En liten introduktion till ELEKTRISKA KRETSAR



Relevanta dokument
Föreläsning 1 i Elektronik ESS010

Elektricitet och magnetism

En ideal op-förstärkare har oändlig inimedans, noll utimpedans och oändlig förstärkning.

Ellära. Ohms lag U = R * I. Ett av världens viktigaste samband kallas Ohms lag.

Elektronen och laddning

6. Likströmskretsar. 6.1 Elektrisk ström, I

Elektriska komponenter och kretsar. Emma Björk

Ellära. Laboration 1 Mätning av ström och spänning

Träning i bevisföring

Mätning av effekter. Vad är elektrisk effekt? Vad är aktiv-, skenbar- reaktiv- medel- och direkteffekt samt effektfaktor?

Lathund, procent med bråk, åk 8

Formler och beräkningsregler Ohms lag. Seriekoppling av motstånd

Tillståndsmaskiner. 1 Konvertering mellan Mealy och Moore. Ola Dahl och Mattias Krysander Linköpings tekniska högskola, ISY, Datorteknik

Snabbslumpade uppgifter från flera moment.

Kapitel 6. f(x) = sin x. Figur 6.1: Funktionen sin x. 1 Oinas-Kukkonen m.fl. Kurs 6 kapitel 1

Inställning motorskydd för gammal motor Postad av Johan Andersson - 16 maj :31

DEMONSTRATIONER MAGNETISM II. Helmholtzspolen Elektronstråle i magnetfält Bestämning av e/m

Hävarmen. Peter Kock

Den inre resistansens betydelse i mätinstrument

4-6 Trianglar Namn:..

Tentamen i Fysik A, Tekniskt-Naturvetenskapligt basår

Algebra, polynom & andragradsekvationer en pampig rubrik på ett annars relativt obetydligt dokument

TSTE20 Elektronik 01/20/ :28. Dagens föreläsning. Varför elektronik. Föreläsare etc. Varför elektronik Skillnad mellan ny och gammal kurs

a n = A2 n + B4 n. { 2 = A + B 6 = 2A + 4B, S(5, 2) = S(4, 1) + 2S(4, 2) = 1 + 2(S(3, 1) + 2S(3, 2)) = 3 + 4(S(2, 1) + 2S(2, 2)) = = 15.

DOP-matematik Copyright Tord Persson. Bråktal Läs av vilka tal på tallinjen, som pilarna pekar på. Uppgift nr

Erfarenheter från ett pilotprojekt med barn i åldrarna 1 5 år och deras lärare

Vi skall skriva uppsats

När jag har arbetat klart med det här området ska jag:

Något om permutationer

David Wessman, Lund, 30 oktober 2014 Statistisk Termodynamik - Kapitel 5. Sammanfattning av Gunnar Ohléns bok Statistisk Termodynamik.

Laborativ matematik som bedömningsform. Per Berggren och Maria Lindroth

Modul 6: Integraler och tillämpningar

4-3 Vinklar Namn: Inledning. Vad är en vinkel?

1 Navier-Stokes ekvationer

Två konstiga klockor

En liten introduktion till ELLÄRA v 0.1

Ö 1:1 U B U L. Ett motstånd med resistansen 6 kopplas via en strömbrytare till ett batteri som spänningskälla som figuren visar.

SANNOLIKHET. Sannolikhet är: Hur stor chans (eller risk) att något inträffar.

3.1 Linjens ekvation med riktningskoefficient. y = kx + l.

Möbiustransformationer.

Kunskapskrav för godtagbara kunskaper i matematik - slutet av åk 3

m/s3,61 m/s, 5,0 s och 1,5 m/s 2 får vi längden av backen, 3,611,5 5,011,1 m/s11,1 3,6 km/h40,0 km/h

Mätningar på op-förstärkare. Del 3, växelspänningsförstärkning med balanserad ingång.

SF1625 Envariabelanalys

Mät spänning med en multimeter

Blixtrarna hettar upp luften så att den exploderar, det är det som är åskknallen.

Repetitivt arbete ska minska

Ekvationssystem, Matriser och Eliminationsmetoden

Föreläsning 8: Räkning. Duvhålsprincipen. Kombinatorik

DEMOKRATI 3 DEMOKRATINS VILLKOR

Införa begreppen ström, strömtäthet och resistans Ohms lag Tillämpningar på enkla kretsar Energi och effekt i kretsar

Tränarguide del 1. Mattelek.

Börje Truedsson. Lösningar till Blandade uppgifter kap 1-2. Enheter / Prefix

Pesach Laksman är lärarutbildare i matematik och matematikdidaktik vid Malmö högskola.

Linjära system av differentialekvationer

Avgifter i skolan. Informationsblad

Ellära. Lars-Erik Cederlöf

Systematiskt kvalitetsarbete

Föräldrabroschyr. Björkhagens skola - en skola med kunskap och hjärta. Vad ska barnen lära sig i skolan?

Statsbidrag för läxhjälp till huvudmän 2016

Partnerskapsförord. giftorättsgods görs till enskild egendom 1, 2. Parter 3. Partnerskapsförordets innehåll: 4

Sammanfattning av kursen ETIA01 Elektronik för D, Del 1 (föreläsning 1-6)

myabilia En introduktion

Kundservicerapport Luleå kommun 2015

PRÖVNINGSANVISNINGAR

TIMREDOVISNINGSSYSTEM

Energi & Miljötema Inrikting So - Kravmärkt

Riktlinjer - Rekryteringsprocesser inom Föreningen Ekonomerna skall vara genomtänkta och välplanerade i syfte att säkerhetsställa professionalism.

Mätningar på solcellspanel

Föreläsnng Sal alfa

Väga paket och jämföra priser

Strukturen i en naturvetenskaplig rapport

Uppdrag: Huset. Fundera på: Vilka delar i ditt hus samverkar för att elen ska fungera?

Sannolikhet och Odds

Lokal pedagogisk planering i matematik för årskurs 8

Finns det någon som kan förklara varför man inte kan använda formeln P=U I rotenur3 cosfi på en pump som sitter i en borrad brunn?

Tänkte att det borde ju räcka med 5g2,5 eftersom det är centralt system för värme och varmvatten.

SF1620 Matematik och modeller

Index vid lastbilstransporter

Så kan du arbeta med medarbetarenkäten. Guide för chefer i Göteborgs Stad

TIMREDOVISNINGSSYSTEM

konstanterna a och b så att ekvationssystemet x 2y = 1 2x + ay = b 2 a b

Kvinnor som driver företag pensionssparar mindre än män

Individuellt Mjukvaruutvecklingsprojekt

Projekt benböj på olika belastningar med olika lång vila

Webb-bidrag. Sök bidrag på webben Gäller från

L(9/G)MA10 Kombinatorik och geometri Gruppövning 1

Om erbjudandet för din pensionsförsäkring med traditionell förvaltning.

Två rapporter om bedömning och betyg

Observera att alla funktioner kan ritas, men endast linjära funktioner blir räta linjer.

Övningshäfte i matematik för. Kemistuderande BL 05

Datorövning 2 Statistik med Excel (Office 2007, svenska)

Sammanfattning av kursdag 2, i Stra ngna s och Eskilstuna

Antal grodor i varje familj Antal hopp tills alla bytt plats Ökning

Gissa det hemliga talet

Sittposition cykel. Enligt Road Racing, technique and training, av Hinault/Genzling

Lektion 1: Automation. 5MT001: Lektion 1 p. 1

Stockholms Tekniska Gymnasium Prov Fysik 2 Mekanik

Sundbybergs stad Skolundersökning 2015 Föräldrar förskola Fristående förskolor totalt Antal svar samtliga fristående förskolor: 360 (57 %)

Transkript:

En liten introduktion till ELEKTSKA KETSA Patrik Eriksson 005 Longum iter est per praecepta, breve et efficax per exempla Vägen görs lång genom regler, kort och effektiv genom exempel. /Seneca Philosophus, Epistulae

GNDBEGEPP Spänning Vi tänker oss att den neutrala fördelningen av fria elektroner i ett material omgrupperas. Vi får ett område med överskott och ett område med underskott av elektroner. För att denna förflyttning skall ske krävs att någon form av arbete uträttas. Eftersom elektronerna strävar att åter inta neutral fördelning måste någon form av verkan finnas mellan dessa bägge områden. Detta kallar vi potentialskillnad eller elektrisk spänning. (Betecknas ) Definition: Om arbetet W uträttas då laddningen Q förflyttas från punkt A till B är spänningen mellan A och B: W Nm Volt Q As As Ampèresekund Coloumb. En laddning på C som kräver arbetet Nm för att förflyttas från A till B ger spänningen Volt mellan punkterna A och B. Den elektriska spänningen kan jämföras med begreppet lägesenergi inom mekaniken. Anordningar, sådana att de mellan två områden, poler, kan skapa och vidmakthålla ett visst konstant överresp. underskott av laddningar, kallas strömkällor. Ett exempel härpå är ett vanligt ficklampsbatteri. Ström Om vi så ansluter en elektrisk ledare mellan den nyligen nämnda strömkällans poler kommer spänningen, dvs laddningsöverskottet vid den ena polen att skapa en ström av laddning ut i ledaren, mot den andra polen, strävande efter att skapa en så jämn laddningsfördelning som möjligt. Begreppet elektrisk ström (Betecknas ) är ett mått på den laddningsmängd som förflyttas, och med vilken hastighet detta sker. Definition: Q As Ampère t t Ampèresekund Coloumb En laddning på C som passerar ett tvärsnitt av ledaren på tiden t s. ger upphov till strömmen Ampère. (Därav begreppet As Amperesekund) Analogt med t.ex. ett vattenflöde kan man uttrycka det som så att spänningen är trycket, strömmen är mängden

Beroende och oberoende källor En ideal källa skulle vara kapabel att leverera hur stor ström som helst och ändå hålla polspänningen konstant. praktiken fungerar inte detta, eftersom varje källa är underställd den hårda verklighetens (DHV TM ) fysiska begränsningar. En källa, låt vara ett batteri eller laboratorieaggregat, kan betraktas som en spänningskälla E och en inre resistans i. Ju bättre källa, desto mindre är i. Vid obelastad källa går ingen ström genom kretsen, spänningsfallet över i är noll, och spänningen ut på källans poler är lika med E. Men när strömkällan belastas med L, och kretsen sluts går en ström genom både i och L. Vi får en potentialförändring utmed kretsen allt enligt Kirchoff (Kirschoffs spänningslag / KVL). Sålunda kommer spänningen över källans poler, och därmed också lasten, att sjunka omvänt mot strömmen. L 0 L * i Tomgångsspänningen E praktiken använder man sig av spänningsregulatorer i bl.a. laboratorieströmkällorna, vilka är en aktiv krets som justerar spänningen till att hålla sig konstant oberoende av strömuttaget (inom rimliga och specificerade gränser).

esistans Då laddningar vandrar från en pol till en annan i en sluten krets sker en energiomvandling. Laddningarna kolliderar med atomerna i ledaren, vilket ger upphov till en energiförlust. Den i strömkällan upplagrade energin i form av potential omsätts i ledaren till värme. Antalet fria elektroner varierar mellan olika material, och om antalet är litet innebär detta en liten ström. Liten tillgång på fria elektroner innebär ett hinder för strömmen, och detta hinder kallar vi resistans. (Beteckning ) Definition: V Ω A V spänningen i Volt A strömmen i Ampère Ω resistansen i Ohm En ström på Ampère i en ledare ansluten till en spänning Volt ger en resistans i ledaren på Ohm. Schemasymboler för resistans, samt variabel resistans. (potentiometer) Ohms Lag Detta är ellärans absolut viktigaste lag! Förutsatt att resistansen är konstant för en given ledare är förhållandet mellan spänning och ström proportionellt. Om spänningen över ett visst motstånd ökar till det dubbla ökar sålunda strömmen också till det dubbla. Förr eller senare kommer ni att råka på begreppet impedans, vilket också är besläktat med resistans (resistans ingår i impedansbegreppet), men det räknar man med i det mer allmänna fallet där vi har varierande strömmar; växelström.

Kirchoffs spänningslag (Kirschoff / KVL) Denna kallas även Kirchoffs andra lag. Summan av potentialändringarna i en godtycklig sluten krets är lika med noll. Summera alla potentialändringar genom en vandring längs den slutna kretsen. Markera med tecken vilken sida av varje kretskomponent som har högre resp. lägre potential. Följ strömmen när ni går in i en belastning (resistans) sätter ni positivt tecken (ni går från högre potential till en lägre), och när ni går in i en källa sätter ni negativt tecken (ni går från en lägre potential till en högre). Exempel: 0 Sätt till 5 volt, till 0 volt, till 0 ohm och till 0 ohm. Detta ger: 5 5 Vad får vi för spänning över motstånden? Vi tar hjälp av strömmen för att klura ut detta. 0 0 0 Ohms lag ger oss strömmen i kretsen Ohms lag ger oss även vilket ger För : 0 0, 9 För 0 0, 6 5 0 0 0 0, A.. Observera att vi hade minustecken framför spänningarna över motstånden, så vi får alltså -9 volt över, samt 6 volt över. Minustecknet innebär alltså att spänningen över motstånden är motriktad den över spänningskällorna. (Spänningen ökar över en spänningskälla, den minskar över ett motstånd.) Kirschoffs spänningslag i kretsen ger sålunda följande: 5(-9)0(-6)0

Kirchoffs strömlag (K / KCL) Denna kallas även Kirchoffs första lag. Summan av strömmarna in och ut från en viss knutpunkt 0 En punkt i ett nät där två eller flera ledare förenas kallas knutpunkt eller nod. Strömmarna som passerar in i denna punkt är lika med dem som passerar ut. När man betraktar ett nät utifrån Kirchoffs strömlag väljer man en referensriktning för samtliga strömmar. Denna kan väljas godtyckligt, då man vid senare beräkningar bara får ett negativt värde om referensriktningen inte överensstämmer med den fysikaliska. 0 Kirschoffs strömlag i ovanstående bild ger: (- ) (- 4 ) 0

LKSTÖMSNÄT Nätets anatomi En praktisk strömkrets förefaller ofta ganska komplex med ett stort antal komponenter och förbindelser. För att analysera och förstå ett nät, i det här fallet ett likströmsnät, kan man likt matematikens ekvationer dela upp det i flera beståndsdelar, vilka lättare låter sig betraktas. Strukturen hos ett likströmsnät kan sålunda delas upp i sina abstrakta beståndsdelar; gren, nod, slinga och maska enligt följande: 4 5 Nätets beståndsdelar nod gren Gren Ledare eller annan kretskomponent. Dessa utgör själva innehållet i nätet. Nod En punkt där två eller flera grenar av nätet är sammankopplade. Slinga Sammankopplade grenar som bildar en sluten krets. Ex. --- eller -4-5--. Maska Slinga som inte innesluter någon gren. Ex. --- eller 5-4--5. Om man har ett komplicerat nät får man lätt problem att överblicka detsamma, och vid beräkningar får man ett så stort antal ekvationer så det blir tidsödande att lösa. Därför tillämpar vi några enkla regler för hur vi snabbt och enkelt kan förenkla en krets eller delar därutav.

Seriekoppling Seriekoppling av resistorer går till på så sätt att ett antal resistanser i serie kan ersättas med endast en ekvivalent resistans. Denna utgör då summan av de seriekopplade resistorerna. Detta åskådliggör vi till exempel genom att tillämpa Kirchoffs spänningslag på en krets bestående av en strömkälla kopplad till en strömkrets bestående av tre resistanser i serie;, och., och skall ersättas med en resistans sådan att strömmen i den ekvivalenta kretsen blir lika stor som i den ursprungliga. ( ) 0 0 Principen för seriekoppling kan generaliseras enligt följande: n... Seriekopplade spänningsgeneratorer följer samma mönster som enligt Kirchoffs spänningslag. Spänningskällor i serie adderas till sin ekvivalent. Seriekopplade strömgeneratorer förekommer inte som modell.

Parallellkoppling Parallellkoppling av resistorer innebär en problemställning liknande seriekopplingen. Ett antal parallella resistanser kan ersättas med endast en ekvivalent. Vi åskådliggör detta med ett exempel liknande det förra, vi vill att strömmen skall vara densamma i bägge kretsarna ( ), för då är de ekvivalenta. Eftersom alla resistorerna är kopplade parallellt över källan, innebär detta att spänningen är samma över alla resistanserna, d.v.s.. Strömmen däremot, delas upp i olika grenar;, och. Strömmen i varje gren är omvänt proportionell till resistansen, allt enligt Ohms lag. Först använder vi Kirchoffs strömlag: Sedan jobbar vi vidare med Ohms lag, och tecknar strömmarna i varje gren:, och, samt strömmen för den ekvivalenta kretsen. Dessa sätter vi in i ekvationen för Kirschoffs strömlag och räknar såsom följer: Och denna princip för parallellkoppling av resistanser generaliserar vi till: n... Parallellkopplade strömgeneratorer följer samma mönster enligt Kirchoffs strömlag. Strömkällor i parallellkoppling adderas till sin ekvivalent. Parallellkopplade spänningsgeneratorer förekommer inte som modell.

Spänningsdelning En standardföreteelse i elektriska nät är spänningsdelaren. Medelst en koppling som i den vidstående figuren medges delning av spänningen med hjälp av motstånden och så att en lägre spänning erhålles. Här använder vi vad som kallas spänningsdelningslagen, och den kan vi räkna fram på följande sätt, med bl.a. lite hjälp av herrarna Ohm och Kirschoff: Sålunda får vi fram den formel som brukar kallas spänningsdelningslagen: detta fallet är strömmen 0 Observera att om kretsen belastas på utgången (vi lägger till en last L parallellt med ) får vi en ström, p.g.a. strömdelning kommer strömmen genom att minska, och därigenom kommer att sjunka. Vi måste alltså räkna med denna last L i parallellkoppling med. Om lastens resistans är mycket större i förhållande till kan vi i allmänhet bortse från inverkan av denna och, men annars måste den räknas med. Här är kretsen belastad med ett L, varvid strömmen måste tas med i beräkningen.

Strömdelning Enligt Kirchoffs strömlag är summan av strömmarna in i en punkt lika med strömmarna ut ur densamma. Ett nät där två resistorer är parallellkopplade kommer strömmen i varje gren att vara proportionell mot motståndet, och summan av strömmarna genom motstånden är givetvis den totala strömmen genom kretsen. Enligt parallellkopplingslagen är och ekvivalenta med en resistans : är konstant i systemet, och Ohms lag ger då sambanden: Division med ger: Division med ger: Och detta kan sammanfattas som strömdelningslagen.