.pde innehåller (partiella)

Läs mer

Mekaniska vågor. Emma Björk

Mekaniska vågor. Emma Björk Mekaniska vågor Emma Björk Olika typer av vågfenomen finns överallt! Mekaniska vågor Ljudvågor Havsvågor Seismiska vågor Vågor på sträng Elektromagnetiska vågor Ljus Radiovågor Mikrovågor IR UV Röntgenstrålning

Läs mer

Tentamen i Envariabelanalys 2

Tentamen i Envariabelanalys 2 Linköpings universitet Matematiska institutionen Kurskod: TATA42 Provkod: TEN Tentamen i Envariabelanalys 2 206 0 8, 4 9 Inga hjälpmedel. Lösningarna ska vara fullständiga, välmotiverade, ordentligt skrivna

Läs mer

a k . Serien, som formellt är följden av delsummor

a k . Serien, som formellt är följden av delsummor Kapitel S Mer om serier I dettapitel sall vi fortsätta att studera serier, ett begrepp som introducerades i Kapitel 9.5 i boen, framförallt sa vi bevisa ett antal onvergensriterier. Mycet ommer att vara

Läs mer

Modeller för dynamiska förlopp

Modeller för dynamiska förlopp Föreläsning 3 Modeller för dynamiska förlopp 3.1 Aktuella avsnitt i läroboken (.1) Population Models. (.) Equilibrium Solutions and Stability. (.3) Acceleration-Velocity Models. 19 FÖRELÄSNING 3. MODELLER

Läs mer

Dynamiska system. Hans Lundmark. Matematiska institutionen Linköpings universitet

Dynamiska system. Hans Lundmark. Matematiska institutionen Linköpings universitet Dynamiska system Hans Lundmark Matematiska institutionen Linköpings universitet 2/24 Dynamiskt system = ett system vars tillstånd ändras med tiden, och som har följande egenskaper: Deterministiskt Följer

Läs mer

Matematik för sjöingenjörsprogrammet

Matematik för sjöingenjörsprogrammet Matematik för sjöingenjörsprogrammet Matematiska Vetenskaper 9 augusti 01 Innehåll 5 komplexa tal 150 5.1 Inledning................................ 150 5. Geometrisk definition av de komplexa talen..............

Läs mer

MATEMATIK GU. LLMA60 MATEMATIK FÖR LÄRARE, GYMNASIET Analys, ht 2014. Block 5, översikt

MATEMATIK GU. LLMA60 MATEMATIK FÖR LÄRARE, GYMNASIET Analys, ht 2014. Block 5, översikt MATEMATIK GU H4 LLMA6 MATEMATIK FÖR LÄRARE, GYMNASIET Analys, ht 24 I block 5 ingår följande avsnitt i Stewart: Kapitel 2, utom avsnitt 2.4 och 2.6; kapitel 4. Block 5, översikt Första delen av block 5

Läs mer

Institutionen för Matematik. SF1625 Envariabelanalys. Lars Filipsson. Modul 1

Institutionen för Matematik. SF1625 Envariabelanalys. Lars Filipsson. Modul 1 Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2017-2018 Lars Filipsson Modul 1 1. MÅL FÖR MODUL 1 1. Reella tal. Känna till talsystememet och kunna använda notation för mängder och intervall

Läs mer

a), c), e) och g) är olikheter. Av dem har c) och g) sanningsvärdet 1.

a), c), e) och g) är olikheter. Av dem har c) och g) sanningsvärdet 1. PASS 9. OLIKHETER 9. Grundbegrepp om olikheter Vi får olikheter av ekvationer om vi byter ut likhetstecknet mot något av tecknen > (större än), (större än eller lika med), < (mindre än) eller (mindre än

Läs mer

Anders Logg. Människor och matematik läsebok för nyfikna 95

Anders Logg. Människor och matematik läsebok för nyfikna 95 Anders Logg Slutsatsen är att vi visserligen inte kan beräkna lösningen till en differentialekvation exakt, men att detta inte spelar någon roll eftersom vi kan beräkna lösningen med precis den noggrannhet

Läs mer

Användarmanual till Maple

Användarmanual till Maple Användarmanual till Maple Oktober, 006. Ulf Nyman, Hållfasthetslära, LTH. Introduktion Maple är ett mycket användbart program för symboliska och i viss mån numeriska beräkningar. I Maple finns ett stort

Läs mer

MODELLERING AV DYNAMISKA SYSTEM OCH INLUPP 2

MODELLERING AV DYNAMISKA SYSTEM OCH INLUPP 2 UPPSALA UNIVERSITET AVDELNINGEN FÖR SYSTEMTEKNIK EKL och PSA, 2002, rev BC 2009, 2013 MODELLERING AV DYNAMISKA SYSTEM DATORSTÖDD RÄKNEÖVNING OCH INLUPP 2 1. Överföringsfunktioner 2. Tillståndsmetodik Förberedelseuppgifter:

Läs mer

Sidor i boken f(x) = a x 2 +b x+c

Sidor i boken f(x) = a x 2 +b x+c Sidor i boken 18-151 Andragradsfunktioner Här ska vi studera andragradsfunktionen som skrivs f(x) = ax +bx+c där a, b, c är konstanter (reella tal) och där a 0. Grafen (kurvan) till f(x), y = ax + bx +

Läs mer

Matematik 5 Kap 3 Derivator och Integraler

Matematik 5 Kap 3 Derivator och Integraler Matematik 5 Kap 3 Derivator och Integraler Inledning I kap 4 Differentialekvationer behövs derivator (och integraler) och i kap 5 Omfångsrika problemsituationer finns intressanta problem med användning

Läs mer

Lösning till tentamen i SF1633 Differentialekvationer I för BD, M och P, , kl

Lösning till tentamen i SF1633 Differentialekvationer I för BD, M och P, , kl KTH Matematik Bengt Ek och Olle Stormark. Lösning till tentamen i SF633 Differentialekvationer I för BD, M och P, 008 0 6, kl. 4.00 9.00. Hjälpmedel: BETA. Uppgifterna 5 motsvarar kursens fem moduler.

Läs mer

Inociell Lösningsmanual Endimensionell analys. E. Oscar A. Nilsson

Inociell Lösningsmanual Endimensionell analys. E. Oscar A. Nilsson Inociell Lösningsmanual Endimensionell analys E. Oscar A. Nilsson January 31, 018 Dan Brown "The path of light is laid, a secret test..." Tillägnas Mina vänner i Förord Detta är en inociell lösningsmanual

Läs mer

TANA17 Matematiska beräkningar med Matlab

TANA17 Matematiska beräkningar med Matlab TANA17 Matematiska beräkningar med Matlab Laboration 1. Linjär Algebra och Avbildningar Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion I denna övning skall

Läs mer

Matematik 1. Maplelaboration 1.

Matematik 1. Maplelaboration 1. Matematiska Institutionen, K T H. B. Krakus Matematik. Maplelaboration. Före laborationen: Bekanta Dig med innehållet på sid 3. Ögna igenom de genomräknade exemplen 8 på sid 4 7. Använd PoP (papper och

Läs mer

10.1 Linjära första ordningens differentialekvationer

10.1 Linjära första ordningens differentialekvationer 10.1 Linjära första ordningens differentialekvationer Här ska vi studera linjära första ordningens differentialekvationer som kan skrivas y (x) + g(x)y(x) = h(x) Om g(x) har en primitiv funktion G(x) så

Läs mer

Lektionsanteckningar 2: Matematikrepetition, tabeller och diagram

Lektionsanteckningar 2: Matematikrepetition, tabeller och diagram Lektionsanteckningar 2: Matematikrepetition, tabeller och diagram 2.1 Grundläggande matematik 2.1.1 Potensfunktioner xmxn xm n x x x x 3 4 34 7 x x m n x mn x x 4 3 x4 3 x1 x x n 1 x n x 3 1 x 3 x0 1 1

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF1626 Flervariabelanalys Lösningsförslag till tentamen 215-3-16 DEL A 1. Låt f(x, y) = 1 x 2 y 2. (a) Skissa nivåkurvorna f(x, y) = c till f för c =, c = 1 och c = 2. (1 p) (b) Beräkna gradf(x, y) i de

Läs mer

Uppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna

Uppsala Universitet Matematiska Institutionen Bo Styf. Genomgånget på föreläsningarna Uppsala Universitet Matematiska Institutionen Bo Styf Envariabelanalys, 10 hp STS, X 010-10-7 Genomgånget på föreläsningarna 11-15. Föreläsning 11, 4/11 010: Här kommer vi in i kapitel 4, som handlar om

Läs mer

Reglerteknik M3, 5p. Tentamen 2008-08-27

Reglerteknik M3, 5p. Tentamen 2008-08-27 Reglerteknik M3, 5p Tentamen 2008-08-27 Tid: 08:30 12:30 Lokal: M-huset Kurskod: ERE031/ERE032/ERE033 Lärare: Knut Åkesson, tel 0701-749525 Läraren besöker tentamenssalen vid två tillfällen för att svara

Läs mer

Tisdag v. 2. Speglingar, translationer och skalningar

Tisdag v. 2. Speglingar, translationer och skalningar 1 Tisdag v 2 Speglingar, translationer och skalningar Ofta i matematik och i matematiska kurser är det så att man måste kunna några grundläggande exempel utantill och man måste kunna några regler som säger

Läs mer

Tentamen Mekanik F del 2 (FFM520)

Tentamen Mekanik F del 2 (FFM520) Tentamen Mekanik F del 2 (FFM520) Tid och plats: Lördagen den 1 september 2012 klockan 08.30-12.30 i M. Hjälpmedel: Physics Handbook, Beta, Typgodkänd miniräknare samt en egenhändigt skriven A4 med valfritt

Läs mer

MMA132: Laboration 1 Introduktion till MATLAB

MMA132: Laboration 1 Introduktion till MATLAB MMA132: Laboration 1 Introduktion till MATLAB De flesta numeriska metoder låter oss få en tillräckligt bra lösning på ett matematiskt problem genom att byta ut komplexa matematiska operationer med kombinationer

Läs mer

Modul 1 Mål och Sammanfattning

Modul 1 Mål och Sammanfattning Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2016-2017 Lars Filipsson Modul 1 Mål och Sammanfattning 1. Reella tal. 1. MÅL FÖR MODUL 1 Känna till talsystememet och kunna använda notation

Läs mer

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIALEKVATIONER i) En differentialekvation

Läs mer

Två gränsfall en fallstudie

Två gränsfall en fallstudie 19 november 2014 FYTA11 Datoruppgift 6 Två gränsfall en fallstudie Handledare: Christian Bierlich Email: christian.bierlich@thep.lu.se Redovisning av övningsuppgifter före angiven deadline. 1 Introduktion

Läs mer

Institutionen för matematik KTH. Tentamensskrivning, , kl B1210 och 5B1230 Matematik IV, för B, M, och I.

Institutionen för matematik KTH. Tentamensskrivning, , kl B1210 och 5B1230 Matematik IV, för B, M, och I. Institutionen för matematik KTH Tentamensskrivning, 23--9, kl 4 9 5B2 och 5B23 Matematik IV, för B, M, och I Hjälpmedel: BETA, Mathematics Handbook För godkänt betyg 3 krävs 7 poäng, medan för betyg 4

Läs mer

FOURIERANALYS En kort introduktion

FOURIERANALYS En kort introduktion FOURIERAALYS En kort introduktion Kurt Hansson 2009 Innehåll 1 Signalanalys 2 2 Periodiska signaler 2 3 En komplex) skalärprodukt 4 4 Fourierkoefficienter 4 5 Sampling 5 5.1 Shannon s teorem.................................

Läs mer

Institutionen för Matematiska Vetenskaper TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1/TM1, TMA671 2014-05-26

Institutionen för Matematiska Vetenskaper TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1/TM1, TMA671 2014-05-26 Institutionen för Matematiska Vetenskaper Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F/TM, TMA67 4-5-6 DAG: Måndag 6 maj 4 TID: 4. - 8. SAL: V Ansvarig: Ivar Gustafsson, tel: 75-33545 Förfrågningar:

Läs mer

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP

DIFFERENTIALEKVATIONER. INLEDNING OCH GRUNDBEGREPP DIFFERENTIALEKVATIONER INLEDNING OCH GRUNDBEGREPP Differentialekvation (DE) är en ekvation som innehåller derivator av en eller flera okända funktioner ORDINÄRA DIFFERENTIALEKVATIONER i) En differentialekvation

Läs mer

Introduktion till Matlab

Introduktion till Matlab CTH/GU 2015/2016 Matematiska vetenskaper Introduktion till Matlab 1 Inledning Matlab är både en interaktiv matematikmiljö och ett programspråk, som används på många tekniska högskolor och universitet runt

Läs mer