Arbetsblad 3:1. Tolka uttryck. 1 Kajsa är a år gammal. Para ihop varje påstående med rätt uttryck.



Relevanta dokument
Algebra och ekvationer

Facit Arbetsblad. 1 Tal. 8 a) 0,04 0,3 3,2 b) 0,008 0,018 5,034 9 a) 0,05 3,7 2,15 b) 90,4 18,64 21,21

Arbetsblad 5:1 Ekvationer

Övningsblad 1.1 A. Bråkbegreppet. 1 Skugga. 2 Hur stor andel av figuren är skuggad? 3 Ringa in 2 av stjärnorna.

Arbetsblad 1:1. Decimaltal på tallinjen 1 0,8 1,1 0,05. Skriv rätt tal på linjen. 0 0,1 0,2 0,3 0,5 0,6 0,9 1 1,9 2. Grundboken sid 8, 22

REPETITION 3 A. en femma eller en sexa?

,5 10. Skuggat. Svart ,2 4. Randigt. b) 0,4 10. b) 0,3 10. b) 0,08. b) 0, ,7 0, ,17 0,95 0,15 0,2 + 0,7

Algebra - uttryck och ekvationer

en femma eller en sexa?

Övningsblad 5.1. Skriva och beräkna värdet av uttryck. 1 Matilda är m år. Vad betyder det om hennes bror är

Läxa 9 7 b) Dividera 84 cm med π för att få reda på hur lång diametern är. 8 1 mm motsvarar 150 / 30 mil = = 5 mil. Omvandla till millimeter.

Röd kurs. Multiplicera in i parenteser. Mål: Matteord. Exempel. 1 a) 4(x- 5) b) 5(3 + x) 3 Om 3(a + 4) = 36, vad är då 62 2 FUNKTIONER OCH ALGEBRA

4 Dividera höjningen (0,5 %) med räntesatsen från början (1 %). 7 Du kan pröva dig fram till exempel så här: Från Till Procent- Procent enheter

Matematik CD för TB = 5 +

6:1 Likheter och olikheter

+ 1 R 2.. Lös ut a och beräkna sidlängden hos en liksidig triangel med arean 35 cm 2

Addition och subtraktion. Vilka uträkningar visas på tallinjerna nedan? Beräkna med huvudräkning = = = =

Matematik. Ämnesprov, läsår 2013/2014. Delprov B. Årskurs. Elevens namn och klass/grupp

Repetitionsuppgifter 1

Förord. Innehåll. 1 Tal 4. 4 Algebra Bråk och procent Statistik och sannolikhet Tid, hastighet och skala 60.

matematik FACIT Läxbok Koll på Sanoma Utbildning Hanna Almström Pernilla Tengvall

Denna del består av kortsvarsuppgifter som ska lösas utan miniräknare. Korrekt svar ger 1 g-poäng (1/0) eller 1 vgpoäng

Rep 1 NÅGOT EXTRA. Sidan 88. Sidan 85. Sidan 89. Sidan 86. Sidan 87. Sidan 90

8-1 Formler och uttryck. Namn:.

Trepoängsproblem. Kängurutävlingen 2011 Cadet. 1 Vilket av följande uttryck har störst värde? 1 A: B: C: D: E: 2011

Ansvarig lärare: Kristina Wallin , Maria Lindström , Barbro Wase

Innehåll. 1 Allmän information 5. 4 Formativ bedömning Diagnoser och tester Prov och repetition Kommentarer till kapitlen 18

matematik Lektion Kapitel Uppgift Lösningg T.ex. print(9-2 * 2) a) b) c) d)

UTTRYCK ÅLDER 5. ALGEBRA P M K. Linda är 5 år äldre än Amanda. Amanda är x år. a) Skriv ett uttryck för hur gamla de är tillsammans.

Matematik. Namn: Datum:

Träningsuppgifter, gamla nationella prov i matematik(del B1) från Taluppfattning. Hashem Rezai, S:t Ilians skola, Västerås

Matematik 92MA41 (15hp) Vladimir Tkatjev

Tal Repetitionsuppgifter

Lös uppgiften med ett program, t.ex. print("jag kan ha köpt två bullar och en läsk och ska betala", 2 * , "kr.") T.ex. print(5 + 3 * 10) T.ex.

REPETITION 2 A. a) Är sträckan proportionell mot tiden? b) Beräkna medelhastigheten under de fem första sekunderna.

Känguru Benjamin (6. ja 7. klass) sida 1 / 5

Språkstart Matematik Facit. Matematik för nyanlända. Jöran Petersson

Namn: Hundradelar. 4 tiondelar 0, 4 17 tiondelar 1, tiondelar 298 hundradelar. Hundradelar. 98 hundradelar 875 hundradelar

markera med kryss vilka uppgifter du gjort Avsnitt: sidor ETT ETT TVÅ TVÅ TRE TRE FYRA FYRA klart

a) 4a + a b) 4a 3a c) 4(a + 1)

REPETITION 2 A. a) 4a + a b) 4a 3a c) 4(a + 1)

Högskoleverket NOG

Avdelning 1, trepoängsproblem

1 Skriv med siffror a) tolvtusen femton b) fem hela och fyra hundradelar. b) ,04. 3 Skriv i kilogram a) 0,2 ton b) 4 hg c) 6400 g

= a) 12 b) -1 c) 1 d) -12 [attachment:1]räkneoperation lektion 1.odt[/attachment] = a) 0 b) 2 c) 2 d) 1

MATEMATIK KURS A Våren 2005

A B C D E. 2 Det står KANGAROO på mitt paraply. Du kan se det på bilden. A B C D E

lång och 15 cm bred. Hur stor area har tomten i verkligheten? 4,5 2 l b)

4 Sätt in punkternas koordinater i linjens ekvation och se om V.L. = H.L. 5 Räkna först ut nya längden och bredden.

matematik FACIT Läxbok Koll på Sanoma Utbildning Hanna Almström Pernilla Tengvall

Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet.

Repetitionsuppgifter 1

Övningsblad 3.1 A. Omkrets och area. 1 Beräkna figurernas omkrets och area. Varje ruta har arean 1 cm 2.

NOG-provet Provansvarig: Anders Lexelius Provtid: 50 min Högskoleverket

18 a) 36 b) 900 c) 25 d) 1 REPETITIONSUPPGIFTER 2. 1 a) 20 m 2 b) 16 m 2 c) 10 m 2 d) 48 m 2 (50, 24 m 2 )

Problem Svar

STARTAKTIVITET 2. Bråkens storlek

8-4 Ekvationer. Namn:..

A: mindre än 4 år. B: minst 4 år. C: exakt 4 år. D: mer än 4 år. E: inte mindre än 3 år. (Schweiz) A: 0 B: Oändligt många C: 2 D: 1 E: 3 (Italien)

Matematikpärmen fullmatade arbetsblad i matematik för åk 4-6. Massor med extrauppgifter.

Lathund, geometri, åk 9

Matematik. Mål att sträva mot. Mål att uppnå. År 1 Mål Kriterier Eleven ska kunna. Taluppfattning koppla ihop antal och siffra kan lägga rätt antal

8-6 Andragradsekvationer. Namn:..

Sammanfattningar Matematikboken X

Känguru 2011 Cadet (Åk 8 och 9)

Kängurun Matematikens hopp Gymnasiets Cadet 2006 A: 0 B: 2006 C: 2014 D: 2018 E: 4012

Kängurutävlingen Matematikens Hopp Benjamin 2003 Uppgifter

MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs

Mål Likformighet, Funktioner och Algebra år 9

Del 1: Statistik, kombinatorik och sannolikhetslära.

Arbetsblad 3:1. Hur stor är vinkeln? 1 Vilken eller vilka av vinklarna är. 2 Uppskatta (gör en bra gissning) hur stora vinklarna är.

Lokal studieplan Matematik 3 8 = 24. Centrum för tvåspråkighet Förberedelseklass

Repetitionsuppgifter inför Matematik 1. Matematiska institutionen Linköpings universitet 2013

1 a) 8,3 b) 5,4. 2 a) 16,38 b) 20, m. 4 a) 6 cm 2 b) 5 cm 2. 5 a) m 2 b) m c) dm 2. 6 a) 12 m 2 b) 27 cm 2

Bonusmaterial till Lära och undervisa matematik från förskoleklass till åk 6. Ledning för att lösa problemen i Övningar för kapitel 5, sid

Svar och korta lösningar Benjamin 2006

matematik FACIT Läxbok Koll på Sanoma Utbildning Hanna Almström Pernilla Tengvall

KS övning 1. Problem 1. Beräkna Problem 2. Förenkla. (x 1 3 y

DE FYRA RÄKNESÄTTEN (SID. 11) MA1C: AVRUNDNING

Taluppfattning och tals användning Matematik

Avdelning 1. A: måndag B: tisdag C: onsdag D: torsdag E: fredag. 2 Vi vill att vågen ska väga jämnt. Vilken sten ska vi lägga på den högra sidan?

Repetitionsuppgifter 1

8 miljarder B. 8 miljoner B. 80 tusen B. 8 tusen B 8 MB 8 GB. 8 kb. 80 kb B B B B 32 MB 32 GB.

Matematik EXTRAUPPGIFTER FÖR SKOLÅR 7-9

Sammanfattningar Matematikboken Y

Skolmatematiktenta LPGG06 Kreativ Matematik Delkurs 2 21 januari

PROBLEMLÖSNINGSUPPGIFTER

Högstadiets matematikorientering

Kängurutävlingen Matematikens hopp 2019 Benjamin

Lokala kursplaner i Matematik Fårösunds skolområde reviderad 2005 Lokala mål Arbetssätt Underlag för bedömning

och symmetri Ur det centrala innehållet Förmågor Problemlösning Metod

Javisst! Uttrycken kan bli komplicerade, och för att få lite överblick över det hela så gör vi det så enkelt som möjligt för oss.

Matematik. Ämnesprov, läsår 2013/2014. Bedömningsanvisningar Delprov B, C, D, E. Årskurs

Sammanfattningar Matematikboken Z

Konkretisering av kunskapskraven i matematik år 7-9 (Lgr11)

? A: -1 B: 1 C: 19 D: 36 E: 38 Belarus A: ROOT B: BOOM C: BOOT D: LOOT E: TOOT A: 1,5 B: 1,8 C: 2 D: 2,4 E: Vilket tal bör ersätta

Steg dl. 3 a) 12 b) eller 5 = = 6 a) 100% b) 75% 7 7 gröna rutor. Steg 5. 2 a) 600 b) 6% c) 270

Lokala mål i matematik

Bok: Z (fjärde upplagan) Kapitel : 1 Taluppfattning och tals användning Kapitel : 2 Algebra

Volym liter och deciliter

Transkript:

Arbetsblad :1 sid 78, 92 Tolka uttryck 1 Kajsa är a år gammal. Para ihop varje påstående med rätt uttryck. a) Karin är tre gånger så gammal: b) Katta är år yngre: a + a c) Kristina är en tredjedel så gammal: d) Kerstin är år äldre: a a 2 Alex är 15 år. Räkna ut eller skriv ett uttryck för hur gammal a) han är om år: b) han är om x år: c) han var för 5 år sedan: d) han var för y år sedan: En burk är h cm hög. Skriv ett uttryck för en annan burk som är a) dubbelt så hög som burken: b) fyra gånger så hög som burken: c) fyra centimeter högre än burken: h d) tre centimeter lägre än burken: Ringa in de eller det uttryck som betyder hälften av a. a 2 2 a a 2 1 2a a 2a 0,5a 5 Ringa in de eller det uttryck som betyder mindre än a. a + a a a a + a 6 Ringa in det eller de uttryck som ALLTID betyder dubbelt så mycket som a. a + 2 2 a a2 a 1 2a 2a a 7 Vilka av uttrycken hör ihop, dvs. har samma värde? Bind ihop dem med pilar. 2 + x 2x x 2 x + 2 x + x 0,5x

Arbetsblad :2 Geometriska figurer sid 79, 9 Skriv ett uttryck för figurens omkrets. Förenkla sedan uttrycket så långt det går. 1 a) b) x 2x x 2 a) b) a x + 2 a 2x a) b) x 1 2x + 1 x x x x x + 5 Skriv ett uttryck för figurernas area. Förenkla sedan uttrycket så långt det går. a) b) b x a x 5 a) b) b y a 5y 6 a) b) x 2a 5x 2a 7 a) π b) 2x 6a π

Arbetsblad : sid 80, 9 Förenkla uttryck Förenkla så långt som möjligt. 1 a) x 2x + x = b) x + 2x x = 2 a) 2a + b a + b = b) 2a b + a b = a) xy xy = b) xy + xy xy = a) + a 2 + 2a = b) a + 2a + 2 = Ta bort parenteserna och förenkla så långt som möjligt. 5 x + (x +1) = 6 (1 + x) + 1 = 7 + (5 2x) + x = 8 (2a + 2) + (2a 2) = 9 ( a) + (a ) = 10 2a (a + 1) = 11 x (1 + 2x) = 12 ( + y) (2 + 2y) = 1 ( 2 2x) = 1 (2 x) (2 x) = 15 x + (2x 7) (x 1) = 16 x (2x 7) + (x 1) = 17 (x + a) (x a) + (x + a) = 18 (2a b) + (a 2b) (2a + b) =

Arbetsblad : sid 81, 95 Multiplicera med parenteser Skriv uttrycket utan parentes 1 a) (x + 2) = b) 2(a ) = 2 a) 5(2x + ) = b) (2 a) = a) 6(2 + 5x) = b) 8(2x ) = a) x(x + 5) = b) y( y) = 5 a) a(8 + 2a) = b) a(a 5) = 6 a) 2x( + x) = b) y(y 5) = Skriv ett så enkelt uttryck som möjligt för arean av figurerna. 7 a) b) x x x + 8 y + 8 a) x b) 2x a 2x a x + a + 5 Fyll i det som saknas i rutorna. 9 a) (x y) = x y b) 5(x ) = x 15 10 a) ( + b) = a + b) (2 + a) = 10 + a 11 a) 5(x + ) = x + 0 b) ( ) = y y 2

Arbetsblad :5 Ekvationer 1 sid 8, 97 Lös ekvationerna 1 a) x + 6 = 11 b) 2 x = 18 c) 2 = x 5 2 a) x = 2 b) 6x = 2 c) 9x = 5 a) x = b) x 6 = 8 c) x 5 = 9 Lös ekvationerna a) x = 16 b) x = 21 c) x + 6 = 12 d) x 7 = 2 5 a) 12 + x = 5 b) x 5 = 12 c) 0,5x = d) 2 = x 7 6 a) x + 1 = 16 b) 5x = 27 c) x + 7 = 2 7 a) x 5 1 = 12 b) x + 2 = 10 c) + x 2 = 8 8 a) x 6 = 1 b) 2x = 7 c) x + 2 = 20 9 a) x 2 + 5 = 26 b) x 5 = 22 c) 7 + x 5 = 21 10 Ringa in den eller de ekvationer som har lösningen a) x = 2 A x + 18 = 20 B 1 x = 8 C x + 5 = 11 D 8 x = b) x = A 27 x = 20 B 2x + 6 = 1 C 60 x = 58 D 5x 10 = 2 c) x = 5 A 6x + = B x 8 = 7 C 12x = 6 D x + 2 = 2 10

Arbetsblad :6 Ekvationer 2 sid 85 Lös ekvationerna 1 a) 6 + (5 + x) = 20 b) 8 + (x + 12) = 5 2 a) x + (x + 6) = 26 b) 5x + (8 + x) = 0 a) 2x (5 + x) = 15 b) 7x (2x + 6) = Vad händer när du tar bort parentesen? a) 8 (6 x) = 1 b) 9 ( 2x) = 1 5 a) 5x (6 6x) = 9 b) x (8 x) = 6 a) (x + 5) = 18 b) ( + x) = 20 7 a) 5(x + 6) = 100 b) 6( + x) = 6 8 a) 7(x 2) = 1 b) (x 8) = 15 9 a) 9(x ) = 5 b) 8(x 7) = 16 Ibland behöver du inte multiplicera in i parentesen. 10 a) 12 + (x + ) = 2 b) 28 + 5(x ) = 1 11 a) 8(x + 2) 20 = 20 b) 6( + x) + 2 = 8 12 a) (x + 2) ( 2 x) = 12 b) 5( x) (5 8x) =

Arbetsblad :7 Lös med ekvationer 1 sid 87 1 Jag halverar ett tal och adderar 1. Summan är 25. Vilket är talet? 2 Om man dividerar ett tal med och sedan adderar så är summan 10. Vilket är talet? Jag dubblar ett tal, subtraherar sedan. Differensen är 20. Vilket är talet? Jag tänker på ett tal. Talet multipliceras med. Sedan subtraherar jag 2. Differensen är 12. Vilket är talet? 5 En pappa är 8 gånger så gammal som sin son. Tillsammans är de 6 år. Hur gamla är de? 6 Sofia är två är äldre än Hanna. Hanna är fem år äldre än Matilda. Tillsammans är systrarna 6 år. Hur gamla är de? 7 En fotbollsplan är dubbelt så lång som den är bred. Omkretsen är 12 m. Vilka mått har planen? 8 Ada, Beda och Cia delar 696 kr så att Beda får dubbelt så mycket som Ada medan Cia får tre gånger så mycket som Ada. Hur mycket får de var och en? 9 David, Erik och Fredrik delar 50 kr så att David får 50 kr mer än Erik och Fredrik tre gånger så mycket som Erik. Hur mycket får var och en? 10 I Klagshamn, Bunkeflo och Vintrie byggdes totalt 90 villor under året. I Vintrie blev det tio färre än i Bunkeflo och i Klagshamn blev det tre gånger så många som i Vintrie. Hur många hus byggdes i de tre byarna? 11 I Malmö bygger firman PN Bygg 950 lägenheter på tre år. Förra året byggdes 210 färre lägenheter än i år. Nästa år ska det byggas dubbelt så många som i år. Hur många lägenheter blir färdiga i år?

Arbetsblad :8 Lös med ekvationer 2 sid 87 1 Ett tal är 1 större än ett annat. Summan av talen är 1. Vilka är talen? (kalla det mindre talet för x. Då blir det större talet x + 1) 2 Ett tal är 27 mindre än ett annat. Summan talen är 85. Vilka är talen? Summan av två på varandra följande tal är 175. Vilka är talen? (kalla talen för x och x + 1) Summan av tre på varandra följande tal är 252. Vilka är talen? 5 Summan av tre på varandra följande jämna tal är 2058. Vilka är talen? 6 En stor burk sylt innehåller dl mer sylt än en liten burk. Fem burkar av varje sort innehåller sammanlagt 5 liter sylt. Hur mycket sylt finns det i en liten burk? 7 En liten hink färg innehåller liter mindre färg än en stor hink färg. Fem små burkar och fyra stora burkar innehåller tillsammans 0 liter färg. Hur mycket färg finns det i en stor hink? 8 Anton köper åtta chipspåsar. Några kostar 18 kr och några kostar 26 kronor. Tillsammans kostar de 18 kronor. Hur många av varje sort köpte han? 9 Elsa har en burk med femkronor och tiokronor. Det ligger 71 mynt i burken. Värdet av mynten är 595 kronor. Hur många tiokronor finns i burken? 10 I en ladugård finns det höns och grisar. Det finns 7 djur i ladugården och tillsammans har de 182 ben. Hur många grisar finns det i ladugården? 11 Däckaffären säljer däck till både bilar och motorcyklar. En vecka sålde firman 22 däck till 6 fordon. Hur många av däcken var till motorcyklar? 12 Axel ska köpa 120 pingisbollar. Bollarna finns i askar med fyra eller sex bollar i varje förpackning. Axel köper 25 förpackningar. Hur många askar med sex bollar köpte han?

Arbetsblad :9 sid 89 Mönster 1 1 Figur 1 Figur 2 Figur a) Hur många stickor behövs till de olika figurerna? Fyll i tabellen. b) Beskriv med ord hur många stickor som behövs till en viss figur. c) Skriv en formel som visar hur många stickor som behövs för att bygga den n:te figuren. Figur 1 2 7 n Antal stickor d) Beräkna med hjälp av formeln hur många stickor som behövs till figur 100. 2 Figur 1 Figur 2 Figur a) Hur många stickor behövs till de olika figurerna? Fyll i tabellen. b) Beskriv med ord hur många stickor som behövs till en viss figur. c) Skriv en formel som visar hur många stickor som behövs för att bygga den n:te figuren. Figur 1 2 7 n Antal stickor d) Beräkna med hjälp av formeln hur många stickor som behövs till figur 100.

Arbetsblad :10 sid 89 Mönster 2 1 Figur 1 Figur 2 Figur a) Hur många rutor behövs till de olika figurerna? Fyll i tabellen. b) Beskriv med ord hur många rutor som behövs till en viss figur. c) Skriv en formel som visar hur många rutor som behövs för att bygga den n:te figuren. Figur 1 2 7 n Antal rutor d) Beräkna med hjälp av formeln hur många rutor som behövs till figur 100. 2 Figur 1 Figur 2 Figur a) Hur många rutor behövs till de olika figurerna? Fyll i tabellen. b) Beskriv med ord hur många rutor som behövs till en viss figur. c) Skriv en formel som visar hur många rutor som behövs för att bygga den n:te figuren. Figur 1 2 7 n Antal rutor d) Beräkna med hjälp av formeln hur många rutor som behövs till figur 1 000.

Arbetsblad :11 Ekvationer sid 101 Lös ekvationerna. 1 a) 2x = 5 5x b) = 20 5x c) = 15 2 a) x + = b) 5x 8 = c) 7x = 8 6 Minna och Anna har löst en ekvation men fått olika resultat. Studera deras lösningar. Markera de fel du hittar. Lös ekvationen på rätt sätt. Minna Anna ( x) 2(x 2) = 5( 2x) ( x) 2(x 2) = 5( 2x) 12 x 2x = 20 10x 12 x 2x + = 20 10x 8 6x = 20 10x 16 6x = 20 10x x = 12 = 16x x = x = 1 Lös ekvationerna a) 2x + 9 = x 5 b) 15 + x = + 6x 5 a) x + 6 = 12x 2 b) + 2x = 10 5x 6 a) 2x + x 1 = 9x 6x 2 b) x x = x 1 2x 9 7 Axel och Jonas har löst en ekvation men fått olika resultat. Studera deras lösningar. Markera de fel du hittar. Lös ekvationen på rätt sätt. Axel Jonas 2(5x + 8) = (x 2) 2(5x + 8) = (x 2) 10x + 16 = 12x 6 10x + 16 = 12x 2 22x = 10 18 = 2x x = 10 22 x = 9 8 a) (x + 5) = 5(x 7) b) x = 12 (x ) 9 a) 5 2(2x ) = (x 1) b) (x + 2) = 8x (x + 1)

Arbetsblad :12 Lös med ekvationer sid 102 1 Lisa har fyra gånger så många cd-skivor som Ola. Om Lisa lånar ut 15 av sina cd-skivor till Ola har de lika många. Hur många cd-skivor har var och en? 2 En påse chokladpraliner innehåller x st praliner. Emma köpte sex påsar och sju lösa praliner. Emil köpte sju påsar. Tar han bort tre praliner från en påse har han lika många som Emma. Hur många praliner finns i en påse? Anders är tre år yngre än Bo. Inga är tre gånger så gammal som Anders. Alla tre tillsammans är tre gånger så gamla som Bo. Hur gamla är var och en? En rektangels ena sida är 8 cm längre än den andra. Omkretsen av rektangeln är lika stor som omkretsen av en liksidig triangel. Triangelns sida är lika lång som rektangelns längre sida. Hur stor är rektangelns area? 5 Hanna har två buntar med sedlar. Det är lika många sedlar i varje bunt och det är lika mycket pengar i varje bunt. I den ena bunten ligger det dubbelt så många tjugolappar som hundralappar. I den andra bunten ligger det fyra tjugolappar och resten är femtiolappar. Hur många hundralappar finns det? 6 Lana och Shaima tänker på samma tal. Vilket är talet? Jag dubblar talet och subtraherar 1 från produkten. Då får vi samma slutresultat. Jag adderar 2 till talet och multiplicerar summan med 1,5. 7 Inför ett matteprov fick Klara 0 uppgifter att träna på. Hon fick av sin pappa 10 kr för varje uppgift som hon räknade rätt, men fick betala 6 kr för varje som hon löste fel. När hon hade räknat färdigt fick hon 12 kr. Hur många uppgifter hade Klara rätt på?

Arbetsblad :1 sid 10 Förklara med algebra 1 a) Följ instruktionen i rutan och skriv ned vilket sluttal du får. Tänk på ett tal. Addera 6. Multiplicera med 2. Subtrahera 2. Dividera med 2. Subtrahera starttalet. b) Gör på samma sätt med ett annat tal. c) Kalla starttalet för x och visa att sluttalet alltid blir 5. 2 a) Följ instruktionen i rutan och skriv vilket sluttal du får. Tänk på ett tal. Multiplicera med. Subtrahera 6. Dividera med. Addera 2. Subtrahera starttalet. b) Kalla starttalet för x och visa att det alltid blir samma sluttal. a) Följ instruktionen i rutan och skriv vilket sluttal du får. Tänk på ett tal. Multiplicera med 2. Addera 50. Dividera med 2. Subtrahera 25. b) Kalla starttalet för x och visa att sluttalet alltid blir detsamma som starttalet.