Kapitel Graflösning Det går att använda följande metoder för att analysera funktionsgrafer och approximera resultat. Beräkning av roten Bestämning av lokalt maximivärde och lokalt minimivärde Bestämning av y-skärningspunkt Bestämning av skärningspunkt för två grafer Bestämning av koordinater vid valfri punkt (y för en given x/ x för en given y) Bestämning av integralen för valfritt intervall 9-1 Innan graflösning används 9-2 Analys av en funktionsgraf 9
9-1 Innan graflösning används Använd läget GRAPH för att rita grafen och tryck sedan på! 5 (G-Solv) för att uppvisa en funktionsmeny som innehåller följande poster. {ROOT}/{MAX}/{MIN}/{Y-ICPT}/{ISCT}... {rot}/{lokalt maximivärde}/{lokalt minimivärde}/{y-skärningspunkt}/{skärningspunkt för två grafer} {Y-CAL}/{X-CAL}/{ dx}... {y-koordinat för en given x-koordinat}/{x-koordinat för en given y-koordinat}/{integral för ett givet intervall} 144
9-2 Analys av en funktionsgraf De följande två graferna används för alla exempel i detta avsnitt, förutom exemplet för att bestämma skärningspunkter för två grafer. Minnesplats Y1 = x + 1 Y2 = x(x + 2)(x 2) Använd tittfönstret för att specificera följande parametrar. (A) (B) Xmin = 5 Ymin = 5 Xmin = 6.3 Ymin = 3.1 Xmax = 5 Ymax = 5 Xmax = 6.3 Ymax = 3.1 Xscale = 1 Yscale = 1 Xscale = 1 Yscale = 1 k Att bestämma rötter Exempel Bestäm rötterna för y = x(x + 2)(x 2) Tittfönstret: (B) 1(ROOT) (Detta gör att räknaren ställs i beredskapsläge och väntar på val av en graf.) Markören k visas på grafen med det lägsta minnesareanumret. Specificera grafen du vill använda. c Använd f och c för att flytta markören till grafen vars rötter du vill finna. Bestäm roten. Rötter återfinns med början från vänster. 145
9-2 Analys av en funktionsgraf Leta upp nästa rot till höger. e Inget händer när e trycks in om det inte finns någon rot till höger. e Använd d för att flytta bakåt till vänster. Om det enbart finns en graf gör ett tryck på 1(ROOT) att roten visas direkt (val av en graf krävs inte). koordinater (Y =) och olikhetsgrafer. k Att bestämma lokala maximivärden och lokala minimivärden Exempel Bestäm lokalt maximivärde och lokalt minimivärde för y = x (x + 2) (x 2) Tittfönstret: (A) 2(MAX) (Detta gör att räknaren ställs i beredskapsläge och väntar på val av en graf.) Specificera en graf och bestäm lokalt maximivärde. c 146
Analys av en funktionsgraf 9-2 Specificera en graf och bestäm lokalt minimivärde. 3(MIN) c Om det finns fler än ett lokalt maximi/minimivärde kan d och e användas för att flytta mellan dessa. Om det enbart finns en graf gör ett tryck på 2 (MAX) / 3 (MIN) att lokalt maximi/minimivärde visas direkt (val av en graf krävs inte). koordinater (Y =) och olikhetsgrafer. k Bestämning av y-avskärningar Exempel Att bestämma y-avskärningar för y = x + 1 Tittfönstret: (B) 4(Y-ICPT) (Detta gör att räknaren ställs i beredskapsläge och väntar på val av en graf.) Bestäm y-avskärningen. y-avskärningar är de punkter där grafen skär y-axeln. Om det enbart finns en graf gör ett tryck på 4 (Y-ICPT) att y-avskärningarna visas direkt (val av en graf krävs inte). koordinater (Y =) och olikhetsgrafer. 147
9-2 Analys av en funktionsgraf k Att bestämma skärningspunkter för två grafer Exempel Rita följande tre grafer och bestäm sedan skärningspunkterna för graf Y1 och graf Y3. Tittfönstret: (A) Y1 = x + 1 Y2 = x (x + 2) (x 2) Y3 = x 2 5(ISCT) (Detta gör att räknaren ställs i beredskapsläge och väntar på val av en graf.) Specificera graf Y1. Ett tryck på ändrar k till för specificering av den första grafen. Specificera den andra grafen (grafen Y3) för att bestämma skärningspunkterna. c Använd f och c för att flytta k på den andra grafen. Skärningspunkterna återfinns med början från vänster. e Nästa skärningspunkt till höger hittas. Om det inte finns någon skärningspunkt till höger händer inget när detta utförs. Använd d för att flytta bakåt till vänster. Om det enbart finns två grafer gör ett tryck på 5 (ISCT) att skärningspunkterna visas direkt (val av en graf krävs inte). koordinater (Y =) och olikhetsgrafer. 148
Analys av en funktionsgraf 9-2 k Att bestämma en koordinat (x för en given y/y för en given x) Exempel Bestäm y-koordinaten för x = 0,5 och x-koordinaten för y = 3,2 i grafen y = x (x + 2) (x 2) Tittfönstret: (B) 6(g)1(Y-CAL) Specificera en graf. c Räknaren väntar nu på inmatning av ett x- koordinatvärde. Mata in x-koordinatvärdet. a.f Bestäm motsvarande y-koordinatvärde. Specificera en graf. 6(g) 2(X-CAL) c Räknaren väntar nu på inmatning av ett y- koordinatvärde. Mata in y-koordinatvärdet d.c Bestäm motsvarande x-koordinatvärde. 149
9-2 Analys av en funktionsgraf Om det finns fler än ett x-koordinatvärde för ett givet y-koordinatvärde, eller fler än ett y-koordinatvärde för ett givet x-koordinatvärde, kan e och d användas för att flytta mellan dessa. Skärmen som används för koordinatvärden beror på vilken graftyp det rör sig om, såsom anges nedan. Polär koordinatgraf Parametrisk graf Olikhetsgraf Det går inte att bestämma en y-koordinat för en given x-koordinat med en parametrisk graf. Om det enbart finns en graf gör ett tryck på 1 (Y-CAL) / 2 (X-CAL) att x- koordinaten/y-koordinaten visas direkt (val av en graf krävs inte). k Bestämning av integralen för ett intervall Exempel 1,5 0 x (x + 2) (x 2) dx Tittfönstret: (A) 6(g) 3( dx) (Beredskap för val av graf) Välj önskad graf. c Skärmen uppmanar till inmatning av den nedre gränsen för integreringsintervallet. Flytta pekaren och mata in den nedre gränsen. d~d 150
Analys av en funktionsgraf 9-2 Mata in den övre gränsen och bestäm integralen. e~e (Övre gräns; x = 0) Vid specificering av integreringsintervallet måste den nedre gränsen alltid vara mindre än den övre gränsen. koordinater (Y =). k Att observera vid graflösning Beroende på tittfönstrets parameterinställning kan ibland resultaten fela vid diagramlösning. Meddelandet Not Found visas på skärmen om ingen lösning kan finnas för någon av de ovanstående operationerna. Följande förhållanden kan påverka beräkningens exakthet och göra det omöjligt att erhålla en lösning. När lösningen är en beröringspunkt till x-axeln. När lösningen är en beröringspunkt mellan två grafer. 151