Kurskod: TAMS11 Provkod: TENB 28 August 2014, 08:00-12:00 Examinator/Examiner: Xiangfeng Yang (Tel: 070 2234765) a. You are permitted to bring: a calculator; formel -och tabellsamling i matematisk statistik (from MAI); TAMS 11: Notations and Formulae (by Xiangfeng Yang), OR a personal formula sheet (two pages); a dictionary. Please answer in ENGLISH if you can. b. Scores rating: 8-11 points giving rate 3; 11.5-14.5 points giving rate 4; 15-18 points giving rate 5. 1 (3 points) English Version Random variables X and Y are independent and take values j 1, j 2, j 3, and k 1, k 2, k 3, respectively. Complete the following unfinished table of probability mass function p X,Y (j, k). j\k k 1 k 2 k 3 j 1 p X,Y (j 1, k 1 ) = 0.03 p X,Y (j 1, k 2 ) = 0.15 p X,Y (j 1, k 3 ) =? j 2 p X,Y (j 2, k 1 ) = 0.04 p X,Y (j 2, k 2 ) =? p X,Y (j 2, k 3 ) =? j 3 p X,Y (j 3, k 1 ) = 0.03 p X,Y (j 3, k 2 ) =? p X,Y (j 3, k 3 ) =? Solution. We will show that p X (j 1 ) = 0.3; p X (j 2 ) = 0.4, p X (j 3 ) = 0.3; p Y (k 1 ) = 0.1; p Y (k 2 ) = 0.5, p Y (k 3 ) = 0.4. ( ) Once we know these, it is then trivial to get (from independence) p X,Y (j 1, k 3 ) = p X (j 1 ) p Y (k 3 ) = 0.3 0.4 = 0.12; p X,Y (j 2, k 2 ) = p X (j 2 ) p Y (k 2 ) = 0.4 0.5 = 0.2; p X,Y (j 2, k 3 ) = p X (j 2 ) p Y (k 3 ) = 0.4 0.4 = 0.16; p X,Y (j 3, k 2 ) = p X (j 3 ) p Y (k 2 ) = 0.3 0.5 = 0.15; p X,Y (j 3, k 3 ) = p X (j 3 ) p Y (k 3 ) = 0.3 0.4 = 0.12. To see the probabilities in ( ), we first notice that p Y (k 1 ) = 0.03 + 0.04 + 0.03 = 0.1. 0.03 = p X,Y (j 1, k 1 ) = p X (j 1 ) p Y (k 1 ) = p X (j 1 ) 0.1 implies p X (j 1 ) = 0.3; 0.04 = p X,Y (j 2, k 1 ) = p X (j 2 ) p Y (k 1 ) = p X (j 2 ) 0.1 implies p X (j 2 ) = 0.4; 1 = p X (j 1 ) + p X (j 2 ) + p X (j 3 ) = 0.3 + 0.4 + p X (j 3 ) implies p X (j 3 ) = 0.3; 0.15 = p X,Y (j 1, k 2 ) = p X (j 1 ) p Y (k 2 ) = 0.3 p Y (k 2 ) implies p Y (k 2 ) = 0.5; 1 = p Y (k 1 ) + p Y (k 2 ) + p Y (k 3 ) = 0.1 + 0.5 + p Y (k 3 ) implies p Y (k 3 ) = 0.4. Page 1/4
2 (3 points) Let (X, Y ) be a two-dimension random variable with a joint probability density function f X,Y (x, y) = 2(1 + x + y) 3 if x 0 and y 0. (2.1). (2p) Find the marginal density function f X (x) of X and the marginal density function f Y (y) of Y. (2.2). (1p) Are X and Y independent? Why? Solution. (2.1) Similarly, (2.2) Since f X (x) = f Y (y) = X and Y are NOT independent. f X,Y (x, y)dy = f X,Y (x, y)dx = 0 0 2 (1 + x + y) 3 dy = 1 (1 + x + y) 2 y= y=0 = 1 (1 + x) 2, x 0. 2 (1 + x + y) 3 dx = 1 x= 1 (1 + x + y) 2 = x=0 (1 + y) 2, y 0. f X,Y (x, y) f X (x) f Y (y), 3 (3 points) There are 1000 families in a residential area, and they are going to decide the number of day-care seats for their children. The probabilities that each family has zero, one, two, three children are 0.4, 0.2, 0.3, 0.1, respectively. The number of children in different families is assumed to be independent. How many day-care seats for children should be planned in order that the probability that every child will have a seat is 90%. (Hint: central limit theorem) Solution. Let X be the number of children in a family. Then X has a distribution as follows X 0 1 2 3 p(x) 0.4 0.2 0.3 0.1 The mean µ = E(X) = 0 0.4 + 1 0.2 + 2 0.3 + 3 0.1 = 1.1, and σ 2 = V (X) = E(X 2 ) (E(X)) 2 = 1.09. Now we assume that X 1, X 2,..., X 1000 are the numbers of children in these 1000 families respectively. If there are? day-care seats in total, then 90% = P (every child will have a seat) = P (X 1 + X 2 +... + X 1000 <?) = P ( X 1 + X 2 +... + X 1000 1000 = P ( X? µ σ/ n < 1000 µ From Normal table, we have z 10% = 1.28. Therefore So there must be 1143 day-care seats. <? 1000 ) = P ( X <? 1000 )? σ/ n ) = P (N(0, 1) < 1000 µ σ/ n )? 1000 µ σ/ n = z 10% = 1.28, thus? = 1000 ( 1.1 + 1.28 1.09 1000 ) = 1142.26. Page 2/4
4 (3 points) Suppose that the distribution of a population X has the probability mass function as follows X 1 2 p(x) 1 p p where p is unknown. We have a sample from this distribution with the following observations: 2 1 1 2 2 2 (4.1). (1p) Find a point estimate ˆp MM of p using Method of Moments. (4.2). (2p) Find a point estimate ˆp ML of p using Maximum-Likelihood method. (Hint: P (X = x) = p x 1 (1 p) 2 x ) Solution. (4.1). For Method of Moments, the first equation is E(X) = X. The mean E(X) can be calculated as E(X) = 1 (1 p) + 2 p = 1 + p. By solving E(X) = X, we have p = X 1 which yields ˆp MM = X 1. From the data, x = 2+1+1+2+2+2 6 = 5/3, thus ˆp MM = 5 3 1 = 2 3. (4.2). For the Maximum-Likelihood method, we write the likelihood function as Maximizing L(p) is equivalent to maximize ln L(p) where By d ln L(p) dp = 0, we have (Xi 1) (The second derivative d2 ln L(p) dp 2 p L(p) = f(x 1 ) f(x 2 )... f(x n ) = p (X i 1) (1 p) (2 X i). ln L(p) = (X i 1) ln p + (2 X i ) ln(1 p). (2 Xi) 1 p = 0, therefore ˆp ML = Xi n n = X 1. From the data ˆp ML = 2 3. < 0 which yields that ˆp ML is indeed a maximal point) 5 (3 points) The minimal daily demand on zinc of a male person over 30 years of age is 15 mg. Assume that a scientist measures the zinc intake of randomly selected male person over 30 years of age. Assume that the observations are independent and from a population N(µ, σ 2 ). The sample mean is x = 13 and the sample standard deviation is s = 6. (5.1). (1p) If σ is unknown, find a 95% confidence interval of µ. (5.2). (1p) If σ is known σ = 4, find a 95% confidence interval of µ. (5.3). (1p) If σ is unknown, find a 95% confidence interval of σ 2. Solution. (5.1) Since σ is unknown, a 95% confidence interval of µ would be x ± t α/2 (n 1) s n = 13 ± t 0.0 ( 1) 6 = 13 ± 2.06 (5.2) Since σ is known σ = 4,, a 95% confidence interval of µ would be x ± z α/2 σ n = 13 ± z 0.0 4 = 13 ± 1.96 6 = 13 ± 2.472 = (10.528, 15.472). 4 = 13 ± 1.568 = (11.432, 14.568). (5.3) A 95% confidence interval of σ 2 would be ( ) (n 1)s 2 (n 1)s 2 ( ( 1)6 2 ( 1)6 2 ) χ 2 α/2 (n 1), = (n 1) χ 2 0.0 ( 1), χ 2 = 0.975 ( 1) χ 2 1 α/2 ( ) 864 39.38, 864 = (21.94, 69.677). 12.40 Page 3/4
6 (3 points) 16 measurements of the same item have resulted in the following values: 5.14, 3.76, 5.09, 5.87, 6.33, 4.03, 6., 5.57, 3.28, 5.12, 5.66, 5.10, 4.63, 5.74, 4.20, 4.69. The average of the data is x = 5.03. It is assumed that the measurements are the outcomes of independent N(µ, 1 2 ) random variables. We want to test the following hypotheses H 0 : µ = 5 versus H a : µ > 5. (6.1). (1p) If a level α = 0.05 is used, do you reject H 0? Why? (6.2). (2p) For the test in (6.1), what is the probability of not concluding that µ > 5 when the actual µ = 5.5? Solution. (6.1) Since the population variance is known σ 2 = 1 2, according to H a the rejection region (z α, + ) = (z 0.05, + ) = (1.65, + ). The test statistic is x µ0 σ/ n = 5.03 5 1/ 16 = 0.12. Since the test statistic is NOT in the rejection region, we do NOT reject H 0. (6.2) This is a Type II error, namely β(5.5) = P (don t reject H 0 when H 0 is wrong and µ = 5.5) = P ( X µ 0 σ/ n < 1.65 when µ = 5.5) (need to change X µ 0 σ/ n to X µ σ/ n since X µ σ/ N(0, 1)) n = P ( X µ σ/ n + µ µ 0 σ/ < 1.65 when µ = 5.5) n = P (Z + 5.5 5 1/ 16 < 1.65) = P (Z < 0.35) = 1 0.6368 = 0.3632. Page 4/4
Kurskod: TAMS11 Provkod: TENB 28 augusti 2014, kl. 8-12 Examinator/Examiner: Xiangfeng Yang (Tel: 070 2234765) a. Tillåtna hjälpmedel är: en räknare; formel -och tabellsamling i matematisk statistik (från MAI); TAMS 11: Notations and Formulae (by Xiangfeng Yang); ELLER egna anteckningar (max två sidor); en ordbok. Vänligen svara på ENGELSKA om du kan. b. Betygsgränser: 8-11 poäng ger betyg 3; 11.5-14.5 poäng ger betyg 4; 15-18 poäng ger betyg 5. 1 (3 poäng) Svensk Version Stokastiska variabler X och Y är oberoende och antar värdena j 1, j 2, j 3 respektive k 1, k 2, k 3. Komplettera följande ofullständiga tabell över sannolikhetsfunktionen p X,Y (j, k). 2 (3 poäng) j\k k 1 k 2 k 3 j 1 p X,Y (j 1, k 1 ) = 0.03 p X,Y (j 1, k 2 ) = 0.15 p X,Y (j 1, k 3 ) =? j 2 p X,Y (j 2, k 1 ) = 0.04 p X,Y (j 2, k 2 ) =? p X,Y (j 2, k 3 ) =? j 3 p X,Y (j 3, k 1 ) = 0.03 p X,Y (j 3, k 2 ) =? p X,Y (j 3, k 3 ) =? Låt (X, Y ) vara en tvådimensionall stokastisk variabel med täthetsfunktionen f X,Y (x, y) = 2(1 + x + y) 3 om x 0 och y 0. (2.1). (2p) Beräkna täthetsfunktionen f X (x) för X och täthetsfunktionen f Y (y) för Y. (2.2). (1p) Är X och Y oberoende? Varför? 3 (3 poäng) Ett bostadsområde för 1000 familjer planeras. Sannolikheterna för att en familj har inget, ett, två respektive tre barn i förskoleåldern antas vara 0.4, 0.2, 0.3, 0.1. Antalet barn i olika familjer förutsätts oberoende. Hur många daghemsplatser skall planeras om sannolikheten för att alla barn ska få daghemsplats skall vara 90%. (Ledning: centrala gränsvärdessatsen) 4 (3 poäng) Antag att fördelningen för en population X har sannolikhetsfunktionen enligt följande X 1 2 p(x) 1 p p där p är okänd. Vi har ett stickprov från denna fördelning med observerade värden: 2 1 1 2 2 2 (4.1). (1p) Hitta en punktskattning ˆp MM av p genom att använda momentmetoden. (4.2). (2p) Hitta en punktskattning ˆp ML av p genom att använda Maximum Likelihood-metoden. (Ledning: P (X = x) = p x 1 (1 p) 2 x ) Page 1/2
5 (3 poäng) Minsta dagliga behov av zink är 15 mg för män över 30 år. Antag att man mäter zinkintaget för slumpmässigt utvalda män över 30 år. Antag att observationerna är oberoende och från en population N(µ, σ 2 ). Stickprovsmedelvärdet är x = 13 och stickprovsstandardavvikelsen är s = 6. (5.1). (1p) Om σ är okänd, finn ett 95% konfidensintervall för µ. (5.2). (1p) Om σ är känd σ = 4, finn ett 95% konfidensintervall för µ. (5.3). (1p) Om σ är okänd, finn ett 95% konfidensintervall för σ 2. 6 (3 poäng) Man har gjort 16 upprepade oberoende mätningar av samma storhet och erhållit följande mätvärden: 5.14, 3.76, 5.09, 5.87, 6.33, 4.03, 6., 5.57, 3.28, 5.12, 5.66, 5.10, 4.63, 5.74, 4.20, 4.69. Observationernas medelvärde är x = 5.03. Normalfördelning N(µ, 1 2 ) kan antas föreligga. Vi vill testa följande hypotesen H 0 : µ = 5 versus H a : µ > 5. (6.1). (1p) Om nivån α = 0.05 används, förkastar du H 0? Varför? (6.2). (2p) För testet i (6.1), vad är sannolikheten att inte dra slutsatsen att µ > 5 men µ = 5.5? Page 2/2