Kontrolldiagram hjälper oss att skilja mellan två olika typer variation, nämligen akut och kronisk variation.
|
|
- Rickard Axelsson
- för 6 år sedan
- Visningar:
Transkript
1 5. Kontrolldiagram Variation Tillverkade produkter uppvisar variation. Kvalitetsökning en minskning av dessa variationer. Kontrolldiagram hjälper oss att skilja mellan två olika typer variation, nämligen akut och kronisk variation. Akut variation skapas av urskiljbara orsaker (assignable causes). Kroniska variationen skapas av slumpmässiga orsaker (chance causes).
2 5. Kontrolldiagram Stabil process När endast kronisk variation finns har vi en stabil process. En sådan process sägs vara under kontroll, förutsägbar. Innan processen är stabil eller under kontroll så är den inte förutsägbar. Styrning Målet är att behålla en stabil (tillverknings)process. Vi måste därför följa processen genom upprepade för att snabbt upptäcka nya akuta variationer och förhoppningsvis kunna sätta in lämpliga åtgärder.
3 5. Kontrolldiagram Kontrolldiagram används för att styra en stabil process där målet är att bibehålla stabiliteten och så snabbt som möjligt upptäcka och åtgärda nya akuta variationer. Kontrolldiagrammen kan även användas för att följa upp effekten av insatta åtgärder för att minska den kroniska variationen. När man skall konstruera ett kontrolldiagram är det viktigt att man har en process som är under kontroll!
4 5. Kontrolldiagram Iden med styrdiagram är att med jämna tidsmellanrum ta ut ett antal enheter ur produktionen och mäta kvalitetsmåttet på dessa. Denna information vägs sedan samman på lämpligt sätt och prickas in i ett diagram. Med hjälp av diagrammet kan det avgöras om och när en förändring skett i processen.
5 5. Kontrolldiagram 57.5 Xbar Chart of stable 55.0 UCL=56,2 Sample Mean _ X=50, LCL=44, Sample Ett styrdiagram består av en centrumlinje samt en övre- och en undre kontrollgräns (UCL och LCL). Dessa väljs ofta till 3 standardavvikelser från centrumlinjen.
6 5.. I and MR diagram för individuella En vanlig situation är när man endast kan ta en observation vid varje tillfälle. I sådana fall används I-diagrammet där I står för Individual. Eftersom man tar observationerna successivt i tiden blir de beroende. Det innebär att s är en olämplig skattning av σ. Av den anledningen använder man hellre moving range för att uppskatta σ. Moving range mellan observation nr i och i- är X i -X i-.
7 5.. I and MR diagram för individuella Skattningen av σ ges av medelvärdet av moving range dividerat med Hartleys konstant d 2. Denna återfinns i Appendix 2 i boken, för n = 2 har vi d 2 =.2. Övre respektive undre kontrollgränserna (UCL, LCL) bestäms som medelvärdet (alternativt ett eget valt målvärde) plus/minus 3 gånger skattade standardavvikelsen. Se sid 26 i boken. Kom ihåg att processen måste vara under kontroll när gränserna bestäms!!
8 5.. I and MR diagram för individuella 3.90 I Chart of Uppmätt resistans_b UCL= Individual Value 3.0 _ X= LCL= Valet av plus/minus 3 gånger skattade standardavvikelsen betyder att en process under kontroll ger falskt larm i genomsnitt var 370:e tidpunkt. Det antalet kallas Average Run Length.
9 5.. I and MR diagram för individuella I Chart of Uppmätt resistans_b 3.9 UCL= _ X=3.9 Individual Value LCL= Här har vi angett Target-value till 3.9 kohm. I Chart Options Parameters
10 5.. I and MR diagram för individuella 4.00 I Chart of Uppmätt resistans_a 3.95 Individual Value UCL= _ X=3.63 LCL= Ex. Antag att vi har belägg för att processen inte är under kontroll vid observation 2 och 36. Dessa bör då inte vara med vid konstruktion av styrgränserna.
11 5.. I and MR diagram för individuella I Chart of Uppmätt resistans_a Individual Value UCL=3.90 _ X= LCL=3.363 Låt oss bestämma kontrollgränserna utan observationer 2 och 36. I Chart Options estimate
12 5.. I and MR diagram för individuella I Chart of Uppmätt resistans_a 3.9 UCL= Individual Value _ X= LCL= Ett annat sätt att göra det på är utesluta dessa ur grafen genom Data Options Subsets
13 5.. I and MR diagram för individuella När man har bestämt kontrollgränserna skall dessa sedan användas för att kontrollera processen framöver. Ex. Låt oss skapa kontrollgränserna med resistans B (3.9 kohm, %) och sedan använda dem på resistans A (3.9 kohm, 5%). För att göra det måste vi spara undan medelvärde och skattad standardavvikelse vid bestämningen av kontrollgränserna med resistans B. Dessa skattningar används sedan för att fixera gränserna i kontrolldiagrammet.
14 5.. I and MR diagram för individuella 3.90 I Chart of Uppmätt resistans_b UCL= Individual Value 3.0 _ X= LCL= Genom att bocka för means och standarddeviation under I Chart Options Storage sparas skattningarna.
15 5.. I and MR diagram för individuella I Chart of Uppmätt resistans_a Individual Value UCL=3.7 _ X=3.0 LCL=3.75 För att erhålla kontrollgränserna skapade med resistans B, matas skattningarna in under I Chart Options Estimate.
16 5.. I and MR diagram för individuella I Chart of A and B Individual Value UCL=3.7 _ X=3.0 LCL=3.75 Här har vi stackat data!
17 5.. I and MR diagram för individuella Det är inte enbart observationernas genomsnittliga nivå som är intressant utan även om spridningen förändras över tiden Moving Range Chart of Uppmätt resistans_b 0.00 UCL= Moving Range MR= LCL=
18 5.. I and MR diagram för individuella Moving Range Chart of A and B Moving Range UCL=0.006 MR= LCL= Kontrollgränserna är bestämda utgående från resistans B.
19 5.. I and MR diagram för individuella I-MR Chart of A and B Individual Value _ UC L=3.7 X=3.0 LC L= Moving Range UC L=0.006 MR= LC L= Vi kan få båda typerna av diagram i samma graf.
5. Kontrolldiagram. I Chart of T-bolt. Observation UCL=0, , , ,74825 _ X=0, , , ,74750 LCL=0,747479
5. Kontrolldiagram Om man är delaktig i en produktionsprocess (kanske mitt i), hur kan man då veta att det man gör inte bidrar till en kvalitetsbrist hos slutprodukten? Genom att specificera nödvändiga
Styr- och kontrolldiagram ( )
Styr- och kontrolldiagram (8.3-8.5) När vi nu skall konstruera kontrolldiagram eller styrdiagram är det viktigt att vi har en process som är under kontroll! Iden med styrdiagram är att med jämna tidsmellanrum
LMA521: Statistisk kvalitetsstyrning
Föreläsning 5 Föregående föreläsningar Acceptanskontroll: Konsten att kontrollera producerade enheter så att man kan garantera kvalitet samtidigt som kontrollen inte blir för kostsam att genomföra Dagens
LMA522: Statistisk kvalitetsstyrning
Föreläsning 5 Föregående föreläsningar Acceptanskontroll: Konsten att kontrollera producerade enheter så att man kan garantera kvalitet samtidigt som kontrollen inte blir för kostsam att genomföra Dagens
Tentamen i matematisk statistik
Sid (7) i matematisk statistik Statistik och kvalitetsteknik 7,5 hp Tillåtna hjälpmedel: Miniräknare. Studenterna får behålla tentamensuppgifterna. Skrivtid: 4.00-7.00 ger maximalt 24 poäng. Betygsgränser:
6.1 Process capability
6.1 Process capability Produktkvalitet: Två produkter som har samma användning men som är utformade på olika sätt kan vara av olika specifikationskvalitet. Om enheter överensstämmer väl med specifikationerna
Lö sningsfö rslag till tentamen i matematisk statistik Statistik öch kvalitetsteknik 7,5 hp
Sid (7) Lö sningsfö rslag till tentamen i matematisk statistik Statistik öch kvalitetsteknik 7,5 hp Uppgift Nedanstående beräkningar från Minitab är gjorda för en Poissonfördelning med väntevärde λ = 4.
6.1 Process capability
6.1 Process capability σ LSL µ USL Kapabiliteten eller dugligheten jämför förmågan hos en process (med väntevärde µ och standardavvikelse σ) med de krav vi har på den i form av givna specifikationsgränser
Att mäta och förbättra dialysvården över tid
Att mäta och förbättra dialysvården över tid Exempel från dialysenheten på Länssjukhuset Ryhov, Jönköping Dan Enell, Mark Splaine, Johan Thor 13 maj, 2013 Syften 1. Att visa hur man kan använda mätningar
2.1 Minitab-introduktion
2.1 Minitab-introduktion Betrakta följande mätvärden (observationer): 9.07 11.83 9.56 7.85 10.44 12.69 9.39 10.36 11.90 10.15 9.35 10.11 11.31 8.88 10.94 10.37 11.52 8.26 11.91 11.61 10.72 9.84 11.89 7.46
Tentamen i matematisk statistik
Sid (5) i matematisk statistik Statistisk processtyrning 7,5 hp Tillåtna hjälpmedel: Miniräknare. Studenterna får behålla tentamensuppgifterna. Skrivtid: 9.00-3.00 ger maximalt 2 poäng. För godkänt krävs
7,5 högskolepoäng. Statistisk försöksplanering och kvalitetsstyrning. TentamensKod: Tentamensdatum: 28 oktober 2016 Tid: 9.
Statistisk försöksplanering och kvalitetsstyrning Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Tentamen 4I2B KINAF4, KINAR4, KINLO4, KMASK4 7,5 högskolepoäng Tentamensdatum: 28 oktober 206 Tid:
Styrdiagram. ny alternativ metod för kontroll av överensstämmelse. Anders Lindvall Thomas Concrete Group, C-lab. E-post:
Styrdiagram ny alternativ metod för kontroll av överensstämmelse Anders Lindvall Thomas Concrete Group, C-lab E-post: anders.lindvall@c-lab.se Thomas Concrete Group Vårt fabriksnätverk Sverige: Thomas
Tentamen i matematisk statistik
Sid 1 (7) i matematisk statistik Statistik och kvalitetsteknik 7,5 hp Tillåtna hjälpmedel: Miniräknare. Studenterna får behålla tentamensuppgifterna. Skrivtid: 9.00-12.00 ger maximalt 24 poäng. Betygsgränser:
3.1 Beskrivande statistik
3.1 Beskrivande statistik En sammanställning av beskrivande statistik Summary for Vikt A nderson-darling Normality Test A -Squared 0.24 P-V alue 0.771 Mean 9.9294 StDev 1.7603 V ariance 3.0988 Skew ness
LMA521: Statistisk kvalitetsstyrning
Föreläsning 7 Föregående föreläsningar Acceptanskontroll: Enkel provtagningsplan Dubbel provtagningsplan Kontrollomfattning Styrande kontroll: Medelvärdesdiagram R-diagram/ s-diagram Felantalsdiagram Dagens
Tentamen i matematisk statistik
Sid 1 (7) i matematisk statistik Statistik och kvalitetsteknik 7,5 hp Tillåtna hjälpmedel: Miniräknare. Studenterna får behålla tentamensuppgifterna. Skrivtid: 9.00-12.00 ger maximalt 24 poäng. Betygsgränser:
LMA521: Statistisk kvalitetsstyrning
Föreläsning 6 Tidigare Styrande kontroll enligt variabelmetoden: Medelvärdesdiagram R-diagram/ s-diagram Dagens innehåll 1 Styrande kontroll enligt attributmetoden 2 Felkvotsdiagram 3 Felantalsdiagram
LMA521: Statistisk kvalitetsstyrning
Föreläsning: Kapabilitet Föregående material Acceptanskontroll: Enkel provtagningsplan Dubbel provtagningsplan Kontrollomfattning Styrande kontroll: Medelvärdesdiagram R-diagram/ s-diagram Felantalsdiagram
LMA522: Statistisk kvalitetsstyrning
Föreläsning 6 Tidigare Styrande kontroll enligt variabelmetoden: Medelvärdesdiagram R-diagram/ s-diagram Dagens innehåll 1 Styrande kontroll enligt attributmetoden 2 Felkvotsdiagram 3 Felantalsdiagram
Tentamen i matematisk statistik, Statistisk Kvalitetsstyrning, MSN320/TMS070
entamen i matematisk statistik, Statistisk Kvalitetsstyrning, MSN0/MS070 isdag 007-04-0, klockan 4.00-8.00 Examinator: Holger Rootzén elefonjour: Jan Rohlén, tfn: 0708-579548 Betygsgränser G: G: -.5, VG:
7.1 Hypotesprövning. Nollhypotes: H 0 : µ = 3.9, Alternativ hypotes: H 1 : µ < 3.9.
Betrakta motstånden märkta 3.9 kohm med tolerans 1%. Anta att vi innan mätningarna gjordes misstänkte att motståndens förväntade värde µ är mindre än det utlovade 3.9 kohm. Med observationernas hjälp vill
EXEMPEL PÅ FRÅGESTÄLLNINGAR INOM STATISTIK- TEORIN (INFERENSTEORIN):
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF50: Matematisk statistik för L och V OH-bilder på föreläsning 7, 2017-11-20 EXEMPEL PÅ FRÅGESTÄLLNINGAR INOM STATISTIK- TEORIN (INFERENSTEORIN):
Säkrare process för patienter med högriskläkemedel
Säkrare process för patienter med högriskläkemedel Professionell kunskap Ämneskunskap Personliga färdigheter Värderingar, etik Förbättringskunskap System Variation Psykologi, gruppdynamik Lärande Förbättring
Experimentella metoder 2014, Räkneövning 1
Experimentella metoder 04, Räkneövning Problem : Tio mätningar av en resistans gav följande resultat: Mätning no. Resistans (Ω) Mätning no Resistans (Ω) 0.3 6 0.0 00.5 7 99.98 3 00.0 8 99.80 4 99.95 9
Introduktion. Konfidensintervall. Parade observationer Sammanfattning Minitab. Oberoende stickprov. Konfidensintervall. Minitab
Uppfödning av kyckling och fiskleveroljor Statistiska jämförelser: parvisa observationer och oberoende stickprov Matematik och statistik för biologer, 10 hp Fredrik Jonsson vt 2012 Fiskleverolja tillsätts
F3 Introduktion Stickprov
Utrotningshotad tandnoting i arktiska vatten Inferens om väntevärde baserat på medelvärde och standardavvikelse Matematik och statistik för biologer, 10 hp Tandnoting är en torskliknande fisk som lever
LULEÅ TEKNISKA UNIVERSITET Ämneskod S0006M Institutionen för matematik Datum Skrivtid
LULEÅ TEKNISKA UNIVERSITET Ämneskod S0006M Institutionen för matematik Datum 2009-06-05 Skrivtid 0900 1400 Tentamen i: Statistik 1, Undersökningsmetodik 7.5 hp Antal uppgifter: 6 Krav för G: 12 Lärare:
Statistik för teknologer, 5 poäng Skrivtid:
UMEÅ UNIVERSITET Institutionen för matematisk statistik Statistik för teknologer, MSTA33, p Statistik för kemister, MSTA19, p TENTAMEN 2004-06-03 TENTAMEN I MATEMATISK STATISTIK Statistik för teknologer,
Lektion 1: Fördelningar och deskriptiv analys
Density Lektion 1: Fördelningar och deskriptiv analys 1.,3 Uniform; Lower=1; Upper=6,3,2,2,1,, 1 2 3 X 4 6 7 Figuren ovan visar täthetsfunktionen för en likformig fördelning. Kurvan antar värdet.2 över
Statistical Quality Control Statistisk kvalitetsstyrning. 7,5 högskolepoäng. Ladok code: 41T05A, Name: Personal number:
Statistical Quality Control Statistisk kvalitetsstyrning 7,5 högskolepoäng Ladok code: 41T05A, The exam is given to: 41I02B IBE11, Pu2, Af2-ma Name: Personal number: Date of exam: 1 June Time: 9-13 Hjälpmedel
Lö sningsfö rslag till tentamen i matematisk statistik Statistik öch kvalitetsteknik 7,5 hp
Sid 1 (9) Lö sningsfö rslag till tentamen i matematisk statistik Statistik öch kvalitetsteknik 7,5 hp Uppgift 1 a) Nämn en kontinuerlig och en diskret fördelning. Exempelvis normalfördelningen respektive
Bestämning av fillers förstyvande inverkan på bitumen. Aggregate. Determination of filler s stiffening effect on bitumen.
Sid 1 (5) STENMATERIAL Bestämning av fillers förstyvande inverkan på bitumen. Aggregate. Determination of filler s stiffening effect on bitumen. 1. ORIENTERING 2. SAMMANFATTNING 3. UTRUSTNING 4. PROVBEREDNING
Föreläsning 4. 732G19 Utredningskunskap I. Föreläsningsunderlagen bygger på underlag skapade av Kalle Wahlin
Föreläsning 4 732G19 Utredningskunskap I Föreläsningsunderlagen bygger på underlag skapade av Kalle Wahlin Dagens föreläsning Systematiskt urval Väntevärdesriktiga skattningar Jämförelse med OSU Stratifierat
Kvalitet. Kvalitet. Kvalitet. Kvalitet. Kvalitet Urklipp från boken Kvalitet - f. Kvalitet
De flesta är väl eniga om att kvalitet är en viktig konkurrensfaktor både då det gäller varor och tjänster. Dålig kvalitet minskande marknadsandelar -Vad är kvalitet? -Hur garanterar man kvalitet som producent?
Regressions- och Tidsserieanalys - F8
Regressions- och Tidsserieanalys - F8 Klassisk komponentuppdelning, kap 7.1.-7.2. Linda Wänström Linköpings universitet November 26 Wänström (Linköpings universitet) F8 November 26 1 / 23 Klassisk komponentuppdelning
a) Bedöm om villkoren för enkel linjär regression tycks vara uppfyllda! b) Pröva om regressionkoefficienten kan anses vara 1!
LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL STA1:3 Skrivning i ekonometri tisdagen den 1 juni 4 1. Vi vill undersöka hur variationen i brottsligheten i USA:s delstater år 196 = R (i antal
Tentamen i Tillämpad matematisk statistik för MI3 den 1 april 2005
Tentamen i Tillämpad matematisk statistik för MI3 den 1 april 005 Uppgift 1: Från ett register över manliga patienter med diabetes fick man följande statistik i procent: Lindrigt fall Allvarligt fall Patientens
Metodutvärdering I. Metodutvärdering -validering. Metodutvärdering II. Metodutvärdering III
Metodutvärdering I Metodutvärdering -validering Nya metoder utvecklas för att Förbättra noggrannhet och precision Tillåta automation Minska kostnader Arbetsmiljö Bestämning av ny analyt Metoden måste verifieras
Två innebörder av begreppet statistik. Grundläggande tankegångar i statistik. Vad är ett stickprov? Stickprov och urval
Två innebörder av begreppet statistik Grundläggande tankegångar i statistik Matematik och statistik för biologer, 10 hp Informationshantering. Insamling, ordningsskapande, presentation och grundläggande
Bestämning av noggrannhet och precision på några olika kärl samt Statistiska undersökningar
Umeå Universitet Biomedicinsk analytikerprogrammet Bestämning av noggrannhet och precision på några olika kärl samt Statistiska undersökningar Kurs: BMA 11 Laborationsrapport i kursen: Grundläggande laboratorievetenskap
F9 SAMPLINGFÖRDELNINGAR (NCT
Stat. teori gk, ht 006, JW F9 SAMPLINGFÖRDELNINGAR (NCT 7.1-7.4) Ordlista till NCT Sample Population Simple random sampling Sampling distribution Sample mean Standard error The central limit theorem Proportion
732G71 Statistik B. Föreläsning 8. Bertil Wegmann. IDA, Linköpings universitet. Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 23
732G71 Statistik B Föreläsning 8 Bertil Wegmann IDA, Linköpings universitet Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 23 Klassisk komponentuppdelning Klassisk komponentuppdelning bygger på en intuitiv
Betrakta kopparutbytet från malm från en viss gruva. För att kontrollera detta tar man ut n =16 prover och mäter kopparhalten i dessa.
Betrakta kopparutbytet från malm från en viss gruva. Anta att budgeten för utbytet är beräknad på att kopparhalten ligger på 70 %. För att kontrollera detta tar man ut n =16 prover och mäter kopparhalten
Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Fredag 8 december 2006, Kl
Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Fredag 8 december 2006, Kl 08.15-13.15 Tillåtna hjälpmedel: Bifogad formelsamling, approximationsschema och tabellsamling (dessa skall returneras). Egen
Matematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10. Laboration. Regressionsanalys (Sambandsanalys)
Matematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10 Laboration Regressionsanalys (Sambandsanalys) Grupp A: 2010-11-24, 13.15 15.00 Grupp B: 2010-11-24, 15.15 17.00 Grupp C: 2010-11-25,
Vetenskaplig metod och statistik
Vetenskaplig metod och statistik Innehåll Vetenskaplighet Hur ska man lägga upp ett experiment? Hur hanterar man felkällor? Hur ska man tolka resultatet från experimentet? Experimentlogg Att fundera på
Laboration 2. i 5B1512, Grundkurs i matematisk statistik för ekonomer
Laboration 2 i 5B52, Grundkurs i matematisk statistik för ekonomer Namn: Elevnummer: Laborationen syftar till ett ge information och träning i Excels rutiner för statistisk slutledning, konfidensintervall,
Laboration 3: Urval och skattningar
S0004M Statistik 1 Undersökningsmetodik. Laboration 3: Urval och skattningar Denna laboration handlar om slumpmässiga urval. Dessa urval ska användas för att uppskatta egenskaper hos en population. Statistiska
9. Konfidensintervall vid normalfördelning
TNG006 F9 09-05-016 Konfidensintervall 9. Konfidensintervall vid normalfördelning Låt x 1, x,..., x n vara ett observerat stickprov av oberoende s.v. X 1, X,..., X n var och en med fördelning F. Antag
7.5 Experiment with a single factor having more than two levels
Exempel: Antag att vi vill jämföra dragstyrkan i en syntetisk fiber som blandats ut med bomull. Man vet att inblandningen påverkar dragstyrkan och att en inblandning mellan 10% och 40% är bra. För att
Vad Betyder måtten MAPE, MAD och MSD?
Vad Betyder måtten MAPE, MAD och MSD? Alla tre är mått på hur bra anpassningen är och kan användas för att jämföra olika modeller. Den modell som har lägst MAPE, MAD och/eller MSD har bäst anpassning.
Vetenskaplig metod och Statistik
Vetenskaplig metod och Statistik Innehåll Hur ska man lägga upp ett experiment? Hur hanterar man felkällor? Hur ska man tolka resultatet från experimentet? Experimentlogg Att fundera på Experiment NE:
TENTAMEN PC1307 PC1546. Statistik (5 hp) Lördag den 24 april, Ansvarig lärare: Bengt Jansson ( , mobil: )
GÖTEBORGS UNIVERSITET Psykologiska institutionen TENTAMEN PC1307 PC1546 Statistik (5 hp) Lördag den 24 april, 2010 Tid: 14 30 18 30 Lokal: Viktoriagatan 30 Hjälpmedel: räknedosa Ansvarig lärare: Bengt
Uppgift 1 (a) För två händelser, A och B, är följande sannolikheter kända
Avd. Matematisk statistik TENTAMEN I SF90, SANNOLIKHETSTEORI OCH STATISTIK, TISDAGEN DEN 9:E JUNI 205 KL 4.00 9.00. Kursledare: Tatjana Pavlenko, 08-790 84 66 Tillåtna hjälpmedel: Formel- och tabellsamling
TMS136. Föreläsning 7
TMS136 Föreläsning 7 Stickprov När vi pysslar med statistik handlar det ofta om att baserat på stickprovsinformation göra utlåtanden om den population stickprovet är draget ifrån Situationen skulle kunna
Laboration 1 Nedslagskratrar
Laboration 1 Nedslagskratrar Den här laborationen är uppdelad i två försök, där man i båda försöken ska släppa stålkulor på en sandbädd, vilket kan ses som en mycket enkel simulering av ett meteoritnedslag.
Beskrivande statistik
Beskrivande statistik Tabellen ovan visar antalet allvarliga olyckor på en vägsträcka under 15 år. år Antal olyckor 1995 36 1996 20 1997 18 1998 26 1999 30 2000 20 2001 30 2002 27 2003 19 2004 24 2005
SF1922/SF1923: SANNOLIKHETSTEORI OCH INTERVALLSKATTNING. STATISTIK. Tatjana Pavlenko. 24 april 2018
SF1922/SF1923: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 11 INTERVALLSKATTNING. Tatjana Pavlenko 24 april 2018 PLAN FÖR DAGENS FÖRELÄSNING Vad är en intervallskattning? (rep.) Den allmänna metoden för
Lösningsförslag till Tillämpad matematisk statistik LMA521, Tentamen
Lösningsförslag till Tillämpad matematisk statistik LMA21, Tentamen 201801 Betygsgränser: för betyg krävs minst 20 poäng, för betyg 4 krävs minst 0 poäng, för betyg krävs minst 40 poäng. 1. Vid en kvalitetskontroll
Introduktion till statistik för statsvetare
och enkäter "Det finns inget så praktiskt som en bra teori" September 2011 och enkäter Inledning Inledning Om vi vill mäta en egenskap hos en population individer (individer kan vara personer, företag
Laborationsrapport. Kurs Elektroteknik grundkurs ET1002. Lab nr 5. Laborationens namn Växelström. Kommentarer. Namn. Utförd den. Godkänd den.
Laborationsrapport Kurs Elektroteknik grundkurs ET1002 Lab nr 5 Laborationens namn Växelström Namn Kommentarer Utförd den Godkänd den Sign Växelström Förberedelseuppgift: Gör beräkningarna till uppgifterna
Typvärde. Mest frekventa värdet Används framförallt vid nominalskala Ex: typvärdet. Kemi 250. Ekon 570. Psyk 120. Mate 195.
Lägesmått Det kan ibland räcka med ett lägesmått för att beskriva datamaterial Lägesmåttet kan vara bra att använda då olika datamaterial skall jämföras Vilket lägesmått som skall användas: Typvärde Median
Laboration 3: Urval och skattningar
S0004M Statistik 1 Undersökningsmetodik. Laboration 3: Urval och skattningar Denna laboration handlar om slumpmässiga urval. Dessa urval ska användas för att uppskatta egenskaper hos en population. Statistiska
Sju sätt att visa data. Sju vanliga och praktiskt användbara presentationsformat vid förbättrings- och kvalitetsarbete
Sju sätt att visa data Sju vanliga och praktiskt användbara presentationsformat vid förbättrings- och kvalitetsarbete Introduktion I förbättringsarbete förekommer alltid någon form av data, om inte annat
EXEMPEL PÅ FRÅGESTÄLLNINGAR INOM STATISTIKTE- ORIN (INFERENSTEORIN):
Lunds tekniska högskola Matematikcentrum Matematisk statistik Matematisk statistik AK för ekosystemteknik, FMSF75 OH-bilder 2018-09-19 EXEMPEL PÅ FRÅGESTÄLLNINGAR INOM STATISTIKTE- ORIN (INFERENSTEORIN):
Statistiska Institutionen Gebrenegus Ghilagaber (docent)
Statistiska Institutionen Gebrenegus Ghilagaber (docent) Lösningsförslag till skriftlig tentamen i FINANSIELL STATISTIK, grundnivå, 7,5 hp, VT09. Onsdagen 3 juni 2009-1 Sannolkhetslära Mobiltelefoner tillverkas
LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK
UMEÅ UNIVERSITET Institutionen för matematisk statistik MSTA16, Statistik för tekniska fysiker A Peter Anton TENTAMEN 2004-08-23 LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK Statistik för tekniska
GRUPPARBETE. - Sex sigma, ett förbättringsprojekt. IEK215 Statistisk processtyrning och sex sigma 2006-01-04
GRUPPARBETE - Sex sigma, ett förbättringsprojekt IEK215 Statistisk processtyrning och sex sigma 2006-01-04 Magnus Blomberg Moa Hedestig Johan Jonsson Hannah Öhman Luleå tekniska universitet Institutionen
Föreläsning 7. Statistikens grunder.
Föreläsning 7. Statistikens grunder. Jesper Rydén Matematiska institutionen, Uppsala universitet jesper.ryden@math.uu.se 1MS008, 1MS777 vt 2016 Föreläsningens innehåll Översikt, dagens föreläsning: Inledande
Läs noggrant informationen nedan innan du börjar skriva tentamen
Tentamen i Statistik 1: Undersökningsmetodik Ämneskod S0006M Totala antalet uppgifter: Totala antalet poäng Lärare: 5 25 Mykola Shykula, Inge Söderkvist, Ove Edlund, Niklas Grip Tentamensdatum 2013-03-27
Tentamen i matematisk statistik, Statistisk Kvalitetsstyrning, MSN320/TMS070 Lördag , klockan Lärare: Jan Rohlén
FACIT Tetame i matematisk statistik, Statistisk Kvalitetsstyrig, MSN3/TMS7 Lördag 6-1-16, klocka 14.-18. Lärare: Ja Rohlé Ugift 1 (3.5 ) Se boke! Ugift (3.5) Se boke! Ugift 3 (3) a-ugifte Partistorlek:
Föreläsning G60 Statistiska metoder
Föreläsning 7 Statistiska metoder 1 Dagens föreläsning o Hypotesprövning för två populationer Populationsandelar Populationsmedelvärden Parvisa observationer Relation mellan hypotesprövning och konfidensintervall
Lösningar 15 december 2004
Lösningar 15 december 004 Tentamensskrivning i Fysikexperiment, 5p, för Fy1100 Onsdagen den 15 december 004 kl. 9-13(14). B.S. 1. En behållare för förvaring av bensin har formen av en liggande cylinder
Obligatorisk uppgift, del 1
Obligatorisk uppgift, del 1 Uppgiften består av tre sannolikhetsproblem, som skall lösas med hjälp av miniräknare och tabellsamling. 1. Vid tillverkning av en produkt är felfrekvensen 0,02, dvs sannolikheten
Elektronik grundkurs Laboration 1 Mätteknik
Elektronik grundkurs Laboration 1 Mätteknik Förberedelseuppgifter: Uppgifterna skall lösas före laborationen med papper och penna och vara snyggt uppställda med figurer. a) Gör beräkningarna till uppgifterna
Idag. EDAA35, föreläsning 4. Analys. Exempel: exekveringstid. Vanliga steg i analysfasen av ett experiment
EDAA35, föreläsning 4 KVANTITATIV ANALYS Idag Kvantitativ analys Kamratgranskning Analys Exempel: exekveringstid Hur analysera data? Hur vet man om man kan lita på skillnader och mönster som man observerar?
Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling. Tentamensdatum: 28 maj 2018 Tid: 9-13
Matematisk Statistik 7,5 högskolepoäng Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling Tentamensdatum: 28 maj 2018 Tid: 9-13 Hjälpmedel: Miniräknare
F14 HYPOTESPRÖVNING (NCT 10.2, , 11.5) Hypotesprövning för en proportion. Med hjälp av data från ett stickprov vill vi pröva
Stat. teori gk, ht 006, JW F14 HYPOTESPRÖVNING (NCT 10., 10.4-10.5, 11.5) Hypotesprövning för en proportion Med hjälp av data från ett stickprov vill vi pröva H 0 : P = P 0 mot någon av H 1 : P P 0 ; H
Tentamen i K0001N Kvalitetsutveckling
Institutionen för industriell ekonomi och samhällsvetenskap Datum: 2018-08-28 Tid: 09.00-14.00 Hjälpmedel: Miniräknare Formelsamling K0001N Version 4.3 Jourhavande lärare Erik Lovén, tel 0920-49 24 02
Vägledning till statistisk redovisning i NFTS försöksdokumentation
1(5) Fältforsk 2013-12-09 Vägledning till statistisk redovisning i NFTS försöksdokumentation Inledning Det här dokumentet beskriver hur de statisiska resultat som redovisas i NFTS försöksdokumentation
7,5 högskolepoäng. Statistisk försöksplanering och kvalitetsstyrning. TentamensKod: Tentamensdatum: 30 oktober 2015 Tid: 9-13:00
Statistisk försöksplanering och kvalitetsstyrning Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Tentamen 5Hp 41I12B KINAF13, KINAR13, KINLO13,KMASK13 7,5 högskolepoäng Tentamensdatum: 30 oktober
Säsongrensning i tidsserier.
Senast ändrad 200-03-23. Säsongrensning i tidsserier. Kompletterande text till kapitel.5 i Tamhane och Dunlop. Inledning. Syftet med säsongrensning är att dela upp en tidsserie i en trend u t, en säsongkomponent
1 Mätdata och statistik
Matematikcentrum Matematik NF Mätdata och statistik Betrakta frågeställningen Hur mycket väger en nyfödd bebis?. Frågan verkar naturlig, men samtidigt mycket svår att besvara. För att ge ett fullständigt
Föreläsning 5. Kapitel 6, sid Inferens om en population
Föreläsning 5 Kapitel 6, sid 153-185 Inferens om en population 2 Agenda Statistisk inferens om populationsmedelvärde Statistisk inferens om populationsandel Punktskattning Konfidensintervall Hypotesprövning
Hur skriver man statistikavsnittet i en ansökan?
Hur skriver man statistikavsnittet i en ansökan? Val av metod och stickprovsdimensionering Registercentrum Norr http://www.registercentrumnorr.vll.se/ statistik.rcnorr@vll.se 11 Oktober, 2018 1 / 52 Det
Analys av medelvärden. Jenny Selander , plan 3, Norrbacka, ingång via den Samhällsmedicinska kliniken
Analys av medelvärden Jenny Selander jenny.selander@ki.se 524 800 29, plan 3, Norrbacka, ingång via den Samhällsmedicinska kliniken Jenny Selander, Kvant. metoder, FHV T1 december 20111 Innehåll Normalfördelningen
Kvalitet och Variation Koordinatorer 26 aug
Kvalitet och Variation Koordinatorer 26 aug En definition av kvalitet Kvaliteten på en tjänst är dess förmåga att tillfredsställa kundernas* behov och helst att överträffa deras förväntningar Fritt efter
Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl
Karlstads universitet Avdelningen för nationalekonomi och statistik Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl 08.15-13.15 Tillåtna hjälpmedel: Bifogad formelsamling, approximationsschema
Rättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller:
Matematisk Statistik Provmoment: Ladokkod: Tentamen ges för: Tentamen 6.5 hp AT1MS1 DTEIN16h 7,5 högskolepoäng TentamensKod: Tentamensdatum: 1 juni 2017 Tid: 14-18 Hjälpmedel: Miniräknare Totalt antal
BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 6 (2015-04-22) OCH INFÖR ÖVNING 7 (2015-04-29)
LUNDS UNIVERSITET, MATEMATIKCENTRUM, MATEMATISK STATISTIK BIOSTATISTISK GRUNDKURS, MASB11 ÖVNING 6 (2015-04-22) OCH INFÖR ÖVNING 7 (2015-04-29) Aktuella avsnitt i boken: Kap 61 65 Lektionens mål: Du ska
Liten handledning i Excel och StarOffice Calc i anslutning till Datorövning 1
STOCKHOLMS UNIVERSITET 2004-11-04 MATEMATISK STATISTIK Sannolikhetslära och statistik för lärare Liten handledning i Excel och StarOffice Calc i anslutning till Datorövning 1 Programmet StarOffice Calc
Idag. EDAA35, föreläsning 4. Analys. Kursmeddelanden. Vanliga steg i analysfasen av ett experiment. Exempel: exekveringstid
EDAA35, föreläsning 4 KVANTITATIV ANALYS Idag Kvantitativ analys Slump och slumptal Analys Boxplot Konfidensintervall Experiment och test Kamratgranskning Kursmeddelanden Analys Om laborationer: alla labbar
Exempel 1 på multipelregression
Exempel på multipelregression Hastighet = högsta hastighet som uppnåtts fram till givna år (årtal) Årtal Hastighet 8 (tåg) 95 (tåg) 9 (flyg) 97 7 (flyg) 95 5 (flyg) 99 5 (raket) Regression Plot Hastighet
2. Lära sig beskriva en variabel numeriskt med "proc univariate" 4. Lära sig rita diagram med avseende på en annan variabel
Datorövning 1 Statistikens Grunder 2 Syfte 1. Lära sig göra betingade frekvenstabeller 2. Lära sig beskriva en variabel numeriskt med "proc univariate" 3. Lära sig rita histogram 4. Lära sig rita diagram
Användbara indikatorer
Användbara indikatorer Teknisk analys består egentligen av två delar: grafisk analys (chartism) och numerisk analys. Den första baseras på en direkt observationer av kurserna och volymerna, och formationer
FMSF55: Matematisk statistik för C och M OH-bilder på föreläsning 5, a 2 e x2 /a 2, x > 0 där a antas vara 0.6.
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF55: Matematisk statistik för C och M OH-bilder på föreläsning 5, 28-4-6 EXEMPEL (max och min): Ett instrument består av tre komponenter.
Kapitel 4. Kontinuerliga slumpvariabler och deras sannolikhetsfördelningar. Sannolikhetslära och inferens II
Sannolikhetslära och inferens II Kapitel 4 Kontinuerliga slumpvariabler och deras sannolikhetsfördelningar 1 Kontinuerliga slumpvariabler En slumpvariabel som kan anta alla värden på något intervall sägs
Uppföljning av vårdprocesser med sällsynta händelser
Att vårda en process mäta, räkna, rita Ett seminarium av Föreningen industriell statistik och SFK-StaM Den 7 November, 212 Uppföljning av vårdprocesser med sällsynta händelser Alexander Chakhunashvili,
Richard Öhrvall, http://richardohrvall.com/ 1
Läsa in data (1/4) Välj File>Open>Data Läsa in data (2/4) Leta reda på rätt fil, Markera den, välj Open http://richardohrvall.com/ 1 Läsa in data (3/4) Nu ska data vara inläst. Variable View Variabelvärden