Teknisk Beräkningsvetenskap I Tema 3: Styvhetsmodellering av mjuk mark med icke-linjära ekvationer

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Teknisk Beräkningsvetenskap I Tema 3: Styvhetsmodellering av mjuk mark med icke-linjära ekvationer"

Transkript

1 Teknisk Beräkningsvetenskap I Tema 3: Styvhetsmodellering av mjuk mark med icke-linjära ekvationer Eddie Wadbro 18 november, 2015 Eddie Wadbro, Tema 3: Icke-linjära ekvationer, 18 november, 2015 (1 : 37) Innehåll Icke-linjära ekvationer och system Anonyma funktioner Matlab Konvergenshastighet Newtons metod Fixpunktsiteration Minstakvadratproblem Eddie Wadbro, Tema 3: Icke-linjära ekvationer, 18 november, 2015 (2 : 37) Icke-linjära ekvationer Många beräkningsproblem är till sin natur icke-linjära Ex.: Eulers ekvationer i gasdynamiken (det aerodynamiska problem som diskuterades i inledningen av första föreläsningen) blir, efter diskretisering, ett mycket stort system av icke-linjära ekvationer som beskriver tryck, densitet och hastigheter i noderna Linjära ekvationssystem kan i princip lösas för hand. För stora problem behövs datorer Icke-linjära ekvationer kan sällan lösas exakt för hand. Det finns ingen formel för lösningen i allmänhet. Det behövs numeriska metoder även i det skalära fallet. Eddie Wadbro, Tema 3: Icke-linjära ekvationer, 18 november, 2015 (3 : 37)

2 Icke-linjära system, exempel x 2 Exempel, sid. 94 i kursboken: 4x x = 0 16x1 2 9x = 0 ska lösas för x 1 0, x 2 0 x 1 Ovanligt exempel: kan lösas för hand! Observera att problemet är linjärt i y 1 = x 2 1, y 2 = x 2 2 Eddie Wadbro, Tema 3: Icke-linjära ekvationer, 18 november, 2015 (4 : 37) Icke-linjära system Ett system med n ekvationer och n okända skrivs generellt f 1 (x 1,..., x n ) = 0 f 2 (x 1,..., x n ) = 0. f n (x 1,..., x n ) = 0 System ovan kan skrivas i vektorform som f(x) = 0, där x 1 x =. x n och f = f 1. f n Eddie Wadbro, Tema 3: Icke-linjära ekvationer, 18 november, 2015 (5 : 37) Icke-linjära system För icke-linjära system så är Jacobimatrisen eller Jacobianen J av central betydelse. Jacobianens komponenter är vilket ger J =. J ij = f i x j f 1 f 1 x 1 f 2 f 2 x 1 f n x 1 x 2... x 2... f n x 2... f 1 x n f 2 x n f n x n För det inledande exemplet är Jacobianen ( ) 8x1 18x J = 2 32x 1 18x 2 Eddie Wadbro, Tema 3: Icke-linjära ekvationer, 18 november, 2015 (6 : 37)

3 Linjär kontra icke-linjär Linjära system har entydig lösning om systemmatrisen är inverterbar För icke-linjära ekvationer är det svårt att verifiera om de har en lösning innan någon beräkning har utförts Icke-linjära system har ofta mer än en lösning 2 f (x) x Figuren till vänster illustrerar att funktionen f (x) = cos(3x)e x x har tre rötter (lösningar till f (x) = 0) i intervallet [ 2, 2] Eddie Wadbro, Tema 3: Icke-linjära ekvationer, 18 november, 2015 (7 : 37) Icke-linjära ekvationer Ex.: Lös den icke-linjära ekvationen cos(3x)e x x = 0. Denna ekvation kan inte lösas analytiskt, så vi försöker beräkna en numerisk lösning För att hitta en lösning x med utgånspunkt 0.5 i Matlab kan man skriva >> format long >> f cos(3*x).*exp(-x)-x f >> x0 = 0.5; >> fzero(f,x0) ans = I Matlab kan man definiera funktioner antingen i m-filer eller genom att använda anonyma funktioner som i ovanstående kod instruerar Matlab att f är en funktion (och inte ett tal eller en matris) och att x är den oberoende variabeln i denna funktion Eddie Wadbro, Tema 3: Icke-linjära ekvationer, 18 november, 2015 (8 : 37) Anonyma funktioner i Matlab Att skapa en anonym funktion är ett alternativ till att skriva och spara en m-fil Syntaxen för att skapa en anonym funktion är fhandle expr Elementen i högerledet är Matlab operatorn som skapar funktionshandtaget arglist är en kommaseparerad lista om innehåller inargumenten till funktionen expr representerar funktionskroppen, d.v.s., den kod som kommer att köras när funktionen anropas Observera. Funktionshandtag ger inte bara tillgång till anonyma funktioner. Genom att använda en något modifierad syntax kan man skapa ett funktionshandtag till godtyckliga Matlab funktioner. Ex.: fhandle Eddie Wadbro, Tema 3: Icke-linjära ekvationer, 18 november, 2015 (9 : 37)

4 Anonyma funktioner i Matlab Anonyma funktioner innehåller vanligen variabler av två olika sorter Variabler som specificeras i inargumentlistan Variabler som anges i själva uttrycket. Matlab fångar dessa variables när funktionen skapas och håller dem konstanta under hela livslängden för funktionshandtaget >> a=2; >> f cos(a*x).*exp(-x)-x; >> f(1) ans = >> a=3; >> f(1) ans = >> f cos(a*x).*exp(-x)-x; >> f(1) ans = Sätt a till 2 Låt f vara ett funktionshandtag till cos(ax)e x x, med nuvarande a, (a = 2) evaluera f(1) ändra a evaluera f(1) Låt f vara ett funktionshandtag till cos(ax)e x x, med nuvarande a, (a = 3) evaluera f(1) Eddie Wadbro, Tema 3: Icke-linjära ekvationer, 18 november, 2015 (10 : 37) Direkta kontra iterativa metoder Numeriska metoder för ekvationslösning är antingen direkta eller iterativa Direkta metoder: den exakta lösningen (upp till avrudningfel) hittas efter ett fixt (känt i förväg) antal aritmetiska operationer. Ex.: Gausselimination för att lösa ett system av linjära ekvationer Iterativa metoder: algoritmen producerar en sekvens av approximationer x 1, x 2,... som (förhoppningsvis) närmar sig den (okända) exakta lösningen x. Behöver avsluta algoritmen när x k x är tillräckligt liten; vilket introducerar ytterligare fel För att lösa Icke-linjära ekvationer behövs generellt iterativa metoder Iterativa metoder är nödvändiga även för att lösa mycket stora linjära system, när direkta metoder är alltför tids och minneskrävande Eddie Wadbro, Tema 3: Icke-linjära ekvationer, 18 november, 2015 (11 : 37) Icke-linjära lösare i Matlab fzero hittar ett nollställe till en kontinuerlig funktion av en variabel Det finns ingen lösare för icke-linjära system i grund Matlab fsolve löser icke-linjära ekvationssystem med hjälp av Newtons metod, den mest använda metoden för att lösa små till medelstora icke-linjära ekvationssystem. Denna funtion finns i Matlabs optimization toolbox vilken säljs separat (ingår i universitetets licens och finns tillgänglig i datasalarna) Eddie Wadbro, Tema 3: Icke-linjära ekvationer, 18 november, 2015 (12 : 37)

5 Iterativa metoder Tumregel: icke-linjära ekvationer eller mycket stora linjära ekvationssystem iterativa metoder En generell iterativ metod: x = startgissning while stoppkriterium inte mött x = ny gissning end Vanligtvis: x 0 = startgissning while stoppkriterium inte mött end Hitta en riktning p k och en steglängd α k Sätt x k+1 = x k + α k p k Eddie Wadbro, Tema 3: Icke-linjära ekvationer, 18 november, 2015 (13 : 37) Konvergenshastighet För linjära system så kan vi hitta den entydiga lösningen i ett ändligt antal steg Vanligtvis så producerar iterativa metoder enbart approximativa lösningar Avsluta när lösningen är tillräckligt bra Viktigt: Konvergenshastighet Hur snabbt x k (approximationen vid steg k) närmar sig den exakta lösningen x Eddie Wadbro, Tema 3: Icke-linjära ekvationer, 18 november, 2015 (14 : 37) Konvergenshastighet Definition Följden {x k } k=1 konvergerar mot x med konvergensordning (Eng. convergence rate) p och asymptotisk felkonstant (Eng. rate constant) C < om x k x och x k+1 x lim k x k x p = C Linjär: p = 1 och 0 < C < 1. Felet multipliceras essentiellt med C varje iteration Kvadratisk: p = 2. Ungefär en fördubbling av antalet korrekta siffror varje iteration Superlinjär: p = 1 och C = 0. Snabbare än linjär. Inkluderar kvadratisk konvergens men även mellanliggande konvergensordningar Observera: definitionen gäller asymptotisk konvergenshastighet Eddie Wadbro, Tema 3: Icke-linjära ekvationer, 18 november, 2015 (15 : 37)

6 Iterativa metoder: konvergenshastighet Ex.: Linjär konvergens Antag att x 0 x = 0.5 och x k+1 x = 0.3 x k x för varje k > 0 Då gäller, x n x = n, alltså, felet avtar exponentiellt Felet blir aldrig noll! Fel Iteration 5 Eddie Wadbro, Tema 3: Icke-linjära ekvationer, 18 november, 2015 (16 : 37) Iterativa metoder: konvergenshastighet Ex.: Kvadratisk konvergens Antag att x 0 x = 0.5 och x k+1 x = x k x 2 för varje k > 0 Då gäller, x n x = 0.5 2n, alltså, antalet korrekta siffror dubbleras i stort sett varje iteration Felet blir aldrig noll! Fel Iteration 5 Observera: Värdet på konstanten C spelar inte någon roll i definitionen av kvadratisk konvergens, medan C < 1 är ett krav i definitionen av linjär konvergens Eddie Wadbro, Tema 3: Icke-linjära ekvationer, 18 november, 2015 (17 : 37) Newtons metod för icke-linjära ekvationer Vi vill lösa ekvationen f (x) = 0 där f är kontinuerligt deriverbar Vidare, anta att vi är vid iteration k och att vår nuvarande gissning x k inte löser vårt problem (f (x k ) 0) Vi vill hitta ett steg s k så att f (x k + s k ) 0 Genom att Taylor utveckla f kring x k får vi f (x k + s k ) = f (x k ) + f (x k )s k + O( s k 2 ) Ide: välj s k = f (x k )/f (x k ) så att de två första termerna ovan tar ur varandra. Sätt x k+1 = x k + s k Eddie Wadbro, Tema 3: Icke-linjära ekvationer, 18 november, 2015 (18 : 37)

7 Newtons metod för en icke-linjär ekvation: Alternativ tolkning Taylor utveckling ger f (x k + s k ) = f (x k ) + f (x k )s k + O( s k 2 ) Vilket ger att funktionen ˆf (x) = f (x k ) + f (x k )(x x k ) approximerar f kring x k Vi kan lösa den linjära ekvationen ˆf (x) = 0 för att hitta nästa gissning x k+1 Eddie Wadbro, Tema 3: Icke-linjära ekvationer, 18 november, 2015 (19 : 37) Newtons metod för icke-linjära ekvationer n ekvationer f i (x) = 0, i = 1,..., n, i n okända x = (x 1,..., x n ) Vi antar att varje f i är kontinuerligt differentierbar Antag att vid iteration k så har vi f i (x k ) 0. Vi vill hitta ett steg s k = (s (k) 1,..., s n (k) ) så att f i (x k + s k ) 0 för alla i Taylor utveckling ger f i (x k + s) = f i (x k ) + n j=1 f i x j (x k )s j +... Ide: Välj s så att de två första termerna ovan tar ut varandra för varje i f i (x k ) + n j=1 f i x j (x k )s (k) j = 0, i = 1,..., n Eddie Wadbro, Tema 3: Icke-linjära ekvationer, 18 november, 2015 (20 : 37) Newtons metod för icke-linjära ekvationer Grundalgoritmen: 1. Välj en startgissning x 0 2. For k = 0, 1, Lös det linjära ekvationssystemet J(x k )s k = f (x k ), där J(x k ) är Jacobimatrisen för f evaluerad i punkten x k 2.2 Sätt x k+1 = x k + s k Newtons metod omvandlar problemet att lösa ett icke-linjärt system till problemet att lösa en sekvens av linjära system Eddie Wadbro, Tema 3: Icke-linjära ekvationer, 18 november, 2015 (21 : 37)

8 Newtons metod för icke-linjära ekvationer Som ovan, låt f : R n R n vara en kontinuerligt differentierbar funktion Antag att det finns en lösning till det icke-linjära systemet f i (x) = 0. (f (x ) = 0 för något x R n ) Sats Följden x 0, x 1,... som genereras av Newtons metod konvergerar kvadratiskt mot x om 1. J(x ) är inverterbar och 2. x 0 x är tillräckligt liten Eddie Wadbro, Tema 3: Icke-linjära ekvationer, 18 november, 2015 (22 : 37) Egenskaper hos Newtons metod Fördel: Kan konvergera extremt snabbt Begänsningar: 1. Vi behöver beräkna Jacobianen varje iteration 2. Vi behöver lösa ett linjärt ekvationssystem varje iteration 3. Vi behöver starta tillräckligt nära lösningen 4. Vi kan få problem om Jacobianen är singular vid någon iteration Eddie Wadbro, Tema 3: Icke-linjära ekvationer, 18 november, 2015 (23 : 37) Jacobianberäkningar En vanlig situation: funktionsvärdena beräknas med hjälp av någon kommersiell mjukvara som inte ger tillgång till källkoden. Speciellt är Jacobianen inte tillgänglig! Jacobianen kan approximeras med finita differenser: J ij (x 1,..., x n ) = f i x j (x 1,..., x n ) f i(x 1,..., x j + h,..., x n ) f i (x 1,..., x j,..., x n ) h h ska inte vara alltför stor (dålig approximation av derivaten) eller för liten (kancellering av signifikanta siffror). Bästa värdet på h är problemberoende. Tumregel: h ɛ M Eddie Wadbro, Tema 3: Icke-linjära ekvationer, 18 november, 2015 (24 : 37)

9 Jacobianberäkningar Beräkning av Jacobimatrisen med finita differenser kräver n evalueringar av f. Kan vara mycket kostsamt för stora problem (speciellt om en evaluering av f innefattar en numerisk lösning av exempelvis en partiell differentialekvation) Ett vanligt tillvägagånssätt Börja med finita differensapproximationer av Jacobianen Använd sedan sekantapproximationer, baserade på funktionsvärdena f (x k+1 ) och f (x k ) samt gissningarna x k+1 och x k, för att uppdatera Jacobianapproximationen (Begränsning 1). Användning av sekantapproximationer istället för den exakta Jacobianen reducerar konvergensordningen något (metoden konvergerar superlinjärt istället för kvadratiskt) Eddie Wadbro, Tema 3: Icke-linjära ekvationer, 18 november, 2015 (25 : 37) Andra problem med Newtons metod Behovet av en startgissning nära lösningen kan tas bort genom användning av globaliseringstekniker, vilket medför att metoden konvergerar oavsett startgissning. Globaliseringen modifierar steglängden och/eller stegriktningen när man är långt från lösningen, vilket är typiskt under de första stegen. (Begränsning 3) Det finns också tekniker för att ta hand om singulära Jacobianer (Begränsning 4) Spjutspetsimplementationer av Newtons metod är mycket mer komplicerade än grundalgoritmen! Eddie Wadbro, Tema 3: Icke-linjära ekvationer, 18 november, 2015 (26 : 37) Fixpunktsiterationer En klass av iterativa metoder som undviker lösning av linjära system (Begränsning 2) De är därför extra intressanta för lösning av mycket stora problem Vanligtvis mycket långsammare än Newtons metod Obervera: konstruktionen av en bra fixpunktsmetod är problemberoende Eddie Wadbro, Tema 3: Icke-linjära ekvationer, 18 november, 2015 (27 : 37)

10 Fixpunktsiterationer Ide: Skriv f (x) = 0 som ett fixpunktsproblem x = g(x) Det går alltid att göra en sådan omskrivning, exempelvis x = x f (x) Definiera det iterativa schemat x n+1 = g(x n ) och hoppas att det konvergerar mot en fixpunkt till g, vilket per konstruktion är en lösning till f (x) = 0 Eddie Wadbro, Tema 3: Icke-linjära ekvationer, 18 november, 2015 (28 : 37) Fixpunktsiterationer Iterationerna konvergerar om g är en kontraktion; alltså om det finns ett C < 1 så att g(x) g(y) C x y för varje x, y i en (konvex) delmängd av R n Eller i ord, om g(x) och g(y) är strikt närmare varandra än x och y så är g en kontraktion Eddie Wadbro, Tema 3: Icke-linjära ekvationer, 18 november, 2015 (29 : 37) Fixpunktsiterationer Inte alltid enkelt att se om en avbildning är en kontraktion! Ett tillräckligt villkor för att en kontinuerligt differentierbar funktion g ska vara en kontraktion är att J(x) < 1 för varje x i ett område, där J är Jacobianen för g (Observera: matrisnorm) Eddie Wadbro, Tema 3: Icke-linjära ekvationer, 18 november, 2015 (30 : 37)

11 Fixpunktsiterationer Enkelt, vi behöver inte lösa några linjära ekvationssystem För extremt stora problem kan de vara den enda möjliga lösningsvägen Att konstruera en lämplig kontraktiv funktion g är i hög grad problemberoende Robusta versioner av Newtons metod är (om tillämpliga) vanligtvis mycket snabbare Eddie Wadbro, Tema 3: Icke-linjära ekvationer, 18 november, 2015 (31 : 37) Minstakvadratproblem Antag att vi har observationer y i t i i = 1, 2,...., m vid tiderna i = 1, 2,...., m och en model y(t, x) Ex1: y(t, x) = x 1 + x 2 t + x 3 t 2 Ex2: y(t, x) = x 1 e x 2t Vi vill bestämma de bästa x 1, x 2,..., x n så att y(t i, x) y i (Vanligtvis m >> n) Eddie Wadbro, Tema 3: Icke-linjära ekvationer, 18 november, 2015 (32 : 37) Minstakvadratproblem Vanligtvis (på grund av mätfel, modelleringsfel, brus, etcetera), y i y(t i, x) 0 även för det bästa parametervalet x Här betyder bästa parametervalet x det x som är bäst i minstakvadratmening Vi vill alltså: Hitta det x R n som minimerar 1 M [y i y(t i, x)] 2 2 Definition Linjärt minstakvadratproblem: y är linjär i x (Ex1) Icke-linjärt minstakvadratproblem: y är icke-linjär i x (Ex2) Eddie Wadbro, Tema 3: Icke-linjära ekvationer, 18 november, 2015 (33 : 37)

12 Linjära minstakvadratproblem Låt oss först titta på fallet min x R n f (x) = 1 2 där f i är linjär i x, vilket betyder att m f i (x) 2 f (x) = 1 Ax b 2 = (Ax b)(ax b)t = 1 2 x T A T Ax x T A T b+ 1 2 bt b, där A är en m n matris och b är en m kolonnvektor Om A T A är positivt definit så har minimeringsproblemet ovan lösningen x, som uppfyller normalekvationerna A T Ax = A T b Eddie Wadbro, Tema 3: Icke-linjära ekvationer, 18 november, 2015 (34 : 37) Icke-linjära minstakvadratproblem min x R n f (x) = 1 2 m f i (x) 2 I detta fall kan vi skriva gradienten och Hessianen av f som f (x) = 2 f (x) = m f i (x)f i (x) m [ f i (x) ( f i (x) ) ] T + 2 f i (x)f i (x) Vi kan exempelvis använda oss av Newtons metod för att lösa f = 0 Eddie Wadbro, Tema 3: Icke-linjära ekvationer, 18 november, 2015 (35 : 37) Icke-linjära minstakvadratproblem min x R n f (x) = 1 2 m f i (x) 2 Det är dock vanligtvis bättre att använda den struktur som problemet har Taylor utveckling ger f (x + s) = f (x) + f (x) T s st 2 f (ξ)s där ξ = x + αs för något α [0, 1] Ide: vid iteration k, approximera Hessianen 2 f i den okända punkten ξ med m B k = [ f i (x k ) ( f i (x k ) ) ] T + någonting enkelt Eddie Wadbro, Tema 3: Icke-linjära ekvationer, 18 november, 2015 (36 : 37)

13 Icke-linjära minstakvadratproblem Vad är någonting enkelt? 0 (noll) rimligt om redidualen är liten samt för svagt olinjära problem (annars använd λi, där I är identitetsmatrisen och λ > 0) Approximera f med ˆf (x) = f (x k ) + f (x k ) T (x x k ) (x x k) T B k (x x k ) ta fram steget s k genom att lösa B k s k = f Observera: Ekvivalent till att lösa det linjära minstakvadratproblemet F ( F ) T s = ( F )F där F = [f 1, f 2,..., f n ] och F = [ f 1 f 2... f n ] T Eddie Wadbro, Tema 3: Icke-linjära ekvationer, 18 november, 2015 (37 : 37)

Block 5: Ickelineära. ekvationer? Läroboken. Löpsedel: Icke-lineära. ekvationer. Vad visade laborationen? Vad visade laborationen?

Block 5: Ickelineära. ekvationer? Läroboken. Löpsedel: Icke-lineära. ekvationer. Vad visade laborationen? Vad visade laborationen? Block 5: Ickelineära ekvationer Löpsedel: Icke-lineära ekvationer Varför är det svårt att lösa ickelineära ekvationer? Iterativa metoder Bisektion/intervallhalvering Newton-Raphsons metod Noggrannhet/stoppvillkor

Läs mer

Linjärisering, Jacobimatris och Newtons metod.

Linjärisering, Jacobimatris och Newtons metod. Linjärisering, Jacobimatris och Newtons metod Analys och Linjär Algebra, del C, K/Kf/Bt, vt0 Inledning Vi skall lösa system av icke-linjära ekvationer Som exempel kan vi ta, x = 0, x = 0, som är ett system

Läs mer

LABORATION 2. Trapetsregeln, MATLAB-funktioner, ekvationer, numerisk derivering

LABORATION 2. Trapetsregeln, MATLAB-funktioner, ekvationer, numerisk derivering SF1518,SF1519,numpbd15 LABORATION 2 Trapetsregeln, MATLAB-funktioner, ekvationer, numerisk derivering - Genomför laborationen genom att göra de handräkningar och MATLAB-program som begärs. Var noga med

Läs mer

Teorifrågor. 6. Beräkna konditionstalet för en diagonalmatris med diagonalelementen 2/k, k = 1,2,...,20.

Teorifrågor. 6. Beräkna konditionstalet för en diagonalmatris med diagonalelementen 2/k, k = 1,2,...,20. Teorifrågor Störningsanalys 1. Värdet på x är uppmätt till 0.956 med ett absolutfel på högst 0.0005. Ge en övre gräns för absolutfelet i y = exp(x) + x 2. Motivera svaret. 2. Ekvationen log(x) x/50 = 0

Läs mer

Tentamen, del 2 Lösningar DN1240 Numeriska metoder gk II F och CL

Tentamen, del 2 Lösningar DN1240 Numeriska metoder gk II F och CL Tentamen, del Lösningar DN140 Numeriska metoder gk II F och CL Lördag 17 december 011 kl 9 1 DEL : Inga hjälpmedel Rättas ast om del 1 är godkänd Betygsgränser inkl bonuspoäng: 10p D, 0p C, 30p B, 40p

Läs mer

Lösningsanvisningar till de icke obligatoriska workoutuppgifterna

Lösningsanvisningar till de icke obligatoriska workoutuppgifterna Lösningsanvisningar till de icke obligatoriska workoutuppgifterna Linjära system 7. (a) Falskt. Kondition är en egenskap hos problemet oberoende av precisionen i beräkningarna. (b) Falskt. Pivotering påverkar

Läs mer

LABORATION cos (3x 2 ) dx I =

LABORATION cos (3x 2 ) dx I = SF1518,SF1519,numpbd14 LABORATION 2 Trapetsregeln, ekvationer, ekvationssystem, MATLAB-funktioner Studera kapitel 6 och avsnitt 5.2.1, 1.3 och 3.8 i NAM parallellt med arbetet på denna laboration. Genomför

Läs mer

Newtons metod. 1 Inledning. CTH/GU LABORATION 3 MVE /2014 Matematiska vetenskaper

Newtons metod. 1 Inledning. CTH/GU LABORATION 3 MVE /2014 Matematiska vetenskaper CTH/GU LABORATION 3 MVE270-2013/2014 Matematiska vetenskaper Newtons metod 1 Inledning Vi skall lösa system av icke-linjära ekvationer. Som exempel kan vi ta, { x1 (1 + x 2 2) 1 = 0 x 2 (1 + x 2 1 ) 2

Läs mer

CHALMERS Finit Elementmetod M3 Institutionen för tillämpad mekanik. Teorifrågor

CHALMERS Finit Elementmetod M3 Institutionen för tillämpad mekanik. Teorifrågor Teorifrågor : Visa att gradienten till en funktion pekar i den riktning derivatan är störst och att riktingen ortogonalt mot gradienten är tangent till funktionens nivåkurva. Visa hur derivatan i godtycklig

Läs mer

Institutionen för Matematiska Vetenskaper TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA

Institutionen för Matematiska Vetenskaper TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA Institutionen för Matematiska Vetenskaper Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 009-08-7 DAG: Torsdag 7 augusti 009 TID: 8.30 -.30 SAL: V Ansvarig: Ivar Gustafsson, tel: 77 0

Läs mer

Linjära ekvationssystem

Linjära ekvationssystem Linjära ekvationssystem Gausselimination Vanlig gausselimination för det linjära ekvationssystemet Ax = b utgår från den utökade matrisen [A b] och applicerar elementära radoperationer på denna för att

Läs mer

Linjära ekvationssystem

Linjära ekvationssystem Föreläsning 3 Linjära ekvationssystem Gausselimination Vanlig gausselimination för det linjära ekvationssystemet Ax = b utgår från den utökade matrisen [A b] och applicerar elementära radoperationer på

Läs mer

Institutionen för Matematiska Vetenskaper TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1/TM1, TMA671 2014-05-26

Institutionen för Matematiska Vetenskaper TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1/TM1, TMA671 2014-05-26 Institutionen för Matematiska Vetenskaper Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F/TM, TMA67 4-5-6 DAG: Måndag 6 maj 4 TID: 4. - 8. SAL: V Ansvarig: Ivar Gustafsson, tel: 75-33545 Förfrågningar:

Läs mer

Matlab övningsuppgifter

Matlab övningsuppgifter CTH/GU MVE5-7/8 Matematiska vetenskaper Matlab övningsuppgifter Inledning Vi skall först se hur man kan lösa system av icke-linjära ekvationer. Därefter skall vi se på optimering utan bivillkor. Vi skall

Läs mer

Ickelinjära ekvationer

Ickelinjära ekvationer Löpsedel: Icke-linjära ekvationer Ickelinjära ekvationer Beräkningsvetenskap I Varför är det svårt att lösa icke-linjära ekvationer? Iterativa metoder Bisektion/intervallhalvering Newton-Raphsons metod

Läs mer

Lösningsanvisningar till de icke obligatoriska workoutuppgifterna

Lösningsanvisningar till de icke obligatoriska workoutuppgifterna Lösningsanvisningar till de icke obligatoriska workoutuppgifterna Linjära system 7. (a) Falskt. Kondition är en egenskap hos problemet oberoende av precisionen i beräkningarna. (b) Falskt. Pivotering påverkar

Läs mer

Minsta kvadratmetoden

Minsta kvadratmetoden Minsta kvadratmetoden där Överbestämda ekvationssystem Det är lämpligt att uppfatta matrisen A som bestående av n kolonnvektorer: A a a a n a a a n a n a n a nn a j a j a nj a a a n j n Då kan vi skriva

Läs mer

MMA132: Laboration 2 Matriser i MATLAB

MMA132: Laboration 2 Matriser i MATLAB MMA132: Laboration 2 Matriser i MATLAB Introduktion I den här labben skall vi lära oss hur man använder matriser och vektorer i MATLAB. Det är rekommerad att du ser till att ha laborationshandledningen

Läs mer

TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1/TM1, TMA671 2015-04-18

TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1/TM1, TMA671 2015-04-18 Institutionen för Matematiska Vetenskaper Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F/TM, TMA67 5-4-8 DAG: Lördag 8 april 5 TID: 8.3 -.3 SAL: V Ansvarig: Ivar Gustafsson, tel: 75-33545 Förfrågningar:

Läs mer

Föreläsning 1. Numeriska metoder grundkurs II, DN1240. Carina Edlund Mottagningstid i rum 4516: onsdagar kl.

Föreläsning 1. Numeriska metoder grundkurs II, DN1240. Carina Edlund Mottagningstid i rum 4516: onsdagar kl. Föreläsning 1 Numeriska metoder grundkurs II, DN1240 Carina Edlund carina@nada.kth.se Mottagningstid i rum 4516: onsdagar kl. 13-15 Kurshemsida: http://www.csc.kth.se/utbildning/kth/kurser/dn1240/numi09/

Läs mer

1 Ickelinjär optimering under bivillkor

1 Ickelinjär optimering under bivillkor Krister Svanberg, maj 2012 1 Ickelinjär optimering under bivillkor Hittills har vi behandlat optimeringsproblem där alla variabler x j kunnat röra sig fritt, oberoende av varann, och anta hur stora eller

Läs mer

Gripenberg. Mat Grundkurs i matematik 1 Tentamen och mellanförhörsomtagning,

Gripenberg. Mat Grundkurs i matematik 1 Tentamen och mellanförhörsomtagning, Mat-. Grundkurs i matematik Tentamen och mellanförhörsomtagning,..23 Skriv ditt namn, nummer och övriga uppgifter på varje papper! Räknare eller tabeller får inte användas i detta prov! Gripenberg. Skriv

Läs mer

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA671 2009-01-16. DAG: Fredag 16 januari 2009 TID: 14.00-18.

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA671 2009-01-16. DAG: Fredag 16 januari 2009 TID: 14.00-18. Institutionen för Matematik Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 9--6 DAG: Fredag 6 januari 9 TID: 4. - 8. SAL: V Ansvarig: Ivar Gustafsson, tel: 77 94 Förfrågningar: Ivar Gustafsson

Läs mer

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA DAG: Fredag 30 augusti 2002 TID:

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA DAG: Fredag 30 augusti 2002 TID: Institutionen för Matematik Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 22-8-3 DAG: Fredag 3 augusti 22 TID: 8.45-2.45 SAL: V Ansvarig: Ivar Gustafsson, tel: 772 94 (ankn. 94) Förfrågningar:

Läs mer

Institutionen för Matematiska Vetenskaper TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA

Institutionen för Matematiska Vetenskaper TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA Institutionen för Matematiska Vetenskaper Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67-8-5 DAG: Onsdag 5 augusti TID: 8.3 -.3 SAL: V Ansvarig: Ivar Gustafsson, tel: 75-33545 Förfrågningar:

Läs mer

TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA671

TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA671 Institutionen för Matematik LINJÄR ALGEBRA OCH NUMERISK ANALYS F Göteborg --9 TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 OBS! NYA KURSEN DAG: Tisdag 9 januari TID: 8.45 -.45 SAL: V Ansvarig:

Läs mer

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA DAG: Måndag 14 januari 2002 TID:

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA DAG: Måndag 14 januari 2002 TID: Institutionen för Matematik Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 --4 DAG: Måndag 4 januari TID: 8.45 -.45 SAL: V Ansvarig: Ivar Gustafsson, tel: 77 94 (ankn. 94) Förfrågningar:

Läs mer

Repetitionsfrågor: 5DV154 Tema 4: Förbränningsstrategier för raketer modellerade som begynnelsevärdesproblem

Repetitionsfrågor: 5DV154 Tema 4: Förbränningsstrategier för raketer modellerade som begynnelsevärdesproblem Institutionen för datavetenskap Umeå universitet december 06 Teknisk beräkningsvetenskap I Repetitionsfrågor: 5DV54 Tema 4: Förbränningsstrategier för raketer modellerade som begynnelsevärdesproblem Del

Läs mer

Varning!!! Varning!!!

Varning!!! Varning!!! Kort sammanfattning av Beräkningsvetenskap I Erik Lindblad H04 Varning!!! Detta är inte en komplett genomgång av materialet i kursen Beräkningsvetenskap I. Genom att lära sig materialet nedan har man skaffat

Läs mer

Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18.

Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18. Föreläsningen ger en introduktion till differentialekvationer och behandlar stoff från delkapitel 18.1, 18.3 och 7.9 i Adams. 18.1 Delkapitlet introducerar en del terminologi och beteckningar som används.

Läs mer

Kapitel 4. Iterativ lösning av ekvationer

Kapitel 4. Iterativ lösning av ekvationer Kapitel 4. Iterativ lösning av ekvationer Vi skall nu undersöka, har man löser numeriskt ekvationer av formen f(x) = 0. Dylika ekvationer kallas också olinjära, eftersom funktionen oftast har ett olinjärt

Läs mer

Kort sammanfattning av Beräkningsvetenskap I. Varning!!! Varning!!!

Kort sammanfattning av Beräkningsvetenskap I. Varning!!! Varning!!! Kort sammanfattning av Beräkningsvetenskap I Erik Lindblad H4 Varning!!! Detta är inte en komplett genomgång av materialet i kursen Beräkningsvetenskap I. Genom att lära sig materialet nedan har man skaffat

Läs mer

NUMPROG, 2D1212, vt Föreläsning 1, Numme-delen. Linjära ekvationssystem Interpolation, Minstakvadratmetoden

NUMPROG, 2D1212, vt Föreläsning 1, Numme-delen. Linjära ekvationssystem Interpolation, Minstakvadratmetoden NUMPROG, D, vt 006 Föreläsning, Numme-delen Linjära ekvationssystem Interpolation, Minstakvadratmetoden En av de vanligaste numeriska beräkningar som görs i ingenjörsmässiga tillämpningar är att lösa ett

Läs mer

8.5 Minstakvadratmetoden

8.5 Minstakvadratmetoden 8.5 Minstakvadratmetoden 8.5. Ett exempel Man ville bestämma ett approximativt värde på tyngdaccelerationen g: En sten slängdes från en hög byggnad och man noterade med hjälp av fotoceller placerade på

Läs mer

Linjärisering och Newtons metod

Linjärisering och Newtons metod CTH/GU STUDIO 5 TMV36a - 214/215 Matematiska vetenskaper 1 Inledning Linjärisering och Newtons metod Vi skall fortsätta med att lösa ekvationer. I förra studioövningen såg vi på intervallhalveringsmetoden.

Läs mer

1 Konvexa optimeringsproblem grundläggande egenskaper

1 Konvexa optimeringsproblem grundläggande egenskaper Krister Svanberg, april 2012 1 Konvexa optimeringsproblem grundläggande egenskaper Ett optimeringsproblem är i viss mening godartat om det tillåtna området är en konvex mängd och den målfunktion som ska

Läs mer

Föreläsning 9. Absolutstabilitet

Föreläsning 9. Absolutstabilitet Föreläsning 9 Absolutstabilitet Introduktion För att en numerisk ODE-metod ska vara användbar måste den vara konvergent, dvs den numeriska lösningen ska närma sig den exakta lösningen när steglängden går

Läs mer

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA671 2005-08-26. DAG: Fredag 26 augusti 2005 TID: 8.30-12.

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA671 2005-08-26. DAG: Fredag 26 augusti 2005 TID: 8.30-12. Institutionen för Matematik Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 5-8-6 DAG: Fredag 6 augusti 5 TID: 8.3-.3 SAL: V Ansvarig: Ivar Gustafsson, tel: 77 94 Förfrågningar: Ivar Gustafsson

Läs mer

Omtentamen i DV & TDV

Omtentamen i DV & TDV Umeå Universitet Institutionen för Datavetenskap Gunilla Wikström (e-post wikstrom) Omtentamen i Teknisk-Vetenskapliga Beräkningar för DV & TDV Tentamensdatum: 2005-06-07 Skrivtid: 9-15 Hjälpmedel: inga

Läs mer

Optimalitetsvillkor. Optimum? Matematisk notation. Optimum? Definition. Definition

Optimalitetsvillkor. Optimum? Matematisk notation. Optimum? Definition. Definition Optimum? När man har formulerat sin optimeringsmodell vill man lösa den Dvs finna en optimal lösning, x, till modellen Nästan alltid: Sökmetoder: Stå i en punkt, gå till en annan (bättre Upprepa, tills

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet 27 augusti 2013 Innehåll Linjära ekvationssystem

Läs mer

1.1 MATLABs kommandon för matriser

1.1 MATLABs kommandon för matriser MATLABs kommandon för matriser Det finns en mängd kommandon för att hantera vektorer, matriser och linjära ekvationssystem Vi ger här en kort sammanfattning av dessa kommandon För en mera detaljerad diskussion

Läs mer

TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer

TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer TATA42: Föreläsning 7 Differentialekvationer av första ordningen och integralekvationer Johan Thim 0 januari 207 Introduktion En differentialekvation (DE) i en variabel är en ekvation som innehåller både

Läs mer

TMV225+TMV176 Inledande matematik M, TD Sammanfattning. Läsanvisningar inför tentamen.

TMV225+TMV176 Inledande matematik M, TD Sammanfattning. Läsanvisningar inför tentamen. TMV225+TMV176 Inledande matematik M, TD Sammanfattning. Läsanvisningar inför tentamen. 2008 10 14 A. Talsystemen. (Adams P.1. Anteckningar från introkursen.) N de naturliga talen Z de hela talen Q de rationella

Läs mer

Teknisk beräkningsvetenskap I 5DV154

Teknisk beräkningsvetenskap I 5DV154 Institutionen för datavetenskap Umeå universitet 18 december 15 Teknisk beräkningsvetenskap I 5DV154 Deltentamen inkusive svar Tid: 9. 13. Hjälpmedel: Matlab. Maximalt antal poäng: 1 5 poäng är tillräckligt

Läs mer

M = c c M = 1 3 1

M = c c M = 1 3 1 N-institutionen Mikael Forsberg Prov i matematik Matematik med datalogi, mfl. Linjär algebra ma4a Deadline :: 8 9 4 Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift på ny

Läs mer

Lösandet av ekvationer utgör ett centralt område inom matematiken, kanske främst den tillämpade.

Lösandet av ekvationer utgör ett centralt område inom matematiken, kanske främst den tillämpade. 1.1 Ekvationslösning Lösandet av ekvationer utgör ett centralt område inom matematiken, kanske främst den tillämpade. 1.1.1 Polynomekvationer Ett polynom i en variabel x är som bekant en summa av termer

Läs mer

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA DAG: Lördag 26 maj 2001 TID:

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA DAG: Lördag 26 maj 2001 TID: Institutionen för Matematik Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 2-5-26 DAG: Lördag 26 maj 2 TID: 8.45-2.45 SAL: V Ansvarig: Ivar Gustafsson, tel: 772 94 (ankn. 94) Förfrågningar:

Läs mer

Institutionen för Matematik. F1 - Linjär algebra och numerisk analys, TMA671 Svar till övningar i Heath s bok och extraövningar

Institutionen för Matematik. F1 - Linjär algebra och numerisk analys, TMA671 Svar till övningar i Heath s bok och extraövningar Institutionen för Matematik Göteborg F1 - Linjär algebra och numerisk analys, TMA671 Svar till övningar i Heath s bok och extraövningar Heath 1: a) -01416 resp -0046 b) -0001593 resp -000051 c) 000165

Läs mer

ALA-c Innehåll. 1 Linearization and Stability Uppgift Uppgift Egenvärdesproblemet Uppgift

ALA-c Innehåll. 1 Linearization and Stability Uppgift Uppgift Egenvärdesproblemet Uppgift Vecka ALA-c 6 Innehåll Linearization and Stability RÄKNEÖVNING VECKA. Uppgift 9........................................ Uppgift 9.5...................................... 5 Egenvärdesproblemet 9. Uppgift

Läs mer

LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664

LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664 LÖSNINGSFÖRSLAG TILL TENTAMEN 2 SF1664 Tillämpad envariabelanalys med numeriska metoder för CFATE1 den 1 mars 214 kl 8.-1. 1. Bestäm värdemängden till funktionen f(x) = 2 arctan x + ln (1 + x 2 ), där

Läs mer

Optimeringsproblem. 1 Inledning. 2 Optimering utan bivillkor. CTH/GU STUDIO 6 TMV036c /2015 Matematiska vetenskaper

Optimeringsproblem. 1 Inledning. 2 Optimering utan bivillkor. CTH/GU STUDIO 6 TMV036c /2015 Matematiska vetenskaper CTH/GU STUDIO TMV3c - 1/15 Matematiska vetenskaper Optimeringsproblem 1 Inledning Vi skall söka minsta eller största värdet hos en funktion på en mängd, dvs. vi skall lösa s.k. optimeringsproblem min f(x)

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A SF64 Algebra och geometri Lösningsförslag till tentamen 0-0-0 DEL A De tre totalmatriserna 0 3 3 4 0 3 0 0 0 0, 0 3 0 4 4 0 3 0 3 0 0 0 0 och 0 3 0 4 0 3 3 0 0 0 0 0 svarar mot linjära ekvationssystem

Läs mer

Gruppuppgifter 1 MMA132, Numeriska metoder, distans

Gruppuppgifter 1 MMA132, Numeriska metoder, distans Gruppuppgifter 1 MMA132, Numeriska metoder, distans Uppgifter märkta med redovisas 1. Läs om felkalkyl i enkla fall sidan 1.2-1.3. Givet a = 1,23, E a = 0,005 c = 0,00438 ± 0,5 10 5 b = 23,71, E b = 0,003

Läs mer

Några saker som jag inte hann: Ur trigonometriska ettan kan vi uttrycka och i termer av. Vi delar båda led i trig. 1:an med :

Några saker som jag inte hann: Ur trigonometriska ettan kan vi uttrycka och i termer av. Vi delar båda led i trig. 1:an med : 1 Onsdag v 1 Några saker som jag inte hann: Ur trigonometriska ettan kan vi uttrycka och i termer av Vi delar båda led i trig 1:an med : Detta ger också att vi kan uttrycka : Formeln ger också en formel

Läs mer

Modul 4 Tillämpningar av derivata

Modul 4 Tillämpningar av derivata Institutionen för Matematik SF1625 Envariabelanalys Läsåret 2015/2016 Modul 4 Tillämpningar av derivata Denna modul omfattar kapitel 4 i kursboken Calculus av Adams och Essex och undervisas på tre föreläsningar,

Läs mer

Teknisk Beräkningsvetenskap I Tema 1: Avrundning och populationsmodellering

Teknisk Beräkningsvetenskap I Tema 1: Avrundning och populationsmodellering Teknisk Beräkningsvetenskap I Tema 1: Avrundning och populationsmodellering Eddie Wadbro 5 november 2014 Eddie Wadbro, Tema 1: Avrundning och populationsmodellering, 5 november 2014 (1 : 21) Innehåll Datoraritmetik

Läs mer

Interpolation. 8 december 2014 Sida 1 / 20

Interpolation. 8 december 2014 Sida 1 / 20 TANA09 Föreläsning 7 Interpolation Interpolationsproblemet. Introduktion. Polynominterpolation. Felanalys. Runges fenomen. Tillämpning. LED display. Splinefunktioner. Spline Interpolation. Ändpunktsvillkor.

Läs mer

Tentamen i Beräkningsvetenskap I och KF, 5.0 hp,

Tentamen i Beräkningsvetenskap I och KF, 5.0 hp, Uppsala universitet Institutionen för informationsteknologi Avdelningen för beräkningsvetenskap Tentamen i Beräkningsvetenskap I och KF, 5.0 hp, 2015-12-17 Skrivtid: 14 00 17 00 (OBS! Tre timmars skrivtid!)

Läs mer

Kurvanpassning. Kurvanpassning jfr lab. Kurvanpassning jfr lab

Kurvanpassning. Kurvanpassning jfr lab. Kurvanpassning jfr lab Kurvanpassning jfr lab Kurvanpassning Beräkningsvetenskap II Punktmängd approximerande funktion Finns olika sätt att approximera med polynom Problem med höga gradtal kan ge stora kast Kurvanpassning jfr

Läs mer

Inledande matematik M+TD

Inledande matematik M+TD Introduktionsföreläsning p. 1/13 Introduktionsföreläsning Inledande matematik M+TD Stig Larsson http://www.math.chalmers.se/ stig Matematiska vetenskaper Chalmers tekniska högskola Göteborgs universitet

Läs mer

Lösningsförslag till tentamensskrivningen i Numerisk analys

Lösningsförslag till tentamensskrivningen i Numerisk analys Lösningsförslag till tentamensskrivningen i Numerisk analys 160526 Del I: (1) (a) Heuns metod för numerisk lösning av differentialekvationer har noggrannhetsordning 2. Detta betyder att Felet avtar med

Läs mer

Numeriska metoder. Kompendiet. Lektor: Yury Shestopalov. e-mail: youri.shestopalov@kau.se Tel. 054-7001856. Karlstads Universitet

Numeriska metoder. Kompendiet. Lektor: Yury Shestopalov. e-mail: youri.shestopalov@kau.se Tel. 054-7001856. Karlstads Universitet Numeriska metoder Kompendiet Lektor: Yury Shestopalov e-mail: youri.shestopalov@kau.se Tel. 054-7001856 Hemsidan: www.ingvet.kau.se\ youri Karlstads Universitet 2002 1 Innehåll 1 Grundbegrepp av numeriska

Läs mer

TMV151/181 Matematisk analys i en variabel M/Td, 2013 MATLAB NUMERISK LÖSNING AV ORDINÄRA DIFFERENTIALEKVATIONER

TMV151/181 Matematisk analys i en variabel M/Td, 2013 MATLAB NUMERISK LÖSNING AV ORDINÄRA DIFFERENTIALEKVATIONER TMV151/181 Matematisk analys i en variabel M/Td, 2013 MATLAB NUMERISK LÖSNING AV ORDINÄRA DIFFERENTIALEKVATIONER Beskrivning och mål. Den här laborationen syftar till att ge en grundläggande förståelse

Läs mer

Laboration 1: Optimalt sparande

Laboration 1: Optimalt sparande Avsikten med denna laboration är att: Laboration 1: Optimalt sparande - snabbt komma igång med träning på matlabprogrammering (uttnyttja gärna alla schemalagda laborationstillfällen, - lösa ett optimeringsproblem

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen Fredagen den 23 oktober, 2009 DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen Fredagen den 23 oktober, 2009 DEL A SF1624 Algebra och geometri Lösningsförslag till tentamen Fredagen den 23 oktober, 2009 DEL A (1) (a) Bestäm de övriga rötterna till ekvationen z 3 11z 2 + 43z 65 = 0 när det är känt att en av rötterna

Läs mer

Egenvärdesproblem för matriser och differentialekvationer

Egenvärdesproblem för matriser och differentialekvationer CTH/GU STUDIO 7 TMV36b - 14/15 Matematiska vetenskaper 1 Inledning Egenvärdesproblem för matriser och differentialekvationer Vi skall se lite på egenvärdesproblem för matriser och differentialekvationer.

Läs mer

Ansvariga lärare: Yury Shestopalov, rum 3A313, tel 054-7001856 (a) Problem 1. Använd Eulers metod II (tre steg) och lös begynnelsevärdesproblemet

Ansvariga lärare: Yury Shestopalov, rum 3A313, tel 054-7001856 (a) Problem 1. Använd Eulers metod II (tre steg) och lös begynnelsevärdesproblemet FACIT: Numeriska metoder Man måste lösa tre problem. Problemen 1 och är obligatoriska, och man kan välja Problemet 3 eller 4 som den tredje. Hjälp medel: Miniräknare (med Guidebook för miniräknare) och

Läs mer

Datorövningar i funktionalanalys och harmonisk analys

Datorövningar i funktionalanalys och harmonisk analys Datorövningar i funktionalanalys och harmonisk analys Sven Spanne 28 september 21 1 Normer och approximation Inledning Funktionalanalys är ett abstrakt område, och för att förstå innebörden av begrepp,

Läs mer

1 LP-problem på standardform och Simplexmetoden

1 LP-problem på standardform och Simplexmetoden Krister Svanberg, mars 202 LP-problem på standardform och Simplexmetoden I detta avsnitt utgår vi från LP-formuleringen (2.2) från föreläsning. Denna form är den bäst lämpade för en strömlinjeformad implementering

Läs mer

Kapitel Ekvationsräkning

Kapitel Ekvationsräkning Kapitel Ekvationsräkning Din grafiska räknare kan lösa följande tre typer av beräkningar: Linjära ekvationer med två till sex okända variabler Högregradsekvationer (kvadratiska, tredjegrads) Lösningsräkning

Läs mer

M0038M Differentialkalkyl, Lekt 15, H15

M0038M Differentialkalkyl, Lekt 15, H15 M0038M Differentialkalkyl, Lekt 15, H15 Staffan Lundberg Luleå Tekniska Universitet Staffan Lundberg M0038M H15 1/ 15 Repetition Lekt 14 Bestäm följande gränsvärden cos x tan x lim x 0 x x + ln ( e 2x

Läs mer

Sammanfattning av ordinära differentialekvationer

Sammanfattning av ordinära differentialekvationer Sammanfattning av ordinära differentialekvationer Joakim Edsjö 1 Institutionen för teoretisk fysik, Uppsala Universitet Telefon: 018-18 32 50 eller 018-18 76 30 19 februari 1995 1 Första ordningens differentialekvationer

Läs mer

Introduktion till Matlab

Introduktion till Matlab CTH/GU 2015/2016 Matematiska vetenskaper Introduktion till Matlab 1 Inledning Matlab är både en interaktiv matematikmiljö och ett programspråk, som används på många tekniska högskolor och universitet runt

Läs mer

Tentamen i Beräkningsvetenskap II, 5.0 hp,

Tentamen i Beräkningsvetenskap II, 5.0 hp, Uppsala universitet Institutionen för informationsteknologi Teknisk databehandling Per Wahlund, tel. 471 2986 Tentamen i Beräkningsvetenskap II, 5.0 hp, 2013-06-07 Skrivtid: 14 00 17 00 (OBS! Tre timmars

Läs mer

Maclaurins och Taylors formler. Standardutvecklingar (fortsättning), entydighet, numerisk beräkning av vissa uttryck, beräkning

Maclaurins och Taylors formler. Standardutvecklingar (fortsättning), entydighet, numerisk beräkning av vissa uttryck, beräkning Maclaurins och Taylors formler Standardutvecklingar (fortsättning), entydighet, numerisk beräkning av vissa uttryck, beräkning av gränsvärden Standardutvecklingar Vid beräkningar där man inte behöver någon

Läs mer

Approximation av funktioner

Approximation av funktioner Vetenskapliga beräkningar III 8 Kapitel Approximation av funktioner Vi skall nu övergå till att beskriva, hur man i praktiken numeriskt beräknar funktioner I allmänhet kan inte ens elementära funktioner

Läs mer

Newtons metod och arsenik på lekplatser

Newtons metod och arsenik på lekplatser Newtons metod och arsenik på lekplatser Karin Kraft och Stig Larsson Beräkningsmatematik Chalmers tekniska högskola 1 november 2004 Introduktion Denna övning ingår i Lärardag på Chalmers för kemilärare

Läs mer

Denna föreläsning. DN1212 Numeriska metoder och grundläggande programmering FN Varför numeriska metoder? Vad är numeriska metoder?

Denna föreläsning. DN1212 Numeriska metoder och grundläggande programmering FN Varför numeriska metoder? Vad är numeriska metoder? Denna föreläsning DN1212 Numeriska metoder och grundläggande programmering FN1 08-11-18 Hedvig Kjellström hedvig@csc.kth.se Om numeriska metoder Om programmering (Staffan Romberger) Information om kursen

Läs mer

Beräkningsvetenskap föreläsning 2

Beräkningsvetenskap föreläsning 2 Beräkningsvetenskap föreläsning 2 19/01 2010 - Per Wahlund if-satser if x > 0 y = 2 + log(x); else y = -1 If-satsen skall alltid ha ett villkor, samt en då det som skall hända är skrivet. Mellan dessa

Läs mer

LAB 4. ORDINÄRA DIFFERENTIALEKVATIONER. 1 Inledning. 2 Eulers metod och Runge-Kuttas metod

LAB 4. ORDINÄRA DIFFERENTIALEKVATIONER. 1 Inledning. 2 Eulers metod och Runge-Kuttas metod TANA21+22/ 30 september 2016 LAB 4. ORDINÄRA DIFFERENTIALEKVATIONER 1 Inledning Vi skall studera begynnelsevärdesproblem, både med avseende på stabilitet och noggrannhetens beroende av steglängden. Vi

Läs mer

MMA132: Laboration 1 & 2 Introduktion till MATLAB

MMA132: Laboration 1 & 2 Introduktion till MATLAB MMA132: Laboration 1 & 2 Introduktion till MATLAB De flesta numeriska metoder låter oss få en tillräckligt bra lösning på ett matematiskt problem genom att byta ut komplexa matematiska operationer med

Läs mer

5.7. Ortogonaliseringsmetoder

5.7. Ortogonaliseringsmetoder 5.7. Ortogonaliseringsmetoder Om man har problem med systemets kondition (vilket ofta är fallet), lönar det sig att undvika normalekvationerna vid lösning av minsta kvadratproblemet. En härtill lämplig

Läs mer

Moment 5.5 Övningsuppgifter I 5.60a. 5.60b, 5.60.c, 61

Moment 5.5 Övningsuppgifter I 5.60a. 5.60b, 5.60.c, 61 Moment 5.5 Övningsuppgifter I 5.0a. 5.0b, 5.0.c, 1 Linjära ekvationssystem Vi har redan tidigare i kursen stött på linjära ekvationssystem. Nu är stunden kommen till en mera systematisk genomgång. Kvadratiska

Läs mer

Numeriska metoder för ODE: Teori

Numeriska metoder för ODE: Teori Numeriska metoder för ODE: Teori Målen för föreläsningen Stabilitet vid diskretisering av ODE med numeriska metoder Definition: Den analytiska lösningen till en ODE är begränsad. En numerisk metod för

Läs mer

Subtraktion. Räkneregler

Subtraktion. Räkneregler Matriser En matris är en rektangulär tabell av tal, 1 3 17 4 3 2 14 4 0 6 100 2 Om matrisen har m rader och n kolumner så säger vi att matrisen har storlek m n Index Vi indexerar elementen i matrisen genom

Läs mer

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA DAG: Torsdag 28 aug 2008 TID:

Institutionen för Matematik TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F1, TMA DAG: Torsdag 28 aug 2008 TID: Institutionen för Matematik Göteborg TENTAMEN I LINJÄR ALGEBRA OCH NUMERISK ANALYS F, TMA67 8-8-8 DAG: Torsdag 8 aug 8 TID: 8.3 -.3 SAL: M Ansvarig: Ivar Gustafsson, tel: 77 94 Förfrågningar: Ivar Gustafsson

Läs mer

x f (x) dx 1/8. Kan likhet gälla i sistnämnda relation. (Torgny Lindvall.) f är en kontinuerlig funktion på 1 x sådan att lim a

x f (x) dx 1/8. Kan likhet gälla i sistnämnda relation. (Torgny Lindvall.) f är en kontinuerlig funktion på 1 x sådan att lim a Elementa Årgång 50, 967 Årgång 50, 967 Första häftet 2603. Låt ξ, ξ 2,..., ξ n vara stokastiska variabler med väntevärden E[ξ i ], i =, 2,..., n. Visa att E[max(ξ, ξ 2,..., ξ n )] max(e[ξ ], E[ξ 2 ],...,

Läs mer

Något om Taylors formel och Mathematica

Något om Taylors formel och Mathematica HH/ITE/BN Taylors formel och Mathematica Något om Taylors formel och Mathematica Bertil Nilsson 207-0-0 I am the best Ett av Brooks många ödmjuka inlägg i den infekterade striden som under början av 700

Läs mer

SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A (1) Vid lösningen av ekvationssystemet x 1 3x 2 +3x 3 4x 4 = 1, x 2 +x 3 x 4 = 0, 4x 1 +x 2 x 3 2x 4 = 5, kommer man genom Gausselimination

Läs mer

Ordinära differentialekvationer,

Ordinära differentialekvationer, Sammanfattning metoder Ordinära differentialekvationer, del 2 Beräkningsvetenskap II n Eulers metod (Euler framåt, explicit Euler): y i+1 = y i + h i f (t i, y i ) n Euler bakåt (implicit Euler): y i+1

Läs mer

Frågorna 1 till 6 ska svaras med ett kryss för varje korrekt påstående. Varje uppgift ger 1 poäng. Använd bifogat formulär för dessa 6 frågor.

Frågorna 1 till 6 ska svaras med ett kryss för varje korrekt påstående. Varje uppgift ger 1 poäng. Använd bifogat formulär för dessa 6 frågor. TM-Matematik Mikael Forsberg 74-4 Matematik med datalogi, mfl. Linjär algebra ma4a 6 Skrivtid: 9:-4:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift på

Läs mer

MMA132: Laboration 1 Introduktion till MATLAB

MMA132: Laboration 1 Introduktion till MATLAB MMA132: Laboration 1 Introduktion till MATLAB De flesta numeriska metoder låter oss få en tillräckligt bra lösning på ett matematiskt problem genom att byta ut komplexa matematiska operationer med kombinationer

Läs mer

DN1212+DN1214+DN1215+DN1240+DN1241+DN1243 mfl Tentamen i Grundkurs i numeriska metoder Del 2 (av 2) Lördag , kl 9-12

DN1212+DN1214+DN1215+DN1240+DN1241+DN1243 mfl Tentamen i Grundkurs i numeriska metoder Del 2 (av 2) Lördag , kl 9-12 DN11+DN114+DN115+DN140+DN141+DN143 mfl Tentamen i Grundkurs i numeriska metoder Del (av ) Lördag 01-0-04, kl 9-1 Skrivtid 3 tim. Inga hjälpmedel. Rättas endast om del 1 är godkänd. Betygsgräns (inkl bonuspoäng):

Läs mer

TAIU07 Matematiska beräkningar med Matlab

TAIU07 Matematiska beräkningar med Matlab TAIU07 Matematiska beräkningar med Matlab Laboration 3. Linjär algebra Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion 2 En Komet Kometer rör sig enligt ellipsformade

Läs mer

Föreläsningsanteckningar Linjär Algebra II Lärarlyftet

Föreläsningsanteckningar Linjär Algebra II Lärarlyftet Föreläsningsanteckningar Linjär Algebra II Lärarlyftet Per Alexandersson Föreläsning I Timme I: Repetition av matriser, linjära ekvationssystem Linjärt ekvationssystem: x + y + z 3w = 3 2x + y + z 4w =

Läs mer

TANA17 Matematiska beräkningar med Matlab

TANA17 Matematiska beräkningar med Matlab TANA17 Matematiska beräkningar med Matlab Laboration 1. Linjär Algebra och Avbildningar Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion I denna övning skall

Läs mer

2 Funktioner från R n till R m, linjära, inversa och implicita funktioner

2 Funktioner från R n till R m, linjära, inversa och implicita funktioner Nr, feb -5, Amelia Funktioner från R n till R m, linjära, inversa och implicita funktioner.1 Funktioner från R n till R m Vi har i tidigare föreläsningar sett olika tolkningar av funktioner från R n till

Läs mer

Tentamen TMA946/MAN280 tillämpad optimeringslära

Tentamen TMA946/MAN280 tillämpad optimeringslära Tentamen TMA946/MAN80 tillämpad optimeringslära 01081 1. Uppgift: min z 3x 1 + x Då x 1 + x 6 x 1 + x x 1, x 0 Skriv på standardform m.h.aṡlackvariabler min z 3x 1 + x Då x 1 + x s 1 6 x 1 x + s x 1, x,

Läs mer

Mer om analytisk geometri

Mer om analytisk geometri 1 Onsdag v 5 Mer om analytisk geometri Determinanter: Då man har en -matris kan man till den associera ett tal determinanten av som också skrivs Determinanter kommer att repeteras och studeras närmare

Läs mer