Tentamen den april 7 i Statistik och sannolikhetslära för BI Uppgift : Låt händelserna A, B, C och D vara händelser i samband med ett försök. a) Anta att P(A)., P(A B)., P(A B).6. Beräkna sannolikheten att exakt en av händelserna A och B inträffar. b) Man vet att P(C) >, P(D) > och P(C D). Är händelserna C och D oberoende? Du måste motivera ditt svar för att få poäng. Uppgift : Femton herrar och några damer träffas på fest. Damerna skakar reserverat hand med varandra, medan de muntra herrarna förutom att skaka hand med varandra entusiastiskt kysser damerna! En observatör(!?) fann att det totalt blev lika många handskakningar som kyssar. Hur många damer var det på festen? Uppgift : Vid ett parti poker delades fem kort ut till varje person från en ordinarie kortlek. Vad är väntevärdet och variansen för antalet kungar som en av deltagarna kan få? Uppgift 4: ξ är en kontinuerlig stokastisk variabel med frekvensfunktionen Ax för < x f(x) B( - x) för < x för övrigt a) För vilka värden på A och B gäller att f(x) är en frekvensfunktion? b) Beräkna F(.). Om du inte har löst a-uppgiften så kan svaret vara ett uttryck i A och B. c) Beräkna F(). Om du inte har löst a-uppgiften så kan svaret vara ett uttryck i A och B. (8 poäng) Uppgift : I ett litet snabbköp finns kassor. Betjäningstiden för en kund kan antas vara exponentialfördelad. Den förväntade betjäningstiden för en kund är, min. a) Vad är sannolikheten att en kund behöver längre tid än den förväntade för att bli betjänad? b) Antag att det finns en kund i varje kassa. Vad är sannolikheten att högst en av kunderna behöver längre tid än den förväntade om betjäningstiderna är oberoende? Uppgift 6: Bredden på en viss typ av innerdörrar kan antas vara normalfördelad med väntevärdet. m och standardavvikelsen. m. Dessa dörrar skall passas in i en viss typ av dörrkarmar, vars bredder är normalfördelade med väntevärdet. m och standardavvikelsen. m. Vad är sannolikheten att en slumpmässigt vald dörr inte passar in i dörrkarmen?
Uppgift 7: Åtgången av betong vid gjutning av grunder i ett småhusområde kan betraktas som en oberoende stokastisk variabel för var och en av de ingående småhusen med väntevärde 4. ton och standardavvikelse. ton. Betongen levereras successivt med lastbilslaster som också kan betraktas som oberoende normalfördelade variabler med väntevärdena ton och standardavvikelserna. ton. Vad är approximativt sannolikheten att lastbilslass räcker till hela området? Uppgift 8: Antag att ξ är normalfördelad. I ett urval på observationer fick man följande observationer:..6 4.. 4.8 a) Beräkna ett 99%-igt konfidensintervall för µ. b) Beräkna ett ensidigt uppåt begränsat 99%-igt konfidensintervall för σ.
Lösningar till tentamen den april 7 i Statistik och sannolikhetslära för BI Uppgift : a) P(A)., P(A B)., P(A B).6. P(enbart A) P(A) P(A B)... Additionssatsen ger P(A B) P(A) + P(B) P(A B) d.v.s..6. + P(B).. Alltså P(B). P(enbart B) P(B) P(A B)...4 P(exakt en av händelserna A och B) P(enbart A) + P(enbart B). +.4. b) Enligt definitionen gäller att om C och D är oberoende så är P(C D) P(C) P(D) Man vet att P(C) >, P(D) > och P(C D). Detta betyder att P(C) P(D) >. Alltså är P(C D) P(C) P(D), d.v.s. C och D är inte oberoende enligt definitionen. Uppgift : herrar och n damer ) varje herre kysser n damer antal kyssar n ) antal handskakningar mellan herrar antal handskakningar mellan damer n Antal kyssar antal handskakningar n + n n 4 n ( n ) + n + (n - n) n - n + n 96 ± n ± n och n OBS! Två svar 4 Uppgift : Hypergeometrisk fördelning med N n p4/ E(X) np 4.846 Var(X) np(-p)( N n N ) 4 48 ( ).7
Uppgift 4: a) För att f(x) skall vara en frekvensfunktion så måste två villkor vara uppfyllda: f(x) och f( t) dt Villkor : f(x) medför att A och B. Villkor : x A x dx + B ( x)dx A x + B x A + B[4 ( )] A B + Alltså gäller att f(x) är en frekvensfunktion när följande villkor är uppfyllda: A B A+B.. x b) F(.) f(x)dx A xdx A.A c) F() f(x)dx A x dx + B ( x)dx. Uppgift : a) ξ betjäningstid för en kund ξ är exponentialfördelad med E(ξ). min där λ λ... P(ξ >. ) P(ξ <. ) ( e ) e.68 b) η antal kunder vars betjäningstid överstiger. min. η är Bin(n, p) Bin (,.68) P(η ).68 (.68) +.68 (.68).694 Uppgift 6: ξ bredden på en dörr ξ N(µ, σ) N(.,.) η bredden på motsvarande dörrkarm η N(µ, σ) N(.,.) Bilda en ny stokastisk variabel ζ η ξ där ζ N(µ, σ) N(..,. +. ) N(.,.6) Om dörren är för stor för dörrkarmen η ξ <. P(ζ < ) P(Z < ) Φ(.8) Φ(.8).7967..6 Uppgift 7: Antal hus
Beteckna mängden cement som går åt till hus i för ξ i : E(ξ i ) 4. ton Var(ξ i ). ton Mängden cement som går åt till hus: η ξ + ξ + + ξ E(η ) 4. ton Var(η ). 7 ton Antal lastbilslass Beteckna mängden cement som kan lastas på lastbil i för ζ i : E(ζ i ) ton Var(ζ i ). ton Mängden cement som transporteras av lastbilslass: η ζ + ζ + + ζ E(η ) ton Var(η ). ton Sannolikheten att lastbilslass räcker till hus: P(η > η ) P(η η > ) Beteckna ν η η E(ν) E(η η ) ton Var(ν) Var(η η ) Var(η ) + Var(η ) 7 + 77 ton P(η η > ) (centrala gränsvärdessatsen) P(Z >.77.84 ( ) ) Φ(.7) 77 Uppgift 8: ξ är N(µ; σ) n x x s x ( x) n n i 6.4 i x 6.4 i i.8 a) n <, ξ är normalfördelad, σ är okänd och uppskattas med hjälp av s använd t-fördelningen med 4 df. df 4 t 4.6 99%-igt konfidensintervall för s x ± t n.8 ± 4.6 ±..9 6. b) 99%-igt uppåt begränsat konfidensintervall för σ: (n ) s ; χ.99 ; ( ).8.97 [ ;.99]