Mätosäkerhet och kundlaster

Relevanta dokument
Kurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 05 June 2017, 14:00-18:00. English Version

Grundläggande Lastanalys

Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 17 August 2015, 8:00-12:00. English Version

Säkerhetsfaktorer på en höft, genom magi eller på ingenjörsmässig grund? Konstruktörens problem

Mer om Rainflowcykler

7.5 Experiment with a single factor having more than two levels

Kurskod: TAMS11 Provkod: TENB 28 August 2014, 08:00-12:00. English Version

This exam consists of four problems. The maximum sum of points is 20. The marks 3, 4 and 5 require a minimum

Statistical Quality Control Statistisk kvalitetsstyrning. 7,5 högskolepoäng. Ladok code: 41T05A, Name: Personal number:

Fatigue Properties in Additive manufactured Titanium & Inconell

Chapter 2: Random Variables

Kurskod: TAMS11 Provkod: TENB 12 January 2015, 08:00-12:00. English Version

12.6 Heat equation, Wave equation

4.3 Stokastiska variabler (slumpmässiga variabler) 4.4 Väntevärde och varians till stokastiska variabler

Grafisk teknik IMCDP IMCDP IMCDP. IMCDP(filter) Sasan Gooran (HT 2006) Assumptions:

English Version. 1 x 4x 3 dx = 0.8. = P (N(0, 1) < 3.47) = =

Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 15 August 2016, 8:00-12:00. English Version

English Version. + 1 n 2. n 1

Översikt. Data under detektionsgränsen. Terminologi. Terminologi

Grafisk teknik IMCDP. Sasan Gooran (HT 2006) Assumptions:

Normalfördelning. Modeller Vi har alla stött på modeller i olika sammanhang. Ex:

Module 1: Functions, Limits, Continuity

Grafisk teknik. Sasan Gooran (HT 2006)

2. Förklara vad en egenfrekvens är. English: Explain what en eigenfrequency is.

Kurskod: TAMS11 Provkod: TENB 07 April 2015, 14:00-18:00. English Version

Kurskod: TAMS24 / Provkod: TEN (8:00-12:00) English Version

Mälardalens Högskola. Formelsamling. Statistik, grundkurs

Health café. Self help groups. Learning café. Focus on support to people with chronic diseases and their families

Module 6: Integrals and applications

S0005M, Föreläsning 2

S0005M. Stokastiska variabler. Notes. Notes. Notes. Stokastisk variabel (slumpvariabel) (eng: random variable) Mykola Shykula

Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 31 May 2016, 8:00-12:00. English Version

Kurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 08 June 2015, 14:00-18:00. English Version

Measuring child participation in immunization registries: two national surveys, 2001

A study of the performance

8.1 General factorial experiments

Examensarbete Introduk)on - Slutsatser Anne Håkansson annehak@kth.se Studierektor Examensarbeten ICT-skolan, KTH

Har Du frågor angående uppgifterna: kontakta någon av lärarna, vid lektionerna, via e-post eller på deras rum:

Beijer Electronics AB 2000, MA00336A,

Kurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 20 August 2014, English Version

Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik

Measuring void content with GPR Current test with PaveScan and a comparison with traditional GPR systems. Martin Wiström, Ramboll RST

Gradientbaserad Optimering,

Viktig information för transmittrar med option /A1 Gold-Plated Diaphragm

Isolda Purchase - EDI

Styrteknik: Binära tal, talsystem och koder D3:1

CHANGE WITH THE BRAIN IN MIND. Frukostseminarium 11 oktober 2018

Lösningar till SPSS-övning: Analytisk statistik

Rastercell. Digital Rastrering. AM & FM Raster. Rastercell. AM & FM Raster. Sasan Gooran (VT 2007) Rastrering. Rastercell. Konventionellt, AM

English Version. Number of sold cakes Number of days

A QUEST FOR MISSING PULSARS

Methods to increase work-related activities within the curricula. S Nyberg and Pr U Edlund KTH SoTL 2017

Klicka här för att ändra format

F ξ (x) = f(y, x)dydx = 1. We say that a random variable ξ has a distribution F (x), if. F (x) =

Examples on Analog Transmission

Eternal Employment Financial Feasibility Study

Vägytans tillstånd, historik och framtid. Johan Lang

Laser Diffraction System Verification

Statistik för bioteknik SF1911 CBIOT3 Föreläsning 9: Modellbaserad data-analys Timo Koski

Examensarbete i matematik på grundnivå med inriktning mot optimeringslära och systemteori

Undergraduate research:

ST-fredag i Biostatistik & Epidemiologi När ska jag använda vilket test?

The Municipality of Ystad

Bilaga 5 till rapport 1 (5)

Samhällsvetenskaplig metod, 7,5 hp

Immigration Studying. Studying - University. Stating that you want to enroll. Stating that you want to apply for a course.

Adding active and blended learning to an introductory mechanics course

Mönster. Ulf Cederling Växjö University Slide 1

Jesper Rydén. Matematiska institutionen, Uppsala universitet Tillämpad statistik för STS vt 2014

Isometries of the plane

The reception Unit Adjunkten - for newly arrived pupils

Immigration Studera. Studera - Universitet. Ange att du vill anmäla dig. Ange att du vill anmäla dig till en kurs. Kurs.

Immigration Studera. Studera - Universitet. Ange att du vill anmäla dig. Ange att du vill anmäla dig till en kurs. Kurs. Typ av kurs.

Kurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 16 January 2015, 8:00-12:00. English Version

EXPERT SURVEY OF THE NEWS MEDIA

DVA336 (Parallella system, H15, Västerås, 24053)

Kundfokus Kunden och kundens behov är centrala i alla våra projekt

Image quality Technical/physical aspects

CUSTOMER READERSHIP HARRODS MAGAZINE CUSTOMER OVERVIEW. 63% of Harrods Magazine readers are mostly interested in reading about beauty

Photometric Diagnosis of Road Lighting

Hur fattar samhället beslut när forskarna är oeniga?

GPS GPS. Classical navigation. A. Einstein. Global Positioning System Started in 1978 Operational in ETI Föreläsning 1

Kroppstemperaturen hos människa anses i regel vara 37,0 C/ 98,6 F. För att beräkna och rita grafer har programmet Minitab använts.

Read Texterna består av enkla dialoger mellan två personer A och B. Pedagogen bör presentera texten så att uttalet finns med under bearbetningen.

2.1 Installation of driver using Internet Installation of driver from disk... 3

Changes in value systems in Sweden and USA between 1996 and 2006

CELL PLANNING. 1 Definitions

2. Change log Datamodell/XML

English Version. 1 f(x) = if 0 x θ; 0 otherwise, ) = V (X) = E(X2 ) (E(X)) 2 =

Klyvklingor / Ripping Blades.

Datorövning 5. Statistisk teori med tillämpningar. Lära sig beräkna konfidensintervall och utföra hypotestest för:

Ökat personligt engagemang En studie om coachande förhållningssätt

PFC and EMI filtering

Språkutvecklande arbetssätt i en ämnesövergripande värld.

En scatterplot gjordes, och linjär regression utfördes därefter med följande hypoteser:

Preschool Kindergarten

Custom-made software solutions for increased transport quality and creation of cargo specific lashing protocols.

Provlektion Just Stuff B Textbook Just Stuff B Workbook

Matthew Thurley Industriell bildanalys (E0005E) Response rate = 65 %

Metod och teori. Statistik för naturvetare Umeå universitet

Transkript:

Kurs i Lastanalys för Utmattning SP Bygg och Mekanik Pär Johannesson Par.Johannesson@sp.se PJ/2011-09-29 1 Uncertainty of Customer Loads Two scales: Small scale: individual customers (or measurement). Two measurements from the same customer: Uncertainty in the calculated damage value? How long to measure? Large scale: populations of customers (markets/applications). What is the scatter in the population? Uncertainty in estimation? These problems need to be treated separately, using different methods. PJ/2011-09-29 2 1

Uncertainty of Customer Loads Two scales: Small scale: individual customers (or measurement). Two measurements from the same customer: Uncertainty in the calculated damage value? How long to measure? Large scale: populations of customers (markets/applications). What is the scatter in the population? Uncertainty in estimation? These problems need to be treated separately, using different methods. PJ/2011-09-29 3 Example: Uncertainty in Measured Stress Measured stress for 3 minutes rough conditions representing test track Questions: Uncertainty in calculated damage? How long to measure? PJ/2011-09-29 4 2

Example: Scatter in Test Track Loads Measurements of the 15 laps on the test track (3 drivers, 5 laps each): Lap 1 Lap 2 Lap 3 Lap 4 Lap5 Driver 1 Driver 2 Driver 3 PJ/2011-09-29 5 Example: Scatter in Test Track Loads Severity of the 15 laps on the test track (3 drivers, 5 laps each): The severity is the equivalent amplitude (of N 0 =10 6 cycles) giving the same damage as the measurement (repeated K=1000 times). A eq K = d N0 1/ β Questions: How large is the scatter between laps? Any difference between drivers? PJ/2011-09-29 6 3

Coefficient of Variation Relative Variation The severity is a positive quantity, therefore the relative variation is natural to work with, and can be interpreted as percentage of variation. The mean, E[x i ] and variance, Var[x i ] can be estimated by standards methods, i.e. x = N i= 1 x i and 2 1 s = n 1 The coefficient of variation is s 1 s R( x i ) = and R( x) = x N x for a 1-lap-measurement and for the mean of N=5 laps. The x-values can be the damage, x i =d i, or the equivalent amplitude, x i =A eq,i. N i= 1 ( x x) i 2 PJ/2011-09-29 7 Example: Uncertainty in Equivalent Amplitude The equivalent load of 5 laps for driver 1: 2.69 2.73 2.67 2.74 2.80 A eq K = d N0 1/ β Mean, x i E[x i ] = 2.73 Standard deviation, x i s[x i ] = 0.052 Coefficient of variation, x i R[x i ] = s[x i ] / E[x i ] = 0.052/2.73 = 0.019 Coefficient of variation, x R[x] = 0.019/ 5 = 0.0085 Conclusion: The uncertainty in the equivalent amplitude is 1.9% for 1 lap and 0.85% for the average of 5 laps. K = 1000 N 0 = 10 6 β = 6 How many laps to measure if 1% uncertainty is required? R( x) 1% N 2 0.019 N 0.01 = 3.6 Conclusion: 4 laps! PJ/2011-09-29 8 4

Övning: Osäkerhet i ekvivalent amplitud Förare 3 har kört 5 varv på provbanan. Man har mätt lasten och beräknat ekvivalenta amplituden för varje varv: 2.93 3.08 2.99 3.14 3.06 Beräkna variationskoefficienten för ekvivalenta amplituden. Redovisa också medelvärde och standardavvikelse. Hur många varv krävs för att få osäkerhet på mindre än 1%? K = 1000 N 0 = 10 6 β = 6 PJ/2011-09-29 9 Övning: Osäkerhet i ekvivalent amplitud Lösning med Matlab >> Aeq = [2.93 3.08 2.99 3.14 3.06]; >> mean(aeq) 3.04 >> Aeq-mean(Aeq) -0.11 0.04-0.05 0.10 0.02 >>(Aeq-mean(Aeq)).^2 0.0121 0.0016 0.0025 0.0100 0.0004 >> sum((aeq-mean(aeq)).^2) 0.0266 >> sum((aeq-mean(aeq)).^2)/(5-1) 0.0066 >> sqrt(sum((aeq-mean(aeq)).^2)/(5-1)) 0.0815 >> std(aeq) 0.0815 >> R = std(aeq)./mean(aeq) 0.0268 >> std(aeq)./mean(aeq)/sqrt(5) 0.0120 >> (R/0.01)^2 7.19 Resultat: Variationskoefficienten för ett varv är 2.7%, och för 5 varv blir den 1.2%. Det krävs 8 varv för att nå under 1% osäkerhet. PJ/2011-09-29 10 5

Example: Uncertainty in measured stress Measured stress for 3 minutes rough conditions representing test track Questions: Uncertainty in calculated damage? How long to measure? PJ/2011-09-29 11 Splitting into subloads Measured stress split into 9 subloads Observations: Same conditions, but Different calculated damage Questions: Uncertainty in calculated damage? How long to measure? PJ/2011-09-29 12 6

Coefficient of Variation Relative Variation Splitting the Measured Signal into Parts The values of E[d i ] and Var[d i ] can be estimated by standards methods, i.e. giving PJ/2011-09-29 13 Example: Uncertainty in damage Measured stress split into 9 subloads. Damage values for β=5 [d i /1e12]: 8.5511 1.8797 5.4977 1.8770 4.5623 0.8441 1.7078 2.4792 1.8824 Mean, d i E[d i ] = 3.25 Standard deviation, d i s[d i ] = 2.48 Coefficient of variation, d i R[d i ] = s[d i ] / E[d i ] = 2.48/3.25 = 0.763 Coefficient of variation, d R[d] =0.763/3 = 0.254 Conclusion: The uncertainty in the calculated damage is 25%! How long to measure if 10% uncertainty is required? PJ/2011-09-29 14 7

Example: Uncertainty in damage How long to measure if 10% uncertainty is required? The load was measured for T 0 =180 s, and the coefficient of variation is R[d T0 ] = 0.254 The variance is inversely proportional to the square-root of the time, T: T0 R ( dt ) = R( d T ) 0 T We want uncertainty less than 10% T0 R( dt ) = 10% R( dt 0 T T 2 ) = 0.10 2 R( dt ) 0.254 0 = 0 = 3 min = 6.45 3 min = 19.4 min 0.10 T 0.10 Conclusion: We need to measure 20 minutes instead of 3 minutes! PJ/2011-09-29 15 Distribution of Severity log-normal Why log-normal distribution? Agrees well with observations. Positive quantity. Mathematically convenient. Damage and eq.amplitude log-normal. In accordance with load-strength model. Percentage of variation. Std[ d] Std[ln d] is approximately the Standard deviation of log-damage: E[ d] ln A ln d ~ N( µ, σ ) eq coefficient of variation. d d ~ N( µ, σ A eq A eq ) Note: Natural logarithm ln (not the logarithm with base 10). The interpretation of the natural logarithm is very practical for engineering applications, where uncertainties are often judged in percentage of variation. PJ/2011-09-29 16 8

Confidence Interval for Severity A 95% confidence interval for ln d: A 95% confidence interval for d: Example: Test Track Loads PJ/2011-09-29 17 Övning: Konfidensintervall för ekvivalent amplitud Förare 3 har kört 5 varv på provbanan. Man har mätt lasten och beräknat ekvivalenta amplituden för varje varv: 2.93 3.08 2.99 3.14 3.06 Beräkna konfidensintervall för ln(a eq ) och A eq. (Använd t ex räknedosa eller Excel.) K = 1000 N 0 = 10 6 β = 6 PJ/2011-09-29 18 9

Comparison of Severity A 95% confidence interval for difference ln d 2 - ln d 1 : Example: Test Track Loads PJ/2011-09-29 19 Comparing Severity of many Customers Analysis of Variance (ANOVA) model: y ij = ln(a eq,ij ) y ij = µ + x i + e ij, i = driver, j = lap Severity Mean between = + severity drivers + scatter within drivers scatter µ+x 3 =ln(3.04) µ+x 2 =ln(2.94) µ=ln(2.9) µ+x 1 =ln(2.73) 20 PJ/2011-09-29 10

Quantifying the Scatter Analysis of Variance (ANOVA) model: y ij = ln(a eq,ij ) y ij = µ + x i + e ij, i = driver, j = lap Severity Mean between = + severity drivers + scatter within drivers scatter Result of ANOVA p-value <0.00005 Standard deviation between/within driver σ x (kn) σ e (kn) Estimate 0.054 0.025 Confidence interval (0.026 ; 0.35) (0.019 ; 0.037) µ+x 3 µ+x 2 µ µ+x 1 PJ/2011-09-29 21 Results on the Scatter in Severity There is a between drivers effect (with 99.99% certainty). The between and within drivers scatter is of the same order. How long do we need to measure to know the severity accurately for one single driver? Relative error 8% 4% 2% 1% Number of laps 1 3 10 38 to know the severity accurately for the population of drivers? Relative error 8% 4% 2% 1% Number of drivers 3 11 41 159 Half the relative error with four times as many measurements! How much do we gain by letting the drivers go many laps? Three drivers, 1 lap each: 8.1%, 5 laps each: 7.1%, laps each: 6.9% Four drivers, 1 lap each: 6.8% PJ/2011-09-29 22 11

Example: Measured Service Loads Vertical wheel force measured on the front left wheel of a truck. Three road types: City, Highway and Country. 1. City (21 km) 2. Highway (12 km) 3. Country (14 km) PJ/2011-09-29 23 Example: Measured Service Loads Split loads into N=5 parts (subloads), damage with β=5. d d2 = 0.0037, s2 = 0.0045 1 = 0.0108, s1 = 0.0076 d3 = 0.0030, s3 = 0.0017 ~ ~ ~ ρ = R( d ) = 0.314 ρ2 = R( d2) = 0.537 ρ3 = R( d 3) = 0. 250 1 1 Coefficient of variation for damage PJ/2011-09-29 24 12

How long do we need to measure? Uncertainty in measured damage!!! City (21 km): 31%, Highway (12 km): 54%, Country (7 km): 25% Uncertainty in load (equivalent amplitude, A eq )!!! City (21 km): 6%, Highway (12 km): 11%, Country (7 km): 5% What is small uncertainty? What is large uncertainty? BIKUPA What is acceptable uncertainty? PJ/2009-02-05 25 What is acceptable uncertainty? Depend on the application!!! Customer distribution 15% Fatigue test Compare to the uncertainty in the test setup. Measured 10% load 2% Rule of thumb: Less than 20% of the load variation for the population of interest. Typically: 2-4% load variation acceptable. Typically: 1% load variation acceptable. PJ/2009-02-05 26 13

Uncertainty of Customer Loads Two scales: Small scale: individual customers (or measurement). Two measurements from the same customer: Uncertainty in the calculated damage value? How long to measure? Large scale: populations of customers (markets/applications). What is the scatter in the population? Uncertainty in estimation? These problems need to be treated separately, using different methods. PJ/2011-09-29 27 Customer Load Distribution Investigate populations of customers (markets/applications). What is the scatter in the population? Uncertainty in estimation? Measuring the customer distribution Three approaches Sample customers Customer usage + sample road types Vehicle independent load description + customer usage + vehicle model Customer usage Load Environment Customer load distribution Vehicle model PJ/2011-09-29 28 14

Random sampling of customer loads 36 customers Example: 36 drivers were instructed to drive on specific roads which covered several types of roads, and the equivalent amplitude for the vertical load direction was evaluated. A eq K = d N0 1/ β PJ/2011-09-29 29 Random sampling of customer loads 36 customers Assumptions: Random sampling of customers. Log-normal distribution: ln ~ N( µ, σ) A eq PJ/2011-09-29 30 15

Estimation of customer distribution 36 customers Mean: 1 µ = ( x1 + x2 + K+ x n ) = 3. 31 with n n 1 = n 1 2 2 Variance: s ( µ ) = 0. 09 i= 1 x i = ln x i A eq, i Median customer: ( µ ) = exp( 3.31) 27.5 [ kn] θ = exp = PJ/2011-09-29 31 Estimation of a severe customer Define a severe customer as a high load quantile, A q, with probability 1-q to find a more severe customer: lna q µ + z σ = q The 95%-customer is estimated at: ln A 95% A 95% µ + z = = 3.31+ 1.64 0.09 = 3.47 = exp( µ + z s s) = exp(3.47) = 32.0 q q [ kn] PJ/2011-09-29 32 16

Uncertainty in estimated customer distribution Bootstrap demonstration: 100 simulated samples of 36 customers. PJ/2011-09-29 33 Uncertainty in estimated median customer 95% Confidence interval for the mean * s * I µ = µ 2 ; µ + 2 n s n = [ 3.28;3.34] 95% Confidence interval for the median of the A eq * s * I θ = exp µ 2 ; exp µ 2 n s = n [ 26.6; 28.3] ( units: kn) PJ/2011-09-29 34 17

Uncertainty in an estimated severe customer The variance for lna * 95% is approximatively Var * [ ln A ] q 2 1 z σ + n 2 2 q 2 0.09 1 36 1.64 ( n 1) 2( 36 1) A 95% confidence interval for the 95%-customer is + 2 0.000574 I A 95% * * [ ( ln A 2s / n) ;exp ( ln A + 2s / )] = exp 95% 95% 95% 95% n = [ exp( 3.42) ;exp( 3.51) ] = [ 30.5;33.6] ( units :kn) PJ/2011-09-29 35 Estimation of customer distribution Summary Example: A customer survey where 36 drivers were instructed to drive on specific roads which covered several types of roads, and the equivalent amplitude for the vertical load direction was evaluated. PJ/2011-09-29 36 18

Customer usage and load environment Road classes Different types of roads, e.g. city, highway, country. Customer usage How much does the customers drive in the different road classes? Customer load distribution Goal: Characterize the load distribution by its mean and variance. PJ/2011-09-29 37 Example: Customer Usage Distribution Vertical wheel force measured on the front left wheel of a truck. Three road types: City, Highway and Country. A typical customer load is often defined by combining measurements from different road types. 1. City (21 km) µ 1 ~ d 1 = = 45% 0.00261 2. Highway (12 km) µ 2 ~ d 2 = = 30% 0.00164 3. Country µ 3 = 25% (14 km) ~ d = 0. 00112 3 PJ/2011-09-29 38 19

User Variation & Load Environment Uncertainty Uncertainties: Variation in customer usage Measurement uncertainty in damage Road classes Different types of roads, e.g. city, highway, country. The mean and standard deviation can be computed as PJ/2011-09-29 39 Customer usage and load environment Road classes Different types of roads, e.g. city, highway, country. Customer usage How much does the customers drive in the different road classes? Customer usage µ d 7.05 σ = 0.18 = life dlife + uncertainties µ d 7.01 σ = 0.34 = life dlife Customer load distribution Goal: Characterize the load distribution by its mean and variance. lnd life ~ N ( µ, σ ) d life d life PJ/2011-09-29 40 20

Vehicle independent load descriptions Customer usage How much does the customers drive on different types of roads? Vehicle independent load description Describe roads, climate, traffic intensity, legislation, etc. Vehicle model Mechanical model of dynamic load response of the vehicle. Customer load distribution Goal: Characterize the load environment independent of the vehicle. PJ/2011-09-29 41 Example: Lateral loads Curves Modelling of lateral loads induced by curves (Karlsson, 2007) PJ/2011-09-29 42 21

Example: Lateral loads Curves Modelling of lateral loads induced by curves (Karlsson, 2007) PJ/2011-09-29 43 Example: Synthetic Road with Pot Holes Simulated road profile with added pot holes (Bogsjö, 2007). A synthetic road profile: Z(x) = Z (x) + Z 0 (x) : standard Gaussian road profile Z i 1 ( x ) : extra rough parts added to Z 0 (x) 0 i i Z ( x ) 1 PJ/2011-09-29 44 22

Example: Synthetic Road with Pot Holes Response to simulated road profile with added pot holes. Fatigue damage filter = quarter-vehicle travelling on road profile The simulated force acting on the sprung mass of the quarter-vehicle. Schematic description of the quarter vehicle PJ/2011-09-29 45 Evaluation of Customer Loads (Chapter 7) Purpose: Describe and estimation of the customer load distribution. Three approaches: 1. Random Sampling of Customer (Sec. 7.4) 2. Customer Usage and Load Environment (Sec. 7.5) 3. Vehicle Independent Load Description (Sec. 7.6) Customer usage Load Environment Vehicle model Customer load distribution PJ/2011-09-29 46 23

Uncertainty of Customer Loads Two scales: Small scale: individual customers (or measurement). Two measurements from the same customer: Uncertainty in the calculated damage value? How long to measure? Large scale: populations of customers (markets/applications). What is the scatter in the population? Uncertainty in estimation? These problems need to be treated separately, using different methods. PJ/2011-09-29 47 24