Projekt Finit Element-lösare

Storlek: px
Starta visningen från sidan:

Download "Projekt Finit Element-lösare"

Transkript

1 Projekt Finit Element-lösare Emil Johansson, Simon Pedersen, Janni Sundén 29 september 2 Chalmers Tekniska Högskola Institutionen för Matematik TMA682 Tillämpad Matematik

2 Inledning Många naturliga fenomen kan modelleras med differentialekvationer. Ofta är dessa mycket svåra eller omöjliga att lösa analytiskt, varför olika approximativa lösningsmetoder används. En av dessa är Finita element-metoden (FEM). Denna rapport behandlar ett projekt beståe av kodning av en FEM-lösare i MatLab samt användandet av denna på två välkända randvärdesproblem, diffusions-reaktionsekvationen och diffusionskonvektionsekvationen. Den erhållna approximativa lösningen jämförs med en analytisk lösning av problemet. 2 Teori 2. Finita element-metoden Differentialekvationens lösning kan approximeras med en styckvis linjär, kontinuerlig, funktion. Detta kallas kontinuerlig Galerkin av grad, cg(). Då denna approximativa lösning är (styckvis) linjär kan den beskrivas som en linjärkombination av styckvis linjära basfunktioner, så kallade hattfunktioner. Att ast behöva undersöka dessa basfunktioner är grunden i lösningsmetoden. Som exempel har vi här behandlat diffusionsreaktionsekvationen, men proceduren är liknande för andra randvärdesproblem. { u (x) + u(x) =, < x < π u (DE) () () =, u(π) = För att problemet ska kunna behandlas, konverterar vi differentialekvationen till motsvarande variationsformulering genom att multiplicera (DE) med en testfunktion v(x) och integrera över det relevanta intervallet. För vårt exempelproblem (ekv. ) blir denna: Finn en funktion u(x) V sådan att: ( u (x) + u(x))v(x) dx = v(x) V := H (,π) := {w : ()v(x) dx ( w(x) 2 + w (x) 2) dx <, w(π) = } Via partiell integration erhåller vi följande förenklade formel: (VF) (2) [ ] x=π u (x)v(x) + u(x)v(x) + u (x)v (x) dx + u(x)v (x) dx = v(x) dx x= v(x) V (3) Insättning av randdata lämnar ast kvar integralerna, då v(pi) = och u () =. u (x)v (x) dx + u(x)v (x) dx = v(x) dx, v(x) V (4) Testrummet V är alltså alla funktioner som är begränsade och har begränsade derivator, samt uppfyller randvillkoren för (DE). Detta testrum är oändligt dimensionellt och testfunktionerna är oändliga till antalet. För att hitta en approximativ lösning behöver vi inskränka oss till ett ändligt dimensionellt rum. Detta är själva finita element-metoden.

3 Låt T h : = x < x < < x i < x i+ < < x N = π vara en likformig partition av det relevanta intervallet med delintervallängden h. Finn en approximativ lösning U(x) V h sådan att: U (x)v (x) dx + U(x)v (x) dx = v(x) dx, v(x) V h := {w : w är styckvis linjär på T h och kontinuerlig, w(π) = } (5) Den approximativa lösningen sammanbinder nodpunkterna (x, x i osv) med styckvis linjära segment. Vi tillåter härmed vår funktion att avvika från den analytiska lösningen så länge den är lika i nodpunkterna. Eftersom U(x) är styckvis linjär kan den skrivas som en summa av styckvis linjära basfunktioner {ϕ j (x)} N j= med koefficienterna ξ,..., ξ N. U(x) = N ξ j ϕ j (x) = U (x) = j= Insättning i (5) ger oss följande: N ξ j ϕ j(x) (6) j= N j= ξ j ϕ j(x)v (x) dx + ξ j ϕ j (x)v (x) dx = v(x) dx, v(x) V h (7) Vi väljer nu testfunktionerna som hattfunktionerna ϕ (x),...,ϕ (N ) (x). Eftersom ingen homogen dirichletdata finns i intervallets startpunkt krävs också en halv hattfunktion som bas i x. Vårt problem är nu formulerat som följande: N [ ( j= ) ( ϕ j(x)ϕ π ] i(x) dx ξ j + ϕ j (x)ϕ i(x) dx )ξ j = ϕ i (x) dx, Ekvationen kan nu skrivas om på matrisform. Vi får följande samband: S = { s ij } N i,j=, s ij = M = { } N m ij i,j=, m ij = ξ ξ 2 ξ =. ξ N b b N b 2 b =. b i = ϕ j(x)ϕ i(x) dx ϕ j (x)ϕ i(x) dx ϕ i (x) dx i =, 2,..., N Om differentialekvationen hade innehållit en term av första ordningen, hade en konvektionsmatris uppstått vars element är beroe av ϕ j(x)ϕ i (x) dx. Med hjälp av resonemang kring hattfunktionernas stöd och överlapp kommer vi fram till sambandet att (8) (9) 2

4 s ij = h, i = j = m ij = 2h 6, i = j = s ij = 2 h, i = j > s ij =, i j = h s ij =, i j > m ij = 4h 6, i = j > m ij =, i j = h m ij =, i j > Det vill säga, matriserna S och M får följande utsee: 2 S = 2.. h M = h Eventuell konvektionsmatris är antisymmetrisk och har nollor på huvuddiagonalen. Den ser ut som följande (notera avsaknandet av h-beroe): K = (2).... Styvhets- och massmatriserna är i allt väsentligt lika för alla problem, ast avvikande i elementen (,) och (N,N) om randvillkoret i första respektive sista punkten är nollskilda. Då konvektionsmatrisens huvuddiagonal ast innehåller nollor påverkas den inte av eventuella halvhattfunktioner. De tre matriserna skalas också efter längden på varje delintervall (h) och koefficienterna framför u (x), u (x) och u(x), vilket enkelt ses i variationsformuleringen för problemet i fråga. Med liknande resonemang fås elementen i lastvektorn b. Arean under varje hattfunktion är en triangel med höjden och basen 2h. Integralen ϕ i(x) dx motsvarar denna area och evalueras därför till h, utom i x där vi har en halv hattfunktion, varför basen blir h och integralens värde därför halveras. Lastvektorn ser alltså ut som följande: 2 b = h. Att finna den approximativa lösningen till vårt randvärdesproblem innebär nu att lösa matrisekvationen (S + M)ξ = b. 2.2 Finit element-lösare i MatLab MatLab-koden grundar sig på den inbyggda funktionen för lösning av matrisekvationer av typen Ax = b. Styvhets-, mass- och konvektionsmatriserna byggs upp genom iteration () () (3) 3

5 och korrigeras för halvhattfunktioner där randvillkoren är nollskilda. Detsamma gäller lastvektorn b. De olika matriserna summeras sedan, och ekvationen (S + M + K)ξ = b löses med MatLabs backslash-operator. Koden i sin helhet finns i bilaga A. Randvärdesproblemen som löses är diffusions-reaktionsekvationen { u (x) + u(x) =, < x < π u (4) () =, u(π) = och diffusions-konvektionsekvationen εu (x) + 2 u (x) =, u() = u(π) = < x < π där ε är en liten, konstant, godtycklig parameter, i koden satt som ε = 3. (5) Figur : Diffusions-reaktionsekvationens analytiska lösning samt cg()-lösning med antalet delintervall N = 4 respektive N = 3. Notera approximationens närhet till den analytiska lösningen redan vid låga värden på N. Approximationen är fixerad vid y = i x = π för att svara mot dirichletdatan. 4

6 Figur 2: Diffusions-konvektionsekvationens analytiska lösning samt cg()-lösning med antalet delintervall N = 4 respektive N = 3. Notera att den approximativa lösningen här är fixerad i bägge ändpunkterna, vilket svarar mot dirichlet-randvillkoren. A Bilaga: MatLab-kod A. Diffusions-reaktionsekvationen %% D i f f u s i o n s r e a k t i o n s e k v a t i o n e n clc ; c l f ; a = ; % I n t e r v a l l e t : c = pi ; % < x < p i N = 3 ; % Antal d e l i n t e r v a l l = N+ ( Detta ger b ä t t r e approximation ) h = ( c a ) / (N) ; % D e l i n t e r v a l l ä n g d e n x = linspace ( a, c, N+); % Nodpunkter % A n a l y t i s k l ö s n i n g u x ) ( exp( pi x) exp( pi+x)++exp(2 pi ))./(+exp(2 pi ) ) ; fplot (u, [ a c ], k ) ; hold on ; b = ones (N, ) ; % L a s t v e k t o r n % S t y v h e t s m a t r i s S = zeros (N,N) ; for i = :N for j = :N i f ( i==j ) % Phi prim ö v e r l a p p a r h e l t S ( i, j ) = 2 ; e l s e i f ( abs ( i j ) == ) % Halvt ö v e r l a p p S ( i, j ) = ; 5

7 S (, ) = ; % H a l v h a t t S=/h S ; på x x % Massmatris M = zeros (N,N) ; for i = :N for j = :N i f ( i==j ) % Som ovan f a s t Phi M( i, j ) = 4 ; e l s e i f ( abs ( i j ) == ) %... M( i, j ) = ; M(, ) = 2 ; % H a l v h a t t på x x M=h/6 M; b ( ) = /2; % H a l v h a t t! b = h b ; x i = ( S+M)\ b ; % Lös A x i = b U = zeros (N+, ) ; % Korrigera f ö r randdata U( p i ) = U( :N) = x i ; plot ( x, U, r. ) ; xlabel ( x ) ; ylabel ( y ) ; leg ( y = u ( x ), y = U( x ) ) ; A.2 Diffusions-konvektionsekvationen %% D i f f u s i o n s k o n v e k t i o n s e k v a t i o n e n clc ; c l f ; a = ; % I n t e r v a l l e t : c = pi ; % < x < p i N = 3 ; % Antal d e l i n t e r v a l l = N+ ( Detta ger b ä t t r e approximation ) h = ( c a ) / (N+); % D e l i n t e r v a l l ä n g d e n x = linspace ( a, c, N+2); % Nodpunkter e = 3 ; % G o d t y c k l i g t, l i t e t, e p s i l o n b = ones (N, ) ; % A n a l y t i s k l ö s n i n g u x ) 2 ((exp( pi /(2 e )) ) x pi exp( x /(2 e ))+ pi ) / ( exp( pi /(2 e ) ) ) ; fplot (u, [ a c ], k ) ; 6

8 hold on ; % S t y v h e t s m a t r i s S = zeros (N,N) ; for i = :N for j = :N i f ( i==j ) % Som ovan S ( i, j ) = 2 ; e l s e i f ( abs ( i j ) == ) % Som ovan S ( i, j ) = ; S=e /h S ; % Ta hänsyn t i l l e p s i l o n % Konvektionsmatris C = zeros (N,N) ; for i = :N for j = :N i f ( ( i j ) == ) % Under diagonalen ( rad > kolonn ) C( i, j ) = ; e l s e i f ( ( j i ) == ) % Över diagonalen ( rad < kolonn ) C( i, j ) = ; C=/2 /2 C; % Glöm i n t e k o e f f i c i e n t e n framför u ( x )! b ( ) = ; % Inga b (N) = ; %... b = h b ; x i = ( S+C)\ b ; h a l v h a t t a r U = zeros (N+2, ) ; % Korrigera f ö r randdata U() = U( p i ) = U( 2 :N+) = x i ; plot ( [ x ], U, r. ) ; xlabel ( x ) ; ylabel ( y ) ; leg ( y = u ( x ), y = U( x ) ) ; 7

1. Låt u 0 och v 0 vara tvåvektorer i ett linjärt rum med skalärprodukt. Antag att följande relation gäller mellan längder av vektorer: u = 2 v = 2 3

1. Låt u 0 och v 0 vara tvåvektorer i ett linjärt rum med skalärprodukt. Antag att följande relation gäller mellan längder av vektorer: u = 2 v = 2 3 Matematik Chalmers Tentamen i TMA6 matematik fordjupning Kf, 6 8 ; KL 8:-: Telefon: Olof Giselsson: ankn 55 Hjälpmedel: Inga hjälpmedel, fårutom penna och linjal, är tillåtna, ej heller rä knedosa. OBS!

Läs mer

FEM1: Randvärdesproblem och finita elementmetoden i en variabel.

FEM1: Randvärdesproblem och finita elementmetoden i en variabel. MVE255/TMV191 Matematisk analys i flera variabler M/TD FEM1: Randvärdesproblem och finita elementmetoden i en variabel. 1 Inledning Vi ska lösa partiella differentialekvationer PDE, dvs ekvationer som

Läs mer

Föreläsning 14: Exempel på randvärdesproblem. LU-faktorisering för att lösa linjära ekvationssystem.

Föreläsning 14: Exempel på randvärdesproblem. LU-faktorisering för att lösa linjära ekvationssystem. 11 april 2005 2D1212 NumProg för T1 VT2005 A Föreläsning 14: Exempel på randvärdesproblem. LU-faktorisering för att lösa linjära ekvationssystem. Kapitel 8 och 5 i Q&S Stationär värmeledning i 1-D Betrakta

Läs mer

TMA226 datorlaboration

TMA226 datorlaboration TMA226 Matematisk fördjupning, Kf 2019 Tobias Gebäck Matematiska vetenskaper, Calmers & GU Syfte TMA226 datorlaboration Syftet med denna laboration är att du skall öva formuleringen av en Finita element-metod,

Läs mer

1. Använd Laplacetransformen för att lösa differentialekvationen (5p) y (t) + 3y (t) + 2y(t) = 1, t > 0 y(0) = 1, y (0) = 1

1. Använd Laplacetransformen för att lösa differentialekvationen (5p) y (t) + 3y (t) + 2y(t) = 1, t > 0 y(0) = 1, y (0) = 1 Matematik Calmer Tentamen i TMA68/TMA68 Tillämpad matematik K/Bt, 7 8 7, kl 4:-8: Telefon: Olof Gielon, -77 55 Hjälpmedel: Endat tabell på bakidan av teen. Kalkylator ej tillåten. Betyggräner, : -7p, 4:

Läs mer

ω L[cos(ωt)](s) = s 2 +ω 2 L[sin(ωt)](s) =

ω L[cos(ωt)](s) = s 2 +ω 2 L[sin(ωt)](s) = Matematik Chalmer Tentamen i TMA683/TMA682 Tillämpad matematik K2/Bt2, 28 4 4, kl 4:-8: Telefon: Henrik Imberg, 3-772 5325; Kontaktperon: Mohammad Aadzadeh, 3-772 357 Hjälpmedel: Endat tabell på bakidan

Läs mer

1. Använd Laplacetransformen för att lösa differentialekvationen (5p) y (t) y(t) = sin 2t, t > 0 y(0) = 1

1. Använd Laplacetransformen för att lösa differentialekvationen (5p) y (t) y(t) = sin 2t, t > 0 y(0) = 1 Matematik Chalmer Tentamen i TMA683/TMA68 Tillämpad matematik K/Bt, 7 4, kl 8:3-:3 Telefon: Maximilian Thaller, 3-77 535 Hjälpmedel: Endat tabell på bakidan av teen. Kalkylator ej tillåten. Betyggräner,

Läs mer

Partiella differentialekvationer: Koppling Diskret - Kontinuum och Finita Elementmetoden

Partiella differentialekvationer: Koppling Diskret - Kontinuum och Finita Elementmetoden Partiella differentialekvationer: Koppling Diskret - Kontinuum och Finita Elementmetoden Johan Jansson November 29, 2010 Johan Jansson () M6 November 29, 2010 1 / 26 Table of contents 1 Plan och Syfte

Läs mer

Rita även upp grafen till Fourierseriens summa på intervallet [ 2π, 3π], samt ange summans värde i punkterna π, 0, π, 2π. (5) S(t) = c n e int,

Rita även upp grafen till Fourierseriens summa på intervallet [ 2π, 3π], samt ange summans värde i punkterna π, 0, π, 2π. (5) S(t) = c n e int, Institutionen för matematik KTH Tentamensskrivning, 003-08-5, kl. 14.00 19.00. 5B10/ Diff och Trans del, för F och T. Hjälpmedel: BETA, Mathematics Handbook. För godkänt betyg 3) krävs 18 poäng, medan

Läs mer

Egenvärdesproblem för matriser och differentialekvationer

Egenvärdesproblem för matriser och differentialekvationer CTH/GU STUDIO 7 TMV36b - 14/15 Matematiska vetenskaper 1 Inledning Egenvärdesproblem för matriser och differentialekvationer Vi skall se lite på egenvärdesproblem för matriser och differentialekvationer.

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF1625 Envariabelanalys Lösningsförslag till tentamen 215-1-27 DEL A 4 1. Betrakta funktionen f som ges av f(x) = 1 + x + (x 2). 2 A. Bestäm definitionsmängden till f. B. Bestäm alla intervall där f är

Läs mer

CHALMERS Finit Elementmetod M3 Institutionen för tillämpad mekanik. Teorifrågor

CHALMERS Finit Elementmetod M3 Institutionen för tillämpad mekanik. Teorifrågor Teorifrågor : Visa att gradienten till en funktion pekar i den riktning derivatan är störst och att riktingen ortogonalt mot gradienten är tangent till funktionens nivåkurva. Visa hur derivatan i godtycklig

Läs mer

5B1134 Matematik och modeller Lösningsförslag till tentamen den 13 januari T = 1 ab sin γ. b sin β = , 956 0, 695 0, 891

5B1134 Matematik och modeller Lösningsförslag till tentamen den 13 januari T = 1 ab sin γ. b sin β = , 956 0, 695 0, 891 KTH Matematik 5B1134 Matematik modeller Lösningsförslag till tentamen den 13 januari 6 1. a) Bestäm sidlängderna i en triangel med vinklarna 44, 63 73 om arean av triangeln är 64 cm. Ange svaren som närmevärden

Läs mer

7. Låt f(x) vara en 2π-periodisk, integrerbar funktion. Visa noggrant att om

7. Låt f(x) vara en 2π-periodisk, integrerbar funktion. Visa noggrant att om Matematik Chalmer Tentamen i TMA68 Tillämpad matematik K/Bt, 4 8 ; KL 4:-8: Telefon: Mohammad Aadzadeh: 73-8834. Hjälpmedel: Endat utdelad (vänd textlappen) tabell. Kalkylator ej tillåten. Uppgifterna

Läs mer

Oändligtdimensionella vektorrum

Oändligtdimensionella vektorrum Oändligtdimensionella vektorrum Vi har i den här kursen huvudsakligen studerat ändligtdimensionella vektorrum. Dessa är mycket användbara objekt och matriskalkyl ger en bra metod att undersöka dom med.

Läs mer

9.3. Egenvärdesproblem

9.3. Egenvärdesproblem 9.3. Egenvärdesproblem Problem som innehåller en parameter men endast kan lösas för speciella värden av denna parameter kallas egenvärdesproblem. Vi skall här nöja oss med ett exempel på ett dylikt problem.

Läs mer

Tentamen, del 2 Lösningar DN1240 Numeriska metoder gk II F och CL

Tentamen, del 2 Lösningar DN1240 Numeriska metoder gk II F och CL Tentamen, del Lösningar DN140 Numeriska metoder gk II F och CL Lördag 17 december 011 kl 9 1 DEL : Inga hjälpmedel Rättas ast om del 1 är godkänd Betygsgränser inkl bonuspoäng: 10p D, 0p C, 30p B, 40p

Läs mer

1. f är en två gånger deriverbar funktion på intervallet (a, b) och π 1 f är dess linjära interpolant. Visa att π 1 f f L (a,b) (b a) 2 f L (a,b).

1. f är en två gånger deriverbar funktion på intervallet (a, b) och π 1 f är dess linjära interpolant. Visa att π 1 f f L (a,b) (b a) 2 f L (a,b). Matematik Chalmer Tentamen i TMA68 Tillämpad matematik K/Bt, ; KL 8:3-:3 Telefon: Martin Berglund: 73-883. Hjälpmedel: Endat utdelad vänd textlappen tabell. Kalkylator ej tillåten. Uppgift 7 ger max 8p,

Läs mer

Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna 11-14, 16/11-28/

Uppsala Universitet Matematiska Institutionen Bo Styf. Sammanfattning av föreläsningarna 11-14, 16/11-28/ Uppsala Universitet Matematiska Institutionen Bo Styf Transformmetoder, 5 hp gy, IT, W, X 2011-10-26 Sammanfattning av föreläsningarna 11-14, 16/11-28/11 2012. Här lär vi oss använda transformer för att

Läs mer

Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18.

Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18. Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18.1 Delkapitlet introducerar en del terminologi och beteckningar som används.

Läs mer

Laboration 2 Ordinära differentialekvationer

Laboration 2 Ordinära differentialekvationer Matematisk analys i en variabel, AT1 TMV13-1/13 Matematiska vetenskaper Laboration Ordinära differentialekvationer Vi skall se på begynnelsevärdesproblem för första ordningens differentialekvation u =

Läs mer

Mer om linjära ekvationssystem

Mer om linjära ekvationssystem CTH/GU STUDIO 4 MVE465-2016/2017 Matematiska vetenskaper 1 Inledning Mer om linjära ekvationssystem Denna studioövning fortsätter med linjära ekvationssystem och matriser, som vi först tittade på i studioövning

Läs mer

TMV225 Inledande matematik M. Veckoprogram för läsvecka 4

TMV225 Inledande matematik M. Veckoprogram för läsvecka 4 MATEMATISKA VETENSKAPER TMV5 016 Chalmers tekniska högskola Läsvecka 4 Examinator: Anders Logg TMV5 Inledande matematik M Veckoprogram för läsvecka 4 Denna vecka kommer vi först att definiera och studera

Läs mer

Konvergens för iterativa metoder

Konvergens för iterativa metoder Konvergens för iterativa metoder 1 Terminologi Iterativa metoder används för att lösa olinjära (och ibland linjära) ekvationssystem numeriskt. De utgår från en startgissning x 0 och ger sedan en följd

Läs mer

Linjär algebra. 1 Inledning. 2 Matriser. Analys och Linjär Algebra, del B, K1/Kf1/Bt1. CTH/GU STUDIO 1 TMV036b /2013 Matematiska vetenskaper

Linjär algebra. 1 Inledning. 2 Matriser. Analys och Linjär Algebra, del B, K1/Kf1/Bt1. CTH/GU STUDIO 1 TMV036b /2013 Matematiska vetenskaper CTH/GU STUDIO 1 TMV06b - 2012/201 Matematiska vetenskaper Linjär algebra Analys och Linjär Algebra, del B, K1/Kf1/Bt1 1 Inledning Vi fortsätter även denna läsperiod att arbete med Matlab i matematikkurserna

Läs mer

u(x) + xv(x) = 0 2u(x) + 3xv(x) = sin(x) xxx egentliga uppgifter xxx 1. Sök alla lösningar till den homogena differentialekvationen

u(x) + xv(x) = 0 2u(x) + 3xv(x) = sin(x) xxx egentliga uppgifter xxx 1. Sök alla lösningar till den homogena differentialekvationen Differentialekvationer I Modellsvar till räkneövning 6 Den frivilliga uppgiften U1 påminner om nyttiga kunskaper, och räknas inte för extrapoäng (fråga vid behov). U1. Lös funktionerna u(x) och v(x) från

Läs mer

Interpolation Modellfunktioner som satisfierar givna punkter

Interpolation Modellfunktioner som satisfierar givna punkter Interpolation Modellfunktioner som satisfierar givna punkter Några tillämpningar Animering rörelser, t.ex. i tecknad film Bilder färger resizing Grafik Diskret representation -> kontinuerlig 2 Interpolation

Läs mer

Dagens program. Linjära ekvationssystem och matriser

Dagens program. Linjära ekvationssystem och matriser Dagens program Matriser Räkneoperationer och räknelagar Linjära ekvationssystem och matriser Matrisform av ekvationssystem Elementära radoperationer Trappstegsmatriser, rang och lösningsstruktur Matrisinvers,

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF1625 Envariabelanalys Lösningsförslag till tentamen 214-1-24 DEL A 1. Låt f(x) = e x sin x. A. Bestäm alla kritiska (stationära) punkter till funktionen f. B. Avgör vilka av de kritiska punkterna som

Läs mer

= 1, fallet x > 0 behandlas pga villkoret. x:x > 1

= 1, fallet x > 0 behandlas pga villkoret. x:x > 1 Lösningsförslag till tentamensskrivning i Diff & Trans I, 5B00 Torsdagen den 0 januari 00, kl 400-900 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och

Läs mer

Kurs DN1215, Laboration 3 (Del 1): Randvärdesproblem för ordinära differentialekvationer

Kurs DN1215, Laboration 3 (Del 1): Randvärdesproblem för ordinära differentialekvationer Kurs DN1215, Laboration 3 (Del 1): Randvärdesproblem för ordinära differentialekvationer Michael Hanke, Johan Karlander 2 april 2008 1 Beskrivning och mål Matematiska modeller inom vetenskap och teknik

Läs mer

Mälardalens högskola Akademin för utbildning, kultur och kommunikation

Mälardalens högskola Akademin för utbildning, kultur och kommunikation Mälardalens högskola Akademin för utbildning, kultur och kommunikation MAA Grundläggande kalkyl ÖVN Lösningsförslag.8. 8.. Hjälpmedel: Endast skrivmaterial. (Gradskiva är tillåtet.) Poäng: Denna tentamen

Läs mer

linjära ekvationssystem.

linjära ekvationssystem. CTH/GU LABORATION 2 TMV216/MMGD20-2017/2018 Matematiska vetenskaper 1 Inledning Linjära ekvationssystem Denna laboration börjar med att vi påminner oss om matriser i Matlab samtidigt som vi börjar se på

Läs mer

x 2 = lim x 2 x 2 x 2 x 2 x x+2 (x + 3)(x + x + 2) = lim x 2 (x + 1)

x 2 = lim x 2 x 2 x 2 x 2 x x+2 (x + 3)(x + x + 2) = lim x 2 (x + 1) Matematik Hjälpmedel: Inga Chalmers Tekniska Högskola Tentamen 5--7 kl. 4: 8: Telefonvakt: Samuel Bengmark ankn.: 7-87644 Betygsgränser :a poäng, 4:a poäng, 5:a 4 poäng, max: 5 poäng Tentamensgranskning

Läs mer

FYSIKENS MATEMATISKA METODER

FYSIKENS MATEMATISKA METODER FYSIKENS MATEMATISKA METODER TREDJE UPPLAGAN TORBJÖRN ERIKSON HENRIK CHRISTIANSSON ERIK LINDAHL JOHAN LINDE LARS SANDBERG MATS WALLIN mfl Boken är typsatt i L A TEX med 11pt Times Printed in Sweden by

Läs mer

KTH Matematik Tentamensskrivning i Differentialekvationer och transformer III, SF1637.

KTH Matematik Tentamensskrivning i Differentialekvationer och transformer III, SF1637. KTH Matematik Tentamensskrivning i Differentialekvationer och transformer III, SF637. Måndagen den 7 oktober, kl 8-3. Hjälpmedel: BETA, Mathematics Handbook. Redovisa lösningarna på ett sådant sätt att

Läs mer

Innehåll 1. Kapitel 6: Separation of Variables 1

Innehåll 1. Kapitel 6: Separation of Variables 1 SF629 - DIFFERENTIALEKVATIONER OCH TRANSFORMER II - ÖVNING 5 KARL JONSSON Innehåll. Kapitel 6: Separation of Variables.. Upp. 6.2: Dirichlets problem på enhetsskivan med randdata polära koordinater) u,

Läs mer

Lösningar av uppgifter hörande till övning nr 5.

Lösningar av uppgifter hörande till övning nr 5. Lösningar av uppgifter hörande till övning nr 5. H.7 a) Antag att p är ett polynom med grad p < n. Då kan p skrivas som en linjärkombination av ortogonalpolynomen p k, där k < n. Alltså är p c k p k, m

Läs mer

SKRIVNING I VEKTORGEOMETRI Delkurs

SKRIVNING I VEKTORGEOMETRI Delkurs SKRIVNING I VEKTORGEOMETRI Delkurs 1 2015 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade.

Läs mer

Laboration 1 i SF1544: Öva på Matlab och konstruera en optimal balk Avsikten med denna laboration är att:

Laboration 1 i SF1544: Öva på Matlab och konstruera en optimal balk Avsikten med denna laboration är att: Laboration 1 i SF1544: Öva på Matlab och konstruera en optimal balk Avsikten med denna laboration är att: - snabbt komma igång med träning på matlabprogrammering (uttnyttja gärna alla schemalagda laborationstillfällen,

Läs mer

Lösningsförslag till tentamen i SF1683, Differentialekvationer och Transformmetoder (del 2) 4 april < f,g >=

Lösningsförslag till tentamen i SF1683, Differentialekvationer och Transformmetoder (del 2) 4 april < f,g >= KTH, Matematik Maria Saprykina Lösningsförslag till tentamen i SF683, Differentialekvationer och Transformmetoder (del 2) 4 april 28 Tentamen består av sex uppgifter där vardera uppgift ger maximalt fyra

Läs mer

Flervariabelanalys och Matlab Kapitel 3

Flervariabelanalys och Matlab Kapitel 3 Flervariabelanalys och Matlab Kapitel 3 Thomas Wernstål Matematiska Vetenskaper 28 september 2012 3 Multipelintegraler 3.1 ubbelintegraler I detta kapitel skall vi studera olika sätt på vilket man kan

Läs mer

TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer

TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer Johan Thim 0 januari 207 Introduktion En differentialekvation (DE) i en variabel är en ekvation som innehåller både

Läs mer

= = i K = 0, K =

= = i K = 0, K = ösningsförslag till tentamensskrivning i SF1633, Differentialekvationer I Tisdagen den 14 augusti 212, kl 14-19 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar

Läs mer

LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664

LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664 LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664 Tillämpad envariabelanalys med numeriska metoder för CFATE1 den 1 mars 214 kl 8.-1. 1. Bestäm värdemängden till funktionen f(x) = 2 arctan x + ln (1 + x 2 ), där

Läs mer

TATA42: Föreläsning 9 Linjära differentialekvationer av ännu högre ordning

TATA42: Föreläsning 9 Linjära differentialekvationer av ännu högre ordning TATA42: Föreläsning 9 Linjära differentialekvationer av ännu högre ordning Johan Thim 4 mars 2018 1 Linjära DE av godtycklig ordning med konstanta koefficienter Vi kommer nu att betrakta linjära differentialekvationer

Läs mer

Akademin för utbildning, kultur och kommunikation MMA132 Numeriska Metoder Avdelningen för tillämpad matematik Datum: 2 juni 2014

Akademin för utbildning, kultur och kommunikation MMA132 Numeriska Metoder Avdelningen för tillämpad matematik Datum: 2 juni 2014 MÄLARDALENS HÖGSKOLA TENTAMEN I MATEMATIK Akademin för utbildning, kultur och kommunikation MMA32 Numeriska Metoder Avdelningen för tillämpad matematik Datum: 2 juni 204 Examinator: Karl Lundengård Skrivtid:

Läs mer

6. Temperaturen u(x) i positionen x av en stav uppfyller värmeledningsekvationen. u (x) + u(x) = f(x), 0 x 2, u(0) = 0 u(2) = 1,

6. Temperaturen u(x) i positionen x av en stav uppfyller värmeledningsekvationen. u (x) + u(x) = f(x), 0 x 2, u(0) = 0 u(2) = 1, Institutionen för Matematik, KTH Tentamen del 2 Analytiska och numeriska metoder för differentialekvationer SF1523 8.-11. 18/8 217 Formelsamlingen BETA är tillåtet hjälpmedel men ej miniräknare. Råd för

Läs mer

Fouriers metod, egenfunktionsutvecklingar.

Fouriers metod, egenfunktionsutvecklingar. Vårterminen 2002 KONTINUERLIGA SYSTEM, några viktiga begrepp och metoder i kap 3 och H (partiellt) Fouriers metod, egenfunktionsutvecklingar Värmeledning i en begränsad stav med variabelseparation Problem:

Läs mer

Tentamen, del 2 DN1240 Numeriska metoder gk II för F

Tentamen, del 2 DN1240 Numeriska metoder gk II för F Tentamen, del DN140 Numeriska metoder gk II för F Fredag 14 december 01 kl 14 17 Lösningar DEL : Inga hjälpmedel. Rättas endast om del 1 är godkänd. Betygsgränser inkl bonuspoäng: 10p D, 0p C, 30p B, 40p

Läs mer

KTH Matematik Tentamensskrivning i Differentialekvationer I, SF1633.

KTH Matematik Tentamensskrivning i Differentialekvationer I, SF1633. KTH Matematik Tentamensskrivning i Differentialekvationer I, SF1633. Måndagen den 17 oktober 11, kl 8-13. Hjälpmedel: BETA, Mathematics Handbook. Redovisa lösningarna på ett sådant sätt att beräkningar

Läs mer

Matematisk analys för ingenjörer Matlabövning 2 Numerisk ekvationslösning och integration

Matematisk analys för ingenjörer Matlabövning 2 Numerisk ekvationslösning och integration 10 februari 2017 Matematisk analys för ingenjörer Matlabövning 2 Numerisk ekvationslösning och integration Syfte med övningen: Introduktion till ett par numeriska metoder för lösning av ekvationer respektive

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A SF1626 Flervariabelanalys Lösningsförslag till tentamen 215-3-16 DEL A 1. Låt f(x, y) = 1 x 2 y 2. (a) Skissa nivåkurvorna f(x, y) = c till f för c =, c = 1 och c = 2. (1 p) (b) Beräkna gradf(x, y) i de

Läs mer

ÖVN 11 & 12 DEL A - DIFFTRANS - DEL2 - SF Nyckelord och innehåll. Inofficiella mål

ÖVN 11 & 12 DEL A - DIFFTRANS - DEL2 - SF Nyckelord och innehåll. Inofficiella mål ÖVN 11 & 12 DEL A - DIFFTRANS - DEL2 - SF1683 HTTP://KARLJODIFFTRANS.WORDPRESS.COM KARL JONSSON Nyckelord och innehåll Komplexa vektorrum U och underrum V U. Linjära höljet: V = span(v 1, v 2,..., v N

Läs mer

Projekt om Finita Elementmetoden i kursen PDE F, TMA690, HT 2012

Projekt om Finita Elementmetoden i kursen PDE F, TMA690, HT 2012 Projekt om Finita Elementmetoden i kursen PDE F, TMA690, HT 2012 Hermann Douanla, Fredrik Lindgren, Matteo Molteni 6 november 2012 Innehåll 1 Syfte och mål 2 2 Generella riktlinjer 2 3 Projekt 3 3.1 Värmeledning

Läs mer

Lösningsförslag obs. preliminärt, reservation för fel

Lösningsförslag obs. preliminärt, reservation för fel Lösningsförslag obs. preliminärt, reservation för fel v0.6, 4 april 04 Högskolan i Skövde (SK, JS) Tentamen i matematik Kurs: MA5G Matematisk Analys MA3G Matematisk analys för ingenjörer Tentamensdag:

Läs mer

Studietips inför kommande tentamen TEN1 inom kursen TNIU23

Studietips inför kommande tentamen TEN1 inom kursen TNIU23 Studietips inför kommande tentamen TEN1 inom kursen TNIU23 Lämplig ordning på sammanfattande studier inom denna kurs: Inled med att grundligt studera föreläsningsanteckningarna Därefter läs tillhörande

Läs mer

SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 2015

SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 2015 Institutionen för matematik SF1626 Flervariabelanalys Tentamen Måndagen den 16 mars 215 Skrivtid: 8:-13: Tillåtna hjälpmedel: inga Examinator: Mats Boij Tentamen består av nio uppgifter som vardera ger

Läs mer

Rita även grafen till Fourierserien på intervallet [ 2π, 4π]. (5) 1 + cos(2t),

Rita även grafen till Fourierserien på intervallet [ 2π, 4π]. (5) 1 + cos(2t), Institutionen för matematik KTH Tentamensskrivning, 24-1-13, kl. 14. 19.. 5B122/2 Diff och Trans 2 del 2, för F, E, T. Hjälpmedel: BETA, Mathematics Handbook. För godkänt betyg 3 krävs 18 poäng, medan

Läs mer

LMA515 Matematik, del B Sammanställning av lärmål

LMA515 Matematik, del B Sammanställning av lärmål LMA515 Matematik, del B Sammanställning av lärmål Lärmål för godkänt Funktion, gränsvärde, kontinuitet, derivata. Förklara begreppen funktion, definitionsmängd och värdemängd, och bestämma (största möjliga)

Läs mer

= y(0) för vilka lim y(t) är ändligt.

= y(0) för vilka lim y(t) är ändligt. Lösningsförslag till tentamensskrivning i SF633 Differentialekvationer I och SF637 Differentialekvationer och transformer III Lördagen den 4 februari, kl 4-9 Hjälpmedel: BETA, Mathematics Handbook Redovisa

Läs mer

Sammanfattning (Nummedelen)

Sammanfattning (Nummedelen) DN11 Numeriska metoder och grundläggande programmering Sammanfattning (Nummedelen Icke-linjära ekvationer Ex: y=x 0.5 Lösningsmetoder: Skriv på polynomform och använd roots(coeffs Fixpunkt x i+1 =G(x i,

Läs mer

MVE022 Urval av bevis (på svenska)

MVE022 Urval av bevis (på svenska) MVE22 Urval av bevis (på svenska) J A S, VT 218 Sats 1 (Lay: Theorem 7, Section 2.2.) 1. En n n-matris A är inverterbar precis när den är radekvivalent med indentitesmatrisen I n. 2. När så är fallet gäller

Läs mer

Kurvanpassning. Kurvanpassning jfr lab. Kurvanpassning jfr lab

Kurvanpassning. Kurvanpassning jfr lab. Kurvanpassning jfr lab Kurvanpassning jfr lab Kurvanpassning Beräkningsvetenskap II Punktmängd approximerande funktion Finns olika sätt att approximera med polynom Problem med höga gradtal kan ge stora kast Kurvanpassning jfr

Läs mer

TMV036/MVE350 Analys och Linjär Algebra K Kf Bt KI, del C

TMV036/MVE350 Analys och Linjär Algebra K Kf Bt KI, del C MATEMATIK Hjälpmedel: Inga Chalmers tekniska högskola atum: 23-3-5 kl. 8.3 2.3 Tentamen Telefonvakt: Elin Solberg tel. 73-8834 TMV36/MVE35 Analys och Linjär Algebra K Kf Bt KI, del C Tentan rättas och

Läs mer

Lösningar till tentamen i Transformmetoder okt 2007

Lösningar till tentamen i Transformmetoder okt 2007 Lösningar till tentamen i Transformmetoder okt 7. Låt Y (s beteckna Laplacetransformen till funktionen y. Laplacetransformering av den givna ekvationen ger: varav följer att. (a För s > a är Y (s + s Y

Läs mer

Teknisk Beräkningsvetenskap I Tema 3: Styvhetsmodellering av mjuk mark med icke-linjära ekvationer

Teknisk Beräkningsvetenskap I Tema 3: Styvhetsmodellering av mjuk mark med icke-linjära ekvationer Teknisk Beräkningsvetenskap I Tema 3: Styvhetsmodellering av mjuk mark med icke-linjära ekvationer Eddie Wadbro 18 november, 2015 Eddie Wadbro, Tema 3: Icke-linjära ekvationer, 18 november, 2015 (1 : 37)

Läs mer

Lösningsförslag till inlämningsuppgift 3 i Beräkningsprogrammering Problem 1) function condtest format compact format long

Lösningsförslag till inlämningsuppgift 3 i Beräkningsprogrammering Problem 1) function condtest format compact format long Lösningsförslag till inlämningsuppgift 3 i Beräkningsprogrammering Problem 1) function condtest format compact format long % Skapa matrisen A med alpha=1 A = [1 2 3; 2 4 1; 4 5 6]; b = [2.1; 3.4; 7.2];

Läs mer

DATORLABORATION FÖR KURSEN ENVARIABELANALYS 2

DATORLABORATION FÖR KURSEN ENVARIABELANALYS 2 DATORLABORATION FÖR KURSEN ENVARIABELANALYS 2 1. Laborationsregler Läs detta dokument, lös uppgifterna i slutet, och lämna in en individuell laborationsrapport senast måndag 14 januari i pdf-format via

Läs mer

Introduktion till Matlab

Introduktion till Matlab CTH/GU 2015/2016 Matematiska vetenskaper Introduktion till Matlab 1 Inledning Matlab är både en interaktiv matematikmiljö och ett programspråk, som används på många tekniska högskolor och universitet runt

Läs mer

Objective:: Linjärt beroende och oberoende version 1.0

Objective:: Linjärt beroende och oberoende version 1.0 DEFINITIONEN AV LINJÄRT BEROENDE MED EXEMPEL Objective:: Linjärt beroende och oberoende version. Definitionen av linjärt beroende med exempel Vi börjar med ett inledande exempel för att motivera definitionen

Läs mer

Föreläsning 5. Approximationsteori

Föreläsning 5. Approximationsteori Föreläsning 5 Approximationsteori Låt f vara en kontinuerlig funktion som vi vill approximera med en enklare funktion f(x) Vi kommer använda två olika approximationsmetoder: interpolation och minstrakvadratanpassning

Läs mer

NUMPROG, 2D1212, vt Föreläsning 1, Numme-delen. Linjära ekvationssystem Interpolation, Minstakvadratmetoden

NUMPROG, 2D1212, vt Föreläsning 1, Numme-delen. Linjära ekvationssystem Interpolation, Minstakvadratmetoden NUMPROG, D, vt 006 Föreläsning, Numme-delen Linjära ekvationssystem Interpolation, Minstakvadratmetoden En av de vanligaste numeriska beräkningar som görs i ingenjörsmässiga tillämpningar är att lösa ett

Läs mer

Lösningsförslag, Tentamen, Differentialekvationer och transformer II, del 2, för CTFYS2 och CMEDT3, SF1629, den 9 juni 2011, kl.

Lösningsförslag, Tentamen, Differentialekvationer och transformer II, del 2, för CTFYS2 och CMEDT3, SF1629, den 9 juni 2011, kl. Lösningsförslag, Tentamen, Differentialekvationer och transformer II, del 2, för CTFYS2 och CMEDT3, SF629, den 9 juni 2, kl. 8: 3: Uppgift (av 8 (5 poäng. i. sant, ii. falskt, iii. falskt, iv. sant, v.

Läs mer

För startpopulationer lika med de stationära lösningarna kommer populationerna att förbli konstant.

För startpopulationer lika med de stationära lösningarna kommer populationerna att förbli konstant. Lösningsförslag till tentamensskrivning i Differentialekvationer I, SF633(5B6) Tisdagen den 6 augusti, kl -9 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar

Läs mer

FMNF15 HT18: Beräkningsprogrammering Numerisk Analys, Matematikcentrum

FMNF15 HT18: Beräkningsprogrammering Numerisk Analys, Matematikcentrum Johan Helsing, 11 oktober 2018 FMNF15 HT18: Beräkningsprogrammering Numerisk Analys, Matematikcentrum Inlämningsuppgift 3 Sista dag för inlämning: onsdag den 5 december. Syfte: att träna på att hitta lösningar

Läs mer

R AKNE OVNING VECKA 1 David Heintz, 31 oktober 2002

R AKNE OVNING VECKA 1 David Heintz, 31 oktober 2002 RÄKNEÖVNING VECKA David Heintz, 3 oktober 22 Innehåll Uppgift 27. 2 Uppgift 27.8 4 3 Uppgift 27.9 6 4 Uppgift 27. 9 5 Uppgift 28. 5 6 Uppgift 28.2 8 7 Uppgift 28.4 2 Uppgift 27. Determine primitive functions

Läs mer

Repetition, Matematik 2 för lärare. Ï x + 2y - 3z = 1 Ô Ì 3x - y + 2z = a Ô Á. . Beräkna ABT. Beräkna (AB) T

Repetition, Matematik 2 för lärare. Ï x + 2y - 3z = 1 Ô Ì 3x - y + 2z = a Ô Á. . Beräkna ABT. Beräkna (AB) T Repetition, Matematik 2 för lärare Ï -2x + y + 2z = 3 1. Ange för alla reella a lösningsmängden till ekvationssystemet Ì ax + 2y + z = 1. Ó x + 3y - z = 4 2. Vad är villkoret på talet a för att ekvationssystemet

Läs mer

Matlab övningsuppgifter

Matlab övningsuppgifter CTH/GU TMA976-28/29 Matematiska vetenskaper Matlab övningsuppgifter Inledning Vi skall först se hur man beräknar numeriska lösningar till differentialekvationer. Därefter skall vi rita motsvarigheten till

Läs mer

f(x + h) f(x) h f(x) f(x h) h

f(x + h) f(x) h f(x) f(x h) h NUMPROG, D för M, vt 008 Föreläsning N: Numerisk derivering och integrering Inledning: numerisk lösning av analytiska problem Skillnader mellan matematisk analys och numeriska metoder. Grundläggande begrepp

Läs mer

Tentamensskrivning i Differentialekvationer I, SF1633(5B1206).

Tentamensskrivning i Differentialekvationer I, SF1633(5B1206). Tentamensskrivning i Differentialekvationer I, SF633(5B6) Torsdagen den 3 oktober 8, kl 8-3 Hjälpmedel: BETA, Mathematics Handbook Redovisa lösningarna på ett sådant sätt att beräkningar och resonemang

Läs mer

2x + y + 3z = 4 x + y = 1 x 2y z = 3

2x + y + 3z = 4 x + y = 1 x 2y z = 3 ATM-Matematik Pär Hemström 7 6572 Sören Hector 7 4686 Mikael Forsberg 74 42 För studerande i linjär algebra Linjär algebra ma4a 225 Skrivtid: 9:-4:. Inga hjälpmedel. Lösningarna skall vara fullständiga

Läs mer

Mer om linjära ekvationssystem

Mer om linjära ekvationssystem CTH/GU LABORATION 2 TMV141-212/213 Matematiska vetenskaper 1 Inledning Mer om linjära ekvationssystem Denna laboration fortsätter med linjära ekvationssystem och matriser Vi ser på hantering och uppbyggnad

Läs mer

(4 2) vilket ger t f. dy och X = 1 =

(4 2) vilket ger t f. dy och X = 1 = Lösningsförslag till tentamensskrivning i SF633 Differentialekvationer I. Torsdagen den 3 maj, kl 8-3. Hjälpmedel: BETA, Mathematics Handbook. Redovisa lösningarna på ett sådant sätt att beräkningar och

Läs mer

5B1134 Matematik och modeller Lösningsförslag till tentamen den 11 oktober 2004

5B1134 Matematik och modeller Lösningsförslag till tentamen den 11 oktober 2004 KTH Matematik 5B4 Matematik och modeller Lösningsförslag till tentamen den oktober 4. Två av sidlängderna i en triangel är 8 m och m. En av vinklarna är 6. a) Bestäm alla möjliga värden för den tredje

Läs mer

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA671 2009-01-16. DAG: Fredag 16 januari 2009 TID: 14.00-18.

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA671 2009-01-16. DAG: Fredag 16 januari 2009 TID: 14.00-18. Institutionen för Matematik Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 9--6 DAG: Fredag 6 januari 9 TID: 4. - 8. SAL: V Ansvarig: Ivar Gustafsson, tel: 77 94 Förfrågningar: Ivar Gustafsson

Läs mer

MVE465. Innehållsförteckning

MVE465. Innehållsförteckning Lösningar på övningsuppgifter Detta dokument innehåller mina renskrivna lösningar på övningsuppgifter i kursen Linjär algebra och analys fortsättning (). Jag kan inte lova att samtliga lösningar är välformulerade

Läs mer

Laboration 6. Ordinära differentialekvationer och glesa system

Laboration 6. Ordinära differentialekvationer och glesa system 1 DN1212 VT2012 för T NADA 20 februari 2012 Laboration 6 Ordinära differentialekvationer och glesa system Efter den här laborationen skall du känna igen problemtyperna randvärdes- och begynnelsevärdesproblem

Läs mer

Matriser och linjära ekvationssystem

Matriser och linjära ekvationssystem Linjär algebra, I1 2011/2012 Matematiska vetenskaper Matriser och linjära ekvationssystem Matriser En matris är som ni vet ett rektangulärt talschema: a 11 a 1n A = a m1 a mn Matrisen ovan har m rader

Läs mer

ÖVN 2 - DIFFERENTIALEKVATIONER OCH TRANSFORMMETODER - SF1683. Inofficiella mål

ÖVN 2 - DIFFERENTIALEKVATIONER OCH TRANSFORMMETODER - SF1683. Inofficiella mål ÖVN 2 - DIFFERENTIALEKVATIONER OCH TRANSFORMMETODER - SF1683 KARL JONSSON Nyckelord och innehåll Andra ordningens linjära differentialekvationer Homogena ekvationen Fundamental lösningsmängd, y 1 (t),

Läs mer

SKRIVNING I VEKTORGEOMETRI

SKRIVNING I VEKTORGEOMETRI SKRIVNING I VEKTORGEOMETRI 2014-11-25 1400-1700 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas Baser i rummet kan dessutom antas vara positivt orienterade

Läs mer

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A

SF1625 Envariabelanalys Lösningsförslag till tentamen DEL A SF165 Envariabelanalys Lösningsförslag till tentamen 15-4-7 DEL A 1. Låt f(x) = arcsin x + 1 x. A. Bestäm definitionsmängden till funktionen f. B. Bestäm funktionens största och minsta värde. (Om du har

Läs mer

Linjär Algebra M/TD Läsvecka 3

Linjär Algebra M/TD Läsvecka 3 bild 1 Linjär Algebra M/TD Läsvecka 3 Omfattning och Innehåll Lay: 3.1-3.3 Determinanter. Definition, räkneregler och ett par viktiga satser. Huitfeldt: Om lösningsnoggrannhet: vektornorm, matrisnorm bild

Läs mer

Partiella differentialekvationer och randvärdesproblem Separabla PDE Klassiska ekvationer och randvärdesproblem

Partiella differentialekvationer och randvärdesproblem Separabla PDE Klassiska ekvationer och randvärdesproblem Partiella differentialekvationer och randvärdesroblem. 12.1. Searabla PDE 12.2. Klassiska ekvationer och randvärdesroblem. 12.3. Värmeledningsekvationen. 12.4. Vågekvationen. 12.5. alace ekvation. Variabelsearation.

Läs mer

Tentamen, SF1629, Differentialekvationer och Transformer II (del 2) 11 april 2017 kl. 8:00-13:00

Tentamen, SF1629, Differentialekvationer och Transformer II (del 2) 11 april 2017 kl. 8:00-13:00 KTH, Matematik Tentamen, SF1629, Differentialekvationer och Transformer II (del 2) 11 april 2017 kl. 8:00-13:00 Tentamen består av åtta uppgifter där vardera uppgift ger maximalt fyra poäng. Preliminära

Läs mer

Lösningsanvisningar till de icke obligatoriska workoutuppgifterna

Lösningsanvisningar till de icke obligatoriska workoutuppgifterna Lösningsanvisningar till de icke obligatoriska workoutuppgifterna Linjära system 7. (a) Falskt. Kondition är en egenskap hos problemet oberoende av precisionen i beräkningarna. (b) Falskt. Pivotering påverkar

Läs mer

Variabler. TANA81: Beräkningar med Matlab. Matriser. I Matlab skapas en variabel genom att man anger dess namn och ger den ett värde:

Variabler. TANA81: Beräkningar med Matlab. Matriser. I Matlab skapas en variabel genom att man anger dess namn och ger den ett värde: TANA81: Beräkningar med Matlab - Variabler och Matriser - Logiska uttryck och Villkor - Repetitionssatser - Grafik - Funktioner Variabler I Matlab skapas en variabel genom att man anger dess namn och ger

Läs mer

Tentamen del 1 SF1546, , , Numeriska metoder, grundkurs

Tentamen del 1 SF1546, , , Numeriska metoder, grundkurs KTH Matematik Tentamen del 1 SF154, 1-3-3, 8.-11., Numeriska metoder, grundkurs Namn:... Bonuspoäng. Ange dina bonuspoäng från kursomgången läsåret HT15/VT1 här: Max antal poäng är. Gränsen för godkänt/betyg

Läs mer

5B1134 Matematik och modeller Lösningsförslag till tentamen den 29 augusti 2005

5B1134 Matematik och modeller Lösningsförslag till tentamen den 29 augusti 2005 KTH Matematik 5B114 Matematik och modeller Lösningsförslag till tentamen den 29 augusti 2005 1. a) Om två av sidorna i en triangel är 5 meter respektive 6 meter. Vilka längder på den tredje sidans längd

Läs mer

= e 2x. Integrering ger ye 2x = e 2x /2 + C, vilket kan skrivas y = 1/2 + Ce 2x. Här är C en godtycklig konstant.

= e 2x. Integrering ger ye 2x = e 2x /2 + C, vilket kan skrivas y = 1/2 + Ce 2x. Här är C en godtycklig konstant. Lösningsförslag till Tentamen, SF1633, Differentialekvationer I den 19 december 216 kl 8: - 13: För godkänt (betyg E krävs tre godkända moduler från del I Varje moduluppgift består av tre frågor För att

Läs mer