Störningar i elektriska mätsystem Mätteknik ulrik.soderstrom@umu.se ulrik.soderstrom@tfe.umu.se 1
Signal-brusförhållande SNR eller S/N (signal-to-noise ratio) Signal-brusförhållande SNR db = 10 log 10 P signal P noise = 20 log 10 A signal A noise P är medeleffekt A är amplitud (rms) 2
Introduktion Mätsignalen överlagrad med oönskade komponenter Brus och störningar Åtgärder för att förbättra mätsignalens SNR 1. Eliminera störkällan 2. Hindra störsignalens väg in i mätsystemet 3. Signal- och databehandling (filter, matematiska metoder: medelvärdesbilda, frekvensanalys, autokorrelation, korskorrelation, digitala filter) förbättrar SNR Mätsystemet och dess elektromagnetiska (EM) kompatibilitet (EMC) EMC: systemets förmåga att fungera i EM-omgivning Immunitetskrav: måste tåla en lägsta EM-strålningsnivå Emissionskrav: får inte stråla/störa andra apparater Målet för mätsystem: störningsimmunt 3
Störningar i mätsystem uppstår då... 1....det finns en störkälla 2....mätsystemet är mottagligt för störningsfrekvensen 3....det finns en koppling mellan störkällan och mätsystemet tre sätt att skydda mätsystemet Eliminera störkällan (önskvärt men ofta omöjligt!) Göra mätsystemet oemottagligt för störningen (i begränsad omfattning) Bryta kopplingen 4
Störningar kan kopplas... Kapacitivt Induktivt Via gemensamma resistanser Via elektromagnetisk strålning Via jordslingor internt genererade störningar Uppkomst och bekämpning The four types of coupling path involved in electromagnetic interference (EMI) (From Wikipedia) 5
Kapacitiv störningskoppling: två ledare Kapacitans mellan två ledare Två ledare Elektrisk ledare med diameter d 1 2 Kapacitans C 12 = πε 0 ln 2D d D Τ F m Exempel: D = 10 cm d = 1 mm ger C 12 = 5 pf/m Koaxialkabel (centrumledare omgiven av ett metallhölje) Elektrisk ledare med radien r Metallcylinder med radien R Kapacitans C cyl = 2πε 0ε r ln R r Τ F m ε 0 dielektricitetskonstanten i vakuum = 8.85 10 12 F/m ε r relativa dielektricitetskonstanten för materialet mellan ledare och cylinder Exempel: BNC-kabel, RG-58 R = 0.1" r = 0.016 " ε r = 3.3 ger C cyl = 100 pf/m tum 6
Kapacitiv störningskoppling: överhörning Vad händer med två kapacitivt kopplade ledare? Överhörning! 1. ledare med U 1 = U 0 cos ωt 2. ledare med impedans Z till jord C 12 uppstår U 1 orsakar en störspänning U stör ledare 1 2 ekvivalenskrets C 12 C 12 U 1 ~ Z U stör U 1 ~ Z U stör U stör = Z Z + Z C12 U 1 7
Kapacitiv störningskoppling: Bekämpning Bekämpning av kapacitivt kopplade störningar En metallskärm ( kopparstrumpan runt ledaren i en koaxialkabel). Skärmen i sig har ingen skyddande effekt. Måste jordas! Behöver en bra ledning till jord, dvs Z skärm 0 störspänningen från ledare 1 kortsluts till jord Kopplingen bruten 1 2 ekvivalenskrets C 12 C 12 C cyl U 1 ~ Z Z U 1 ~ Z skärm Z skärm 8
Koaxialkabel RG-58, BNC 9
Induktiv störningskoppling: ömsesidig induktans Serieinduktans i ledare Alla ledare kan kretsekvivalent representeras av en en serieinduktans (L) Koaxialkabel har en serieinduktans på 0.25 μh/m Transformator: primärspole (induktans L 1 ) och sekundärspole (L 2 ) ömsesidig induktans M = k L 1 L 2 där kopplingsfaktorn (k) bestäms av geometri och medium. k är mått på hur mycket av magnetiska flödet kopplas från L 1 til L 2. M L 1 L 2 10
störledare signalledare Induktiv störningskoppling: överhörning Två ledare bredvid varandra bildar en transformator med ömsesidig induktans Överhörning! En spänning (emk) U ind induceras i sekundärspolen (signalledaren) och den är proportionell mot derivatan av strömmen i primärspolen (störledaren) 1 2 L 1 M 1 L 2 U ind U ind = M 1 di 1 dt i 1 i 1 Om i 1 = i 1 sin ωt U ind = M 1 ωi 1 cos ωt 11
Induktiv störningskoppling: i mätsystem Induktiv koppling i ett mätsystem Ledare representeras av sin kretsekvivalenta serieinduktans Störspänning (U ind ) induceras av störledare och adderas till U in ekvivalenskrets i 1 störledare M 1 givare U giv i ind,1 + - U ind U in Störledaren inducerar en ström (i ind,1 ) i motsatt riktning i mätkretsen. (Det är inte den totala strömmen utan bara den som induceras av i 1.) i 1 i ind,1 U giv störspänning U in = U giv + U ind 12
Induktiv störningskoppling: bekämpning 1 Bekämpning av induktivt kopplade störningar. Hur? Minska i 1, ω, M 1 (öka avståndet mellan ledarna) störspänningen minskar. Men allt detta kan vara praktiskt svårt! Placera en skärmledare mellan störledaren och mätslingan! Störledare (1) inducerar en ström i skärmledaren och en ström i mätslingan (båda i motsatt riktning) Skärmledaren (2) inducerar en ström i mätslingan (i motsatt riktning) Totala inducerade strömmen (och spänningen) i mätslingan reduceras! ekvivalenskrets 1 2 givare i 1 U giv i 2 + - störledare skärmledare M 12 M 2 U ind,2 i 2 M 1 i ind,2 U ind,1 U in i 1 i ind,1 U giv 13
Induktiv störningskoppling: bekämpning 2 Den totala inducerade störspänningen kan släckas ut helt! Låt skärmledaren omsluta signalledaren (mätslingan) = koaxialkabel Induktivt och kapacitivt kopplade störningar bekämpas på samma sätt Men här måste skärmkabeln jordas i båda ändarna sluten slinga så att en ström kan gå i den. Nackdel! Problem med jordströmmar kan uppstå! givare U giv 1 2 i 1 i 2 störledare skärmledare + - jorda i båda ändarna! 14
Koppling via gemensamma impedanser I mätsystem: flera signaler i en mångledarkabel med gemensam återledare Störningar kopplas via gemensamma impedanser (gemensam återledare) Skärmad parledare Skärmen = återledare givare U 1 Z 1 U 1 ~ ekvivalenskrets i 1 i 1 + i 2 Z 1 U in,1 givare U 2 Z 2 U 2 ~ Z jord i 2 Z 2 U in,2 Potentialvandring (KVL) i övre slingan U 1 U in,1 Z jord i 1 + i 2 = 0 U in,1 = U 1 Z jord i 1 Z jord i 2 Potentialfall över icke-ideal ledare är förväntat! Störning från givare 2. Överhörning via gemensam impedans 15
Koppling via gemensamma impedanser: Bekämpning Använd separata återledare för varje signalledare Kan använda samma skärm för att skydda mot andra störningar I kretskort: använd jordplan (med impedans = 0) som återledare 16
Strålningskoppling Elektromagnetiska (EM) vågor (radiovågor) Ljusets hastighet (i luft) Vinkelräta (E,B,riktning) E-fält och B-fält detekteras med antenner radio-, TV-kanaler, mobiltelefoni Elektroniska apparater Växelströmsförande strömslingor EM-strålning E-fält (elektriska fältet) B-fält (magnetfält) riktning Elektriska och magnetiska dipolantenner (mätsystemet bildar antenner ): Störspänning pga E- och B-fält U e = E Paralell L U b = A db Vinkelrät dt Komposant parallell med antenn ledare Komposant vinkelrät mot antenn slingans yta Störspänningar som överlagras givarsignalen 17
Strålningskoppling: Bekämpning E-fält Inkapsla signalledaren (eller hela mätsystemet) i ett metallhölje E-fält styrkan = 0 V/m Koaxialkabel OK! Metallisk låda/plastlåda inklädd med med metallfolie eller målad med ledande metallfärg Korta ledningar B-fält (svårare!) Skärm av my-metall (hög magnetisk permeabilitet). Dyrt! Bättre: Minska slingarean genom att tvinna mätkablar (Tvinnad parkabel (TP-kabel) ) slingarean blir 0 varannan ögla får motriktad störspänning och därmed släcks ut. Fältet som slingan själv emitterar släcks också ut 18
Jordning: jordström Skärmen jordad i båda ändarna Principfel om den används som återledare Två jordpunkter har aldrig exakt samma potential potentialskillnaden ger upphov till en jordström! givare U giv U in + U jord ~10 mv Potentialvandring ger U in = U giv + U jord Jordström i kretsen som utgörs av skärmen och jordplanet 19
Jordning: bekämpning av jordströmmar Om U giv stort jordströmmar inget problem! Om U giv är liten Om skärmen används som ledare (koaxialkabel) jorda i en ände. På mottagarsidan, använd differentialförstärkare givare U giv U in Fördel: Inga jordströmmar Nackdel: inget skydd mot induktiv störningskoppling För att slippa både jordströmmen och induktiva störningar använd en skärmad parkabel. Skärmen används endast som skärm och kan jordas i båda ändarna. Kräver differential ended signal 20
Jordning: Skydd mot jordströmmar och induktiv koppling differential ended signal: jordoberoende (spänningen mellan två punkter) U giv U Skärmad parkabel. in Skärmen används endast som skärm givare och kan jordas i båda ändarna. Ex. Aktiva givare (ingen drivspänning), termoelement, fotodiod, piezokristall single ended signal: jordrelaterad (spänningen mellan en punkt och jord) gör om till differential ended givare U giv -1 Ex. Passiva givare, givare med inbyggd förstärkning Jordoberoende signal. Skärmad mot induktiva & kapacitiva störningar. Förstärkt med en faktor 2. Notera: Finns flera sätt att åstadkomma detta 21
Jordning i samma punkt Om avståndet är kort mellan jordpunkter dra jordanslutningarna till samma fysiska punkt Praktiskt svårt! Alla ledningar korta och tjocka = låg resistans (spänningsfall < 1 mv) Jordledarens resistans << skärmens resistans 22
Allmänt: Jordning i samma punkt Om man använder samma jordpunkt ska man jorda parallellt och inte seriellt Enhet 1 Enhet 2 Enhet 3 Parallell jordning Seriell jordning Fungerar vid låga frekvenser jordledningen mindre än 1/20 av våglängden v/f I högfrekventa system används flerpunktsjordning (Korta ledningar är prioritet). 23
CM- och NM-störningar Signalen vi vill mäta är normal mod Störningar kan förekomma både som normal mod och common mod NM ligger i serie med mätsignalen CM ger en offset (undertrycks med instrumentförstärkare) Exempel: Strålningskopplade störningar är både NM och CM Den inducerade spänningen är proportionell mot arean hos signalslingan (ger en NM-störning) respektive jordslingan (ger en CM-störning). Signalslingans area minskas med tvinnad parkabel reducera NMstörningar Instrumentförstärkare reducerar CM-störningar (alt. minska jordslingans area) 24