For which values of α is the dimension of the subspace U V not equal to zero? Find, for these values of α, a basis for U V.

Relevanta dokument
1. Find for each real value of a, the dimension of and a basis for the subspace

is a basis for M. Also, find the coordinates of the matrix M = with respect to the basis M 1, M 2, M 3.

, m 3 = 3. Determine for each real α and for each real β 0 the geometric meaning of the equation x 2 + 2y 2 + αz 2 + 2xz 4yz = β.

for M, the matrix of the linear transformation F : R 3 M defined as x1 + x F ((x 1, x 2, x 3 )) = 2 + x 3 2x 1 + x 2 + 3x 3

2. Let the linear space which is spanned by the functions p 1, p 2, p 3, where p k (x) = x k, be equipped with the inner product p q = 1

is introduced. Determine the coefficients a ij in the expression for, knowing that the vectors (1, 0, 1), (1, 1, 1), (0, 1, 1) constitute an ON-basis.

1. Find the 4-tuples (a, b, c, d) that solves the system of linear equations

the standard scalar product, i.e. L E 4. Find the orthogonal projection of the vector w = (2, 1, 2, 1) on the orthogonal complement L of L (where

2. Find, for each real value of β, the dimension of and a basis for the subspace

1. Find an equation for the line λ which is orthogonal to the plane

S 1 11, S 2 9 and S 1 + 2S 2 32 E S 1 11, S 2 9 and 33 S 1 + 2S 2 41 D S 1 11, S 2 9 and 42 S 1 + 2S 2 51 C 52 S 1 + 2S 2 60 B 61 S 1 + 2S 2 A

x 2 2(x + 2), f(x) = by utilizing the guidance given by asymptotes and stationary points. γ : 8xy x 2 y 3 = 12 x + 3

2(x + 1) x f(x) = 3. Find the area of the surface generated by rotating the curve. y = x 3, 0 x 1,

6. a) Visa att följande vektorer är egenvektorer till matrisen A = , och ange motsvarande

S 1 11, S 2 9 and S 1 + 2S 2 32 E S 1 11, S 2 9 and 33 S 1 + 2S 2 41 D S 1 11, S 2 9 and 42 S 1 + 2S 2 51 C 52 S 1 + 2S 2 60 B 61 S 1 + 2S 2 A

f(x) =, x 1 by utilizing the guidance given by asymptotes and stationary points. cos(x) sin 3 (x) e sin2 (x) dx,

1. Find the volume of the solid generated by rotating the circular disc. x 2 + (y 1) 2 1

Find an equation for the tangent line τ to the curve γ : y = f(4 sin(xπ/6)) at the point P whose x-coordinate is equal to 1.

f(x) = x2 + 4x + 6 x 2 4 by utilizing the guidance given by asymptotes and stationary points.

8 < x 1 + x 2 x 3 = 1, x 1 +2x 2 + x 4 = 0, x 1 +2x 3 + x 4 = 2. x 1 2x 12 1A är inverterbar, och bestäm i så fall dess invers.

S 1 11, S 2 9 and S 1 + 2S 2 32 E S 1 11, S 2 9 and 33 S 1 + 2S 2 41 D S 1 11, S 2 9 and 42 S 1 + 2S 2 51 C 52 S 1 + 2S 2 60 B 61 S 1 + 2S 2 A

MMA129 Linear Algebra academic year 2015/16

sin(x 2 ) 4. Find the area of the bounded region precisely enclosed by the curves y = e x and y = e.

1. The sum of two non-negative numbers x and y equals 4. Which is the smallest interval that surely contains the number x 3 + 3y 2?

(4x 12) n n. is convergent. Are there any of those x for which the series is not absolutely convergent, i.e. is (only) conditionally convergent?

2 4xy. and classify each of them with respect to the corresponding linearized system. x 2 dy + 2xy = y2

. Bestäm Rez och Imz. i. 1. a) Låt z = 1+i ( b) Bestäm inversen av matrisen A = (3p) x + 3y + 4z = 5, 3x + 2y + 7z = 3, 2x y + z = 4.

1. Find, for x > 0, the general solution of the differential equation. dy/dt 4xy + 10y + 6y 2,

1 Find the area of the triangle with vertices A = (0,0,1), B = (1,1,0) and C = (2,2,2). (6p)

and u = och x + y z 2w = 3 (a) Finn alla lösningar till ekvationssystemet

(D1.1) 1. (3p) Bestäm ekvationer i ett xyz-koordinatsystem för planet som innehåller punkterna

denna del en poäng. 1. (Dugga 1.1) och v = (a) Beräkna u (2u 2u v) om u = . (1p) och som är parallell

2. For which values of the parameters α and β has the linear system. dy/dt x + y

Pre-Test 1: M0030M - Linear Algebra.

Tentamen i Matematik 3: M0031M.

Tentamen i Matematik 2: M0030M.

1. Compute the following matrix: (2 p) 2. Compute the determinant of the following matrix: (2 p)

and Mathematical Statistics Gerold Jäger 9:00-15:00 T Compute the following matrix

S 1 11, S 2 9 and S 1 + 2S 2 32 E S 1 11, S 2 9 and 33 S 1 + 2S 2 41 D S 1 11, S 2 9 and 42 S 1 + 2S 2 51 C 52 S 1 + 2S 2 60 B 61 S 1 + 2S 2 A

2. Find an equation for and sketch the curve which begins at the point P : (3, 1) and which otherwise is given by the linear system 1 = 2

och v = 1 och vektorn Svar 11x 7y + z 2 = 0 Enligt uppgiftens information kan vi ta vektorerna 3x + 2y + 2z = 1 y z = 1 6x + 6y + 2z = 4

2. Find the area of the bounded region precisely enclosed by the curves y = 3 x 2 and y = x + x.

2. Find to the differential equation 2y + (y ) 2 = 0 the solution whose graph at the point with the coordinates (1, 0) has the tangent line x + y = 1.

Isometries of the plane

Tentamen i Matematik 2: M0030M.

Lösningsförslag obs. preliminärt, reservation för fel

Högskolan i Skövde (SK, JS) Svensk version Tentamen i matematik

där β R. Bestäm de värden på β för vilka operatorn är diagonaliserbar. Ange även för respektive av dessa värden en bas av egenvektorer till F.

{ (1 + i)z iw = 2, iz + (2 + i)w = 5 + 2i, där i är den imaginära enheten. Ange rötterna z och w på rektangulär form.

1. Varje bevissteg ska motiveras formellt (informella bevis ger 0 poang)

2. Lös ekvationen z i = 2 z + 1 och ge i det komplexa talplanet en illustration av lösningsmängden.

Kurskod: TAMS28 MATEMATISK STATISTIK Provkod: TEN1 05 June 2017, 14:00-18:00. English Version

This exam consists of four problems. The maximum sum of points is 20. The marks 3, 4 and 5 require a minimum

1. Beräkna determinanten

3i)z 2013(1 ) och ge i det komplexa talplanet en illustration av lösningsmängden.

Prov i matematik Civilingenjörsprogrammen EL, IT, K, X, ES, F, Q, W, Enstaka kurs LINJÄR ALGEBRA

LUNDS TEKNISKA HÖGSKOLA Institutionen för Elektro- och Informationsteknik

Kurskod: TAMS11 Provkod: TENB 28 August 2014, 08:00-12:00. English Version

3. Lös ekvationen 3 + z = 3 2iz och ge i det komplexa talplanet en illustration av lösningsmängden.

x + 9y Skissa sedan för t 0 de två lösningskurvor som börjar i punkterna med koordinaterna

UPPSALA UNIVERSITET Matematiska institutionen Styf. Exempeltenta med lösningar Programmen EI, IT, K, X Linjär algebra juni 2004

Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 17 August 2015, 8:00-12:00. English Version

12.6 Heat equation, Wave equation

Bestäm den matris B som löser ekvationen = 1 2

Beräkna determinanten för produkten MMM Skissa, och bestäm arean av, det i det komplexa talplanet belägna området

Tentamen MMG610 Diskret Matematik, GU

3. Vilka taltripler (x, y, z) satisfierar ekvationssystemet 3x + 2y 3z = 3 2x + y + 4z = 7

Solutions to exam in SF1811 Optimization, June 3, 2014

2. Vilka taltripler (x, y, z) satisfierar ekvationssystemet x + 2y 13z = 4 4x y + 17z = 5

Module 1: Functions, Limits, Continuity

SF1624 Algebra och geometri

KTH, Matematik. Del I. (totalt 15 poäng, inklusive bonuspoäng). (1) Betrakta följande mängder i R 3 :

TMV166 Linjär algebra för M, vt 2016

7 n + 8 n 3 2n. converges or not. Irrespective whether the answer is yes or no, give an explanation

4. Bestäm arean av det begränsade område som precis innesluts av kurvorna. och y = x 2. h(x) = e 2x 3,

Tentamen i ETE305 Linjär algebra , 8 13.

1. Talföljden {t n } n=0 24, n = 13, då den för n 2 satisfierar differensekvationen 12t n 8t n 1 + t n 2 =

dx/dt x y + 2xy Ange även ekvationerna för de mot de stationära punkterna svarande linjariserade systemen.

TMV166 Linjär Algebra för M. Tentamen

Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 15 August 2016, 8:00-12:00. English Version

LINJÄR ALGEBRA II LEKTION 8+9

Övningar. MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik. Linjär algebra 2. Senast korrigerad:

Module 6: Integrals and applications

KTH, Matematik. Övningar till Kapitel , 6.6 och Matrisframställningen A γ av en rotation R γ : R 2 R 2 med vinkeln γ är

6.1 Skalärprodukt, norm och ortogonalitet. TMV141 Linjär algebra E VT 2011 Vecka 6. Lärmål 6.1. Skalärprodukt. Viktiga begrepp

Tentamen TMV140 Linjär algebra Z

2 + i 2 z = 1 + i, 2. I xy-planet är Ω det begränsade område som precis innesluts av kurvorna. och sin(x) = 6 3

Kursplan MD2022. Matematik III 30 högskolepoäng, Grundnivå 2

SF1624 Algebra och geometri Tentamen med lösningsförslag onsdag, 11 januari 2017

Examples on Analog Transmission

LINJÄR ALGEBRA HT2013. Kurslitteratur: Anton: Elementary Linear Algebra 10:e upplagan.

REPETITION. [F ] = a. a m1... a mn Sådan att [F (v)] = [F ][v].

Prov i matematik F2, X2, ES3, KandFys2, Lärare, Frist, W2, KandMat1, Q2 LINJÄR ALGEBRA II

x + y z = 2 2x + 3y + z = 9 x + 3y + 5z = Gauss-Jordan elemination ger: Area = 1 2 AB AC = 4. Span(1, 1 + x, x + x 2 ) = P 2.

4x az = 0 2ax + y = 0 ax + y + z = 0

Tentamen i matematik. Högskolan i Skövde

3. Skissa minst en period av funktionskurvan 3y = 4 cos(8x/7). Tydliggör i skissen på enklaste vis det som karakteriserar kurvan.

TMV142/186 Linjär algebra Z/TD

Quicksort. Koffman & Wolfgang kapitel 8, avsnitt 9

LUNDS TEKNISKA HÖGSKOLA Inst. for Elektro- och Informationsteknik. SIGNALBEHANDLING I MULTIMEDIA, ETI265 Inlämningsuppgift 1 (av 2), Task 1 (out of 2)

Transkript:

MÄLARDALEN UNIVERSITY School of Education, Culture and Communication Department of Applied Mathematics Examiner: Lars-Göran Larsson EXAMINATION IN MATHEMATICS MAA53 Linear Algebra Date: 07-08-6 Write time: 5 hours Aid: Writing materials, ruler This examination consists of eight randomly ordered problems each of which is worth at maximum 5 points. The maximum sum of points is thus 0. The pass-marks 3, and 5 require a minimum of 8, 6 and 3 points respectively. The minimum points for the ECTS-marks E, D, C, B and A are 8, 0, 6, 33 and 38 respectively. Solutions are supposed to include rigorous justifications and clear answers. All sheets with solutions must be sorted in the order the problems are given in. Especially, avoid to write on back pages of solution sheets.. Let E be the vector space R 3 equipped with the inner product u v = ( x x x 3 ) A ( y y y 3 ) T, where x, x, x 3 and y, y, y 3 are the coordinates of u and v respectively relative to the ordered basis (, 0, 0), (0,, 0), (0, 0, ), and where we in the notation make no difference between a matrix and its entry. Find the matrix A such that (,, 0), (, 0, ), (0,, ) constitutes an ordered ON-basis.. The linear operator F : E 3 E 3 has the matrix 7 0 3 A = 0 0 0. 3 0 7 relative to the standard basis. Prove that F is diagonalizable, i.e. that there exists a basis of eigenvectors of F. Find also a change-of-basis matrix S such that the basis of eigenvectors is orthonormal (ON). 3. The subspaces U and V of R are definied according to { U = span {(6, 3, 8, ), (, 7,, 0)} V = span {(3,, 5, ), (α 5, 3α, 3α, 8 6α)}. For which values of α is the dimension of the subspace U V not equal to zero? Find, for these values of α, a basis for U V.. Let M = {(a, b, c, d) E : 5a + 3b = c d, a + b = 3c + d, 3a + b = 5c + d}. Find an ON-basis (orthonormal basis) for M. { S : (x y) (3x y + z) + (y + z) =, 5. Classify the two surfaces S : (x y) (x y + 3z) + (y + z) =, i.e. find the geometric meaning of each equation. Motivate! 6. Find, with respect to the standard bases for R and R 3, the matrix of a linear transformation F : R R 3 for which ker(f ) = span{(,,, ), ( 3,,, 3)} and im(f ) = span{(, 3, ), (,, )}. 7. Prove that the set of functions p, p, p 3, where p n (x) = x n, is linearly independent and therefore is a basis for a 3-dimensional linear space P. Then prove that also the three functions p, q, r defined by p(x) = x x 3, q(x) = x + x + x 3, r(x) = x 3x x 3, is a basis for P, and find relative to this basis the coordinates of p + 5p p 3. 8. Let M denote the vector space of all -matrices with real-valued entries. Find, relative to the ordered basis ( ) ( 0 0 0, 0 ) ( 0 0, 0 0 ) ( 0, 0 0 0 ) for M and the ordered standard basis for R 3, the matrix of the linear transformation F : M R 3 defined as F ( ( x x ) x 3 x ) = (x x + x, x + 3x x 3 x, 3x + x 3 + x ). Also, find out whether F is surjective or not. Om du föredrar uppgifterna formulerade på svenska, var god vänd på bladet.

MÄLARDALENS HÖGSKOLA Akademin för utbildning, kultur och kommunikation Avdelningen för tillämpad matematik Examinator: Lars-Göran Larsson TENTAMEN I MATEMATIK MAA53 Linjär algebra Datum: 07-08-6 Skrivtid: 5 timmar Hjälpmedel: Skrivdon, linjal Denna tentamen består av åtta stycken om varannat slumpmässigt ordnade uppgifter som vardera kan ge maximalt 5 poäng. Den maximalt möjliga poängsumman är således 0. För godkänd-betygen 3, och 5 krävs minst 8, 6 respektive 3 poäng. För ECTS-betygen E, D, C, B och A krävs 8, 0, 6, 33 respektive 38 poäng. Lösningar förutsätts innefatta ordentliga motiveringar och tydliga svar. Samtliga lösningsblad skall vid inlämning vara sorterade i den ordning som uppgifterna är givna i. Undvik speciellt att skriva på baksidor av lösningsblad.. Låt E vara det det linjära rummet R 3 utrustat med skalärprodukten u v = ( x x x 3 ) A ( y y y 3 ) T, där x, x, x 3 och y, y, y 3 är koordinaterna för u respektive v relativt den ordnade basen (, 0, 0), (0,, 0), (0, 0, ), och där vi beteckningsmässigt inte gör någon skillnad mellan en matris av typ och dess element. Bestäm matrisen A så att (,, 0), (, 0, ), (0,, ) utgör en ordnad ON-bas.. Den linjära operatorn F : E 3 E 3 ges i standardbasen av matrisen 7 0 3 A = 0 0 0. 3 0 7 Visa att F är diagonaliserbar, dvs att det finns en bas av egenvektorer till F. Bestäm även en basbytesmatris S så att basen av egenvektorer är ortonormerad (ON). 3. Underrummen U och V till R är definierade enligt { U = span {(6, 3, 8, ), (, 7,, 0)} V = span {(3,, 5, ), (α 5, 3α, 3α, 8 6α)}. För vilka värden på α är dimensionen av underrummet U V skild från noll? Bestäm, för dessa värden på α, en bas för U V.. Låt M = {(a, b, c, d) E : 5a + 3b = c d, a + b = 3c + d, 3a + b = 5c + d}. Bestäm en ON-bas (ortonormerad bas) för M. { S : (x y) (3x y + z) + (y + z) =, 5. Klassificera de två ytorna S : (x y) (x y + 3z) + (y + z) =, dvs bestäm den geometriska innebörden av varje ekvation. Motivera! 6. Bestäm, med avseende på standardbaserna för R och R 3, avbildningsmatrisen för en linjär avbildning F : R R 3 för vilken N(F ) = span{(,,, ), ( 3,,, 3)} and V (F ) = span{(, 3, ), (,, )}. 7. Bevisa att funktionerna p, p, p 3, där p n (x) = x n, är linjärt oberoende och därmed utgör en bas för ett 3-dimensionellt vektorrum P. Bevisa sedan att även de tre funktionerna p, q, r definierade genom p(x) = x x 3, q(x) = x + x + x 3, r(x) = x 3x x 3, är en bas för P, och bestäm relativt denna bas koordinaterna för p + 5p p 3. 8. Låt M beteckna det linjära rummet av alla -matriser med reellvärda element. Bestäm, med avseende på den ordnade basen ( ) ( 0 0 0, 0 ) ( 0 0, 0 0 ) ( 0, 0 0 0 ) för M och den ordnade standardbasen för R 3, matrisen för den linjära avbildningen F : M R 3 definierad enligt F ( ( x x x 3 x ) ) = (x x + x, x + 3x x 3 x, 3x + x 3 + x ). Utred även om F är surjektiv eller inte? If you prefer the problems formulated in English, please turn the page.

MÄLARDALEN UNIVERSITY School of Education, Culture and Communication Department of Applied Mathematics Examiner: Lars-Göran Larsson Examination 07-08-6 EXAMINATION IN MATHEMATICS MAA53 Linear algebra EVALUATION PRINCIPLES with POINT RANGES Academic year: 06/7 Maximum points for subparts of the problems in the final examination. 3 A = 3 3 -------------------------------- One scenario ------------------------------------------ p: Correctly noted that the matrix of the scalar product relative to the ON-basis is equal to the identity matrix p: Correctly noted that the matrix relative to the standard T basis is equal to the (symmetric) matrix ( SS ), where S is the change-of-basis matrix from the standard basis to the ON-basis T p: Correctly found the matrix ( SS ) ----------------------------- Another scenario --------------------------------------- p: Correctly stated the three orthogonality and the three norm conditions for the ON-basis, i.e. = (,,0) (,,0) = a + a + a, 0 = (,,0) (,0,) = a + a + a3 + a3 etc, where a mn are the elements of A and where a mn = a nm since an inner product for vector spaces over real numbers is symmetric in its arguments 3p: Correctly solved the system of equations, where the number of unknowns are 9 3 = 6. A basis of eigenvectors is e.g. (,0, ), (,0,), ( 0,,0 ), i.e. F is diagonalizable S = 0 0 0 0 3p: Correctly proved that F is diagonalizable, by e.g. finding a set of three linearly independent eigenvectors p: Correctly found an orthogonal change-of-basis matrix S 3. 0 if α = dim(u V) = if α If α, then a basis for U V is e.g. (,,, ) p: Correctly formulated an equation which answers the question of which vectors belong to the subspace U V p: Correctly, from e.g. the reduced row-echelon form of the coordinate matrix of the vectors spanning U and V, concluded that α = means that U V equals the trivial subspace { 0 } and therefore that dim(u V) = 0 p: Correctly, from e.g. the reduced row-echelon form of the coordinate matrix of the vectors spanning U and V, concluded that α means that U V equals span (,,, ) and therefore that dim(u V) = { } ()

. An orthonormal basis for M is e.g. (,,,0), (,0,, ) 6 5. S is an hyperbolic cylinder S is a one-sheeted hyperboloid 6. The linear transformation F may have the matrix 3 8 7 6 3 7 relative to the standard basis 7. Since the matrix S in the change-ofbasis-relation ( p q r) = ( p p p3) S is invertible, the functions p, q, r constitute a basis for the vector space P. The function p + 5 p p3 has 9 3 33 the coordinates (,, ) 7 7 7 relative to the basis p, q, r, i.e. 9 3 p + 5p p = p q 3 7 7 33 7 r p: Correctly found a basis u, u for the vector space M p: Correctly initiated a Gram-Schmidt process to find an orthonormal basis e, e, and correctly as a first step in the process normed u to e p: Correctly continued with a second step in the G-S process by defining, evaluating and normalizing a nonzero vector u e e u orthogonal to e, ending up with e 3p: Correctly classified the first surface p: Correctly classified the second surface p: Correctly concluded that the elements of two of the matrix A s four columns must be the coordinates of two (linearly independent) linear combinations of the vectors that span the image of F p: Correctly concluded that the elements of the two other columns are given by the kernel of F, and correctly for the matrix A formulated the equations T T T A ( ) = (0 0 0 0) = A ( 3 3) p: Correctly solved the equations for the kernel, and correctly summarized the expression for the matrix A p: Correctly proved thay p, p, p3 is a basis for the vector space P p: Correctly proved thay p, q, r is a basis for the vector space P p: Correctly found the inverse of the matrix S p: Correctly relative the basis p, p, p3 found the coordinates of the function p + 5p p3 8. The matrix of F relative to the ordered bases for the domain and the codomain is equal to 0 3. 3 0 3p: Correctly identified the matrix of F relative to the ordered bases for the domain M and the codomain p: Correctly concluded that F is surjective due to the 3 fact that the rank of its matrix is equal to dim( R ) 3 R F is surjective ()