Datorlaboration 2. Läs igenom avsnitt 4.1 så att du får strukturen på kapitlet klar för dig.

Storlek: px
Starta visningen från sidan:

Download "Datorlaboration 2. Läs igenom avsnitt 4.1 så att du får strukturen på kapitlet klar för dig."

Transkript

1 Lunds universitet Kemometri Lunds Tekniska Högskola FMS 210, 5p / MAS 234, 5p Matematikcentrum VT 2007 Matematisk statistik version 24 januari Datorlaboration 2 1 Inledning I denna laboration behandlas Kapitel i kursboken (Chemometrics av Brereton). Laborationen behandlar tre metoder, principalkomponentanalys (PCA), klusteranalys och diskriminantanalys. De två första går under beteckningen Unsupervised Pattern Recognition medan den sista betecknas Supervised Pattern Recognition, och skillnaden är att man i diskriminantanalys redan har grupper och vill använda dessa för att göra en regel för hur man bestämmer grupptillhörigheten, medan man i PCA och klusteranalys inte har några grupper utan låter datorprogrammet försöka hitta dessa. I denna laboration finns nu riktiga datamaterial som inte är tillrättalagda för att passa en viss metod, och därmed finns det ju också flera olika lösningar på problemen. 1.1 Förberedelse Läs igenom avsnitt 4.1 så att du får strukturen på kapitlet klar för dig. 1.2 Förberedelseuppgift För att få ett datamaterial att arbeta med, välj 12 tvådimensionella mätningar där det helst skall vara ett visst beroende mellan variablerna. (Bäst är givetvis att du hittar ett intressant datamaterial från din egen verksamhet, och om det då inte är exakt 12 observationer så kan man ha överseende med detta.) Skriv upp matrisen X, och kalla den första kolumnen för x 1 och den andra kolumnen för x 2. Eftersom variablerna senare skall centreras men inte skalas är det bra om de två variablerna är mätta i samma enhet och är i ungefär samma storleksordning. 2 Grunderna i PCA 2.1 Förberedelse Läs först igenom avsnitt 4.2 för att få ett grepp om vad PCA kan användas till. Framställningen av PCA är ibland olika i olika böcker, och det framgår också av att det finns två varianter på PCA i Matlab, princomp respektive pcacov. 1

2 Skillnaden är att man i princomp försöker dela upp observationsmatrisen X i olika delar (som man gör i boken) och i pcacov försöker dela upp kovariansmatrisen. De båda metoderna ger samma resultat (så när som på ett tecken), men pcacov har fördelen att man inte behöver känna de enskilda observationerna utan bara kovariansmatrisen. Först skall vi göra en ändring av beteckningarna i boken: Boken använder uppdelningen X = TP av matrisen X, vilket är ett ganska ovanligt sätt att skriva PCA-uppdelningen, och för att få en överensstämmelse med teorin ovan så väljer vi det vanligaste sättet att skriva uppdelningen, nämligen X = TP 0. Läs nu avsnitt 4.3, men här finns en hel del ganska svårlästa avsnitt, så koncentrera dig framförallt på avsnitt 4.3.2, och Rekommendation: Räkna Problem 4.1 genom att standardisera (så som anges i uppgiften) med hjälp av populationsstandardavvikelsen. När matrisen med värden är standardiserad så använder man princomp för att få resultatet. Egenvärdena från boken överensstämmer inte med de egenvärden som ges av latent i utskriften. Lägg dock märke till att den procent som komponenterna förklarar blir densamma. Varför det är skillnad kommer att utredas nedan. Korrelationsmatrisen i Matlab beräknas med hjälp av kommandot corrcoef. 2.2 Illustration av insamlat datamaterial Använd nu de 12 mätningar som du har samlat in i förberedelseuppgiften och som finns i matrisen X. Centrera variablerna genom att dra ifrån medelvärdet av varje kolumn så att båda kolumnerna har medelvärdet 0. I beskrivningen nedan är X den centrerade matrisen, även om beräkningen också hade kunnat göras på den ursprungliga matrisen. Rita in de centrerade observationerna i en scatterplot (plot i Matlab), beräkna regressionen av x 2 med avseende på x 1 och rita in regressionslinjen i figuren. Dra på fri hand den linje som du tycker borde vara den första principalkomponenten. Tala om vad det är som gör att du gissar att principalkomponenten kommer att ligga där. För en centrerad matris gäller att kovariansmatrisen kan beräknas med hjälp av formeln C = X0 X N 1 där N är antalet rader i matrisen X. Kovariansmatrisen beräknas i Matlab med hjälp av kommandot cov. Beräkna kovariansmatrisen för det insamlade materialet både genom formeln ovan och genom att använda cov för att se att formeln stämmer. 2

3 2.3 Bokens metod Om man använder den första metoden för PCA så delar man upp matrisen X med en så kallad Singular Value Decomposition enligt X = U S V 0 där S är en diagonalmatris (men skrivs av Matlab i samma storlek som X)ochmatriserna U och V är matriser som är ortonormerade matriser (dvs U 0 U = UU 0 = VV 0 = V 0 V = I). Dessutom gäller att kvadraten på diagonalelementen i S är egenvärdena till matriserna X 0 X och XX 0 (dessa båda matriser har samma egenvärden). Använd kommandot svd i Matlab för att göra en uppdelning av din matris X. SkrivutU, S och V.Verifiera att U och V är ortonormerade samt att S innehåller roten ur egenvärdena (eig) till X 0 X. Vad är det för storlek på U och V? Om man begränsar sig till de de två första kolumnerna i U och kallar denna matris för U 1, de två första raderna i S och kallar denna matris S 1, så gäller att X = U 1 S 1 V 0 eftersom X bara har två kolumner. Sätt T = U 1 S 1 och P = V.Lått i vara den i:te kolumnen i matrisen T och p i den i:te kolumnen i matrisen P.Man har då i detta fallet att X = t 1 p t 2 p 0 2 = t 1 p E. Om man försöker ersätta den tvådimensionella variabeln som ges av X av en endimensionell så är den bästa varianten att använda t 1. Kan du illustrera värdena på t 1 i den tidigare figuren? OmmannuharvärdetpåP och därur vill hitta T så kan man multiplicera från höger: XP = TP 0 P = T eftersom matrisen P är ortonormerad. För varje enskild komponent kan detta resultat skrivas Xp i = t i. Går detta att illustrera på något sätt i figuren? Om man skall få motsvarande resultat i Matlab så använder man alltså kommandot princomp. Här får man både scores (= T ), loadings (= P ) och egenvärden (för kovariansmatrisen), men man kan också få Hotellings T 2, som man använder för att avgöra vilka observationer som ligger utanför det område man kan förvänta sig, och därför eventuellt skall betraktas som outliers. Lägg märke till att Hotellings T 2 baseras på alla variablerna i materialet och inte på att man har reducerat genom att välja ut de första principalkomponenterna. 3

4 2.4 Metoden som delar upp kovariansmatrisen Kovariansmatrisen för ett datamaterial är som bekant alla skattade kovarianser mellan variablerna skrivna i en matris. I Matlab beräknas kovariansmatrisen med hjälp av kommandot cov och som nämnts ovan så beräknas kovariansmatrisen för centrerade variabler med hjälp av formeln C = X0 X N 1. Eftersom C är en symmetrisk och positivt semidefinit matris kan man med hjälp av egenvärdena och egenvektorerna diagonalisera matrisen C enligt C = PDP 0, där D är en diagonalmatris med alla element större än eller lika med 0. PCA på en kovariansmatris gör man med hjälp av kommandot pcacov, och med hjälp av detta kommandot får man diagonalelementen i D (dvs egenvärdena) och egenvektorerna (som är kolumnerna i P ). Om man inte har de ursprungliga observationerna så kan man givetvis inte heller få de scores som beräknas med hjälp av princomp, men däremot kan man ju med hjälp av matrisen P få fram scores för en ny observation. Använd pcacov för att beräkna principalkomponenterna för kovariansmatrisen för X. Jämför med det tidigare resultatet. Man kan alltså nu också förklara skillnaden mellan de egenvärden som finns i boken och de egenvärden som produceras av Matlab. De egenvärden som anges i boken är egenvärdena för matrisen X 0 X, medan egenvärdena som anges i Matlab är egenvärdena för kovariansmatrisen C = X0 X N 1. Det innebär att de egenvärden som ges av Matlab skall multipliceras med N 1 för att man skall få de egenvärden som finns i boken. Med hjälp av uppdelningen X = USV 0 kan man också se sambandet X 0 X = USV 0 0 USV 0 = VS 0 U 0 USV 0 = VS 0 SV 0 = VS 2 V 0 och därmed C = X0 X N 1 = V S2 N 1 V 0 vilket innebär att den matris av egenvektorer man får vid diagonaliseringen av C är identisk med matrisen med loadings man får vid uppdelningen av X, det är bara egenvärdena som skiljer sig åt. I boken (sid 219) anges att man för att göra en biplot skall dividera scores med ett där angivet värde. Detta argument är lite svårt att förstå och det är också 4

5 så att man i andra datorprogram helt enkelt multiplicerar alla loadings med ett lämpligt valt värde så att det går att ha t och p isammafigur. Sedan kan man visa att det approximativt gäller att x ij = kt i k kp j k cos v där v är vinkeln mellan de båda vektorerna. Detta resultat kan man alltså använda för att avgöra vilka observationer som har ett stort värde på variabel j,ochdärmed förklara hur variabler och observationer hör ihop. Nedanstående datamaterial är insamlat för att ta reda på hur man bäst etablerar träd i parkmiljö, men här koncentrerar vi oss bara på att se om det är någon skillnad på de tretton träd som valdes slumpmässigt i Kungsträdgården i Stockholm. De insamlade data beskriver medelvärdet av tillväxten hos fyra grenar (en i vardera väderstreck) på trädet under tre år och klassificeringen av trädet. Här anger klass A mycket bra kvalitet, klass a någon mindre anmärkning och klass B något sämre kvalitet. Träd Tillv 03 Tillv 04 Tillv 05 Klass A A A A a A A A B a a B B Gör en PCA av tillväxterna för att reducera till två dimensioner. Tycker du att två dimensioner är lämpligt? Hade det kanske räckt med en eller behövs det fler dimensioner? För samman observationer som ser likadana ut i scoreplotten och försök att förklara varför de är likadana med hjälp av en biplot. 3 Grunderna i klusteranalys 3.1 Förberedelse Läs avsnitt 4.4. Rekommendation: Räkna Problem Beräkningsgång i klusteranalys Klusteranalys är ganska bra beskrivet i boken och det intressanta är oftast att få fram ett dendrogram för att se hur de olika observationerna är grupperade. Det finns tre saker som man måste bestämma sig för. 5

6 1. Om man skall standardisera variablerna innan man börjar beräkningen. 2. Hur man definierar avstånd mellan observationerna. Att använda korrelationsmatrisen för att skilja på observationer är mindre vanligt, men däremot kan man ibland se att man använder kvadratiskt Euklidiskt avstånd. 3. Hur man mäter avstånd och slår ihop två kluster. I boken anges tre metoder men det finns betydligt fler i de statistiska programpaketen, och ibland kan det vara svårt att avgöra vilken metod som passar bäst. Här får det nog användas lite fingertoppskänsla. 3.3 Uppgift Problemet är att det inte är helt automatiskt att göra klusteranalys i Matlab, men har man gjort det en gång så är det lätt att upprepa. Här används Problem 4.6 som exempel: Standardisera de fyra variablerna genom att subtrahera medelvärdet och dividera med standardavvikelsen. Man får en vektor med alla avstånden genom att använda kommandot pdist. Här kan man också välja vilken typ av avstånd man skall använda. På den vektor som bildas använder man sedan linkage, där man talar om hur man slår ihop kluster, och avslutningsvis dendrogram för att få trädet som visar hur observationerna hör ihop. Använd olika metoder för att se om du får olika resultat, och undersök också om det blir någon skillnad om du inte standardiserar. Gör en klusteranalys baserad på de tre tillväxterna i trädmaterialet och prova lite olika avstånd och klustermetoder för att se om det ger olika resultat. Grupperar detta ihop samma observationer som PCA? Grupperar sig träden efter klassindelningen? 4 Grunderna i diskriminantanalys 4.1 Förberedelse Läs avsnitt Diskriminantanalys är alltså det som kallas Supervised Pattern Recognition, här är grupperna givna för de observationer som har samlats in. Metoden är ganska väl beskriven i boken och man behöver bara veta att Matlab gör det som kallas linjär diskriminantanalys där man väger ihop kovariansmatriserna för de olika grupperna. Den andra metoden med olika kovariansmatriser kallas ibland kvadratisk diskriminantanalys, men den har det uppenbara problemet att ge det lite konstiga resultatet att avståndet från punkten A till B inte är detsamma som avståndet från punkten B till A. 4.2 Uppgift Diskriminantanalys i Matlab använder kommandot classify, och det finns givetvis ingenting som hindrar att man har samma observationer i både sample och training. Ibland använder man korsvalidering, som innebär att man tar bort den observation som skall klassificeras när man skall bestämma dess tillhörighet. Det finns 6

7 också möjlighet att beräkna Mahalanobisavståndet med hjälp av kommandot mahal. Rekommendation: Räkna Problem 4.8. Gör en diskriminantanalys baserad på de tre värdena av årstillväxter hos träden med klassificeringen i kvalitet som den grupperande variabeln. Kan man förutse kvaliteten med hjälp av tillväxterna? Redogör ordentligt för hur metoden fungerar. Gör också en korsvalidering för att se om detta förändrar resultatet. 5 Blandade problem Rekommendation: Räkna Problem 4.12 som egentligen är det enda Problemet som binder ihop punkterna och försöker tolka PCA-plotten på det viset. Rekommendation: Lös Problem 4.11 för centrerade data (lösningen i facit är för ej centrerade data). Här beräknar man alltså PCA för varje grupp för sig och försöker sedan använda detta för att skilja grupperna åt. Lös Problem 4.5. Detta Problem innehåller så mycket intressanta diskussioner och eventuellt även andra lösningsförslag som inte står i facit att det kan ingå även om man kan hitta en del av lösningen på hemsidan. Här följer nu två problem av mycket generell karaktär där du skall försöka använda dina kunskaper och din fantasi för att lösa frågeställningen. Här finns givetvis inte någon given lösning, men det är givetvis framförallt bland metoderna ovan som du skall leta när du försöker att hitta en eller flera lösningar. Det är också viktigt att poängtera att det inte säkert finns en riktigt bra lösning, datamaterialen är alltså inte på något sätt tillrättalagda för att passa för våra syften. 5.1 Nationella rekord Syftet med denna uppgift är att försöka strukturera upp länder i förhållande till rekordtiderna i löpning för kvinnor och män på 15 sträckor, från 100 meter till maraton. På de kortare sträckorna är tidsenheten sekunder, på de längre minuter. Uppgifterna är gamla och därför är t.ex. Tyskland uppdelat i två länder och USSR inte uppdelat. Datamängden i textfilen är uppdelad i män och kvinnor av typografiska skäl, du skall slå ihop materialet till en matris med 55 rader och 15 kolumner med tider. Datamaterialet finns i en textfil på hemsidan med namnet track.txt. Frågan är om man kan strukturera upp länderna och eventuellt också sträckorna på något sätt. Kan man på något sätt reducera modellen så att den inte innehåller så många variabler, måste man på något sätt dela upp materialet, kan man få ut något av scores och loadings, har några länder väldigt stort inflytande på resultatet, etc. En avslutande fråga kan vara: Vilket land är bäst på att springa? 7

8 5.2 Hjärnvävnadsprover Uppgiften går ut på att studera hjärnvävnadsprover från friska och cancersjuka personer och försöka skapa en modell för att kunna skilja friska och sjuka åt. 16 kromatogram, varav 10 från cancerpatienter, var ursprungsmaterialet som användes för att skapa modellerna. Det fattas ett fåtal värden i materialet, och dessa har betecknats med -99. Datamaterialet finns i en textfil på hemsidan med namnet brain.txt. 8

9 Lunds universitet Lunds Tekniska Högskola Matematikcentrum Matematisk statistik FMS 210 / MAS 234 VT 2007 Laboranter (namn och grupp): Utförd/Inlämnad: Godkänd: Redovisning av datorlaboration nr 2 Checklista Ja Nej 1. Är alla momenten i laborationen utförda? Har rapporten blivit korrekturläst? Är språk- och skrivfel rättade? Är figurer, tabeller och liknande försedda med figurtexter och tydlig numrering? Har alla figurer storheter inskrivna på alla axlar? Är de beräkningar som kan kontrollräknas kontrollräknade? Har du gjort en rimlighetsbedömning av samtliga resultat? Har eventuella orimliga resultat blivit vederbörligen kontrollerade och kommenterade? Är den löpande texten väl strukturerad med tydliga avsnittsrubriker? Är skriften försedd med: Sammanfattning? 2 2 Innehållsförteckning? 2 2 Sidnumrering? 2 2 Datum? Har förutsättningar, förenklingar och gjorda antaganden tydligt redovisats? Är din rapport läsbar utan tillgång till laborationshandledningen? Är detta försättsblad med checklista fullständigt ifyllt? 2 2

Datorlaboration 3. 1 Inledning. 2 Grunderna. 1.1 Förberedelse. Matematikcentrum VT 2007

Datorlaboration 3. 1 Inledning. 2 Grunderna. 1.1 Förberedelse. Matematikcentrum VT 2007 Lunds universitet Kemometri Lunds Tekniska Högskola FMS 210, 5p / MAS 234, 5p Matematikcentrum VT 2007 Matematisk statistik version 7 februari Datorlaboration 3 1 Inledning I denna laboration behandlas

Läs mer

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK Laboration 5: Regressionsanalys DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 Syftet med den här laborationen är att du skall

Läs mer

Hemuppgift 3 modellval och estimering

Hemuppgift 3 modellval och estimering Lunds Universitet Ekonomihögskolan Statistiska Institutionen STAB 13 VT11 Hemuppgift 3 modellval och estimering 1 Inledning Denna hemuppgift är uppdelad i två delar. I den första ska ni med hjälp av olika

Läs mer

Hemuppgift 2 ARMA-modeller

Hemuppgift 2 ARMA-modeller Lunds Universitet Ekonomihögskolan Statistiska Institutionen STAB 13 VT11 Hemuppgift 2 ARMA-modeller 1 Inledning Denna hemuppgift är uppdelad i två delar. I den första ska ni med hjälp av olika simuleringar

Läs mer

Matematikcentrum VT 2007 Matematisk statistik 14 januari Datorlaboration 1

Matematikcentrum VT 2007 Matematisk statistik 14 januari Datorlaboration 1 Lunds universitet Kemometri Lunds Tekniska Högskola FMS 210, 5p / MAS 234, 5p Matematikcentrum VT 2007 Matematisk statistik 14 januari 2007 Datorlaboration 1 1 Inledning I denna laboration behandlas Kapitel

Läs mer

Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar

Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, FÖR I/PI, FMS 121/2, HT-3 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar

Läs mer

ax + y + 4z = a x + y + (a 1)z = 1. 2x + 2y + az = 2 Ange dessutom samtliga lösningar då det finns oändligt många.

ax + y + 4z = a x + y + (a 1)z = 1. 2x + 2y + az = 2 Ange dessutom samtliga lösningar då det finns oändligt många. LUNDS TEKNISKA HÖGSKOLA MATEMATIK TENTAMENSSKRIVNING Linjär algebra 8 kl 4 9 INGA HJÄLPMEDEL. För alla uppgifterna, utom 3, förklara dina beteckningar och motivera lösningarna väl. Alla baser får antas

Läs mer

12. SINGULÄRA VÄRDEN. (u Av) u v

12. SINGULÄRA VÄRDEN. (u Av) u v . SINGULÄRA VÄRDEN Vårt huvudresultat sen tidigare är Sats.. Varje n n matris A kan jordaniseras, dvs det finns en inverterbar matris S sån att S AS J där J är en jordanmatris. Om u och v är två kolonnvektorer

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Diagonalisering av linjära avbildningar III

Läs mer

Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar

Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, AK FÖR I, FMS 120, HT-00 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar

Läs mer

Syftet med den här laborationen är att du skall bli mer förtrogen med det i praktiken kanske viktigaste området inom kursen nämligen

Syftet med den här laborationen är att du skall bli mer förtrogen med det i praktiken kanske viktigaste området inom kursen nämligen LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 6 MATEMATISK STATISTIK, AK FÖR I, FMS 120, HT-00 Laboration 6: Regression Syftet med den här laborationen är att du skall bli

Läs mer

STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB DATORLABORATION 1: TIDSSERIER.

STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB DATORLABORATION 1: TIDSSERIER. MATEMATISKA INSTITUTIONEN Tillämpad statistisk analys, GN STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB 2011-03-24 DATORLABORATION 1: TIDSSERIER. I Tarfala har man under en lång följd av

Läs mer

SF1624 Algebra och geometri Lösningsförsag till modelltentamen

SF1624 Algebra och geometri Lösningsförsag till modelltentamen SF1624 Algebra och geometri Lösningsförsag till modelltentamen DEL A (1) a) Definiera begreppen rektangulär form och polär form för komplexa tal och ange sambandet mellan dem. (2) b) Ange rötterna till

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A SF64 Algebra och geometri Lösningsförslag till tentamen 0-0-0 DEL A De tre totalmatriserna 0 3 3 4 0 3 0 0 0 0, 0 3 0 4 4 0 3 0 3 0 0 0 0 och 0 3 0 4 0 3 3 0 0 0 0 0 svarar mot linjära ekvationssystem

Läs mer

Laboration 4: Lineär regression

Laboration 4: Lineär regression LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08 Laboration 4: Lineär regression 1 Syfte Denna laboration handlar om regressionsanalys och

Läs mer

5.7. Ortogonaliseringsmetoder

5.7. Ortogonaliseringsmetoder 5.7. Ortogonaliseringsmetoder Om man har problem med systemets kondition (vilket ofta är fallet), lönar det sig att undvika normalekvationerna vid lösning av minsta kvadratproblemet. En härtill lämplig

Läs mer

. (2p) 2x + 2y + z = 4 y + 2z = 2 4x + 3y = 6

. (2p) 2x + 2y + z = 4 y + 2z = 2 4x + 3y = 6 Kursen bedöms med betyg, 4, 5 eller underkänd, där 5 är högsta betyg För godkänt betyg krävs minst 4 poäng från uppgifterna -7 Var och en av dessa sju uppgifter kan ge maximalt poäng För var och en av

Läs mer

Syftet med den här laborationen är att du skall bli mer förtrogen med följande viktiga områden inom matematisk statistik

Syftet med den här laborationen är att du skall bli mer förtrogen med följande viktiga områden inom matematisk statistik LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, AK FÖR I, FMS 01, HT-07 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen, enkla punktskattningar

Läs mer

Matematisk modellering fortsättningskurs Visuell variation

Matematisk modellering fortsättningskurs Visuell variation Matematisk modellering fortsättningskurs Visuell variation Johan Hedberg, Fredrik Svensson, Frida Hansson, Samare Jarf 12 maj 2011 1 1 Sammanfattning I denna rapport undersöker vi en modell för att beskriva

Läs mer

STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB DATORLABORATION 3: MULTIPEL REGRESSION.

STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB DATORLABORATION 3: MULTIPEL REGRESSION. MATEMATISKA INSTITUTIONEN Tillämpad statistisk analys, GN STOCKHOLMS UNIVERSITET VT 2011 Avd. Matematisk statistik GB 2011-04-13 DATORLABORATION 3: MULTIPEL REGRESSION. Under Instruktioner och data på

Läs mer

Lösningsförslag till skrivningen i Vektorgeometri (MAA702) måndagen den 30 maj 2005

Lösningsförslag till skrivningen i Vektorgeometri (MAA702) måndagen den 30 maj 2005 VÄXJÖ UNIVERSITET Matematiska och systemtekniska institutionen Per-Anders Svensson Lösningsförslag till skrivningen i Vektorgeometri (MAA702) måndagen den 30 maj 2005 Uppgift. Bestäm samtliga vektorer

Läs mer

Kontrollera att följande punkter är uppfyllda innan rapporten lämnas in: Första sidan är ett försättsblad (laddas ned från kurshemsidan)

Kontrollera att följande punkter är uppfyllda innan rapporten lämnas in: Första sidan är ett försättsblad (laddas ned från kurshemsidan) Statistiska institutionen VT 2012 Inlämningsuppgift 1 Statistisk teori med tillämpningar Instruktioner Ett av problemen A, B eller C tilldelas gruppen vid första övningstillfället. Rapporten ska lämnas

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A SF64 Algebra och geometri Lösningsförslag till tentamen 04-05-0 DEL A. Planet P innehåller punkterna (,, 0), (0, 3, ) och (,, ). (a) Bestäm en ekvation, på formen ax + by + cz + d = 0, för planet P. (

Läs mer

1 Syfte. 2 Moment hos och faltning av fördelningar MATEMATISK STATISTIK, AK FÖR L, FMS 033, HT Angående grafisk presentation

1 Syfte. 2 Moment hos och faltning av fördelningar MATEMATISK STATISTIK, AK FÖR L, FMS 033, HT Angående grafisk presentation UNDS TEKNISKA ÖGSKOA MATEMATIKCENTRUM MATEMATISK STATISTIK MATEMATISK STATISTIK, AK FÖR, FMS 33, T-3!"$&' (*) 1 Syfte I den första delen av detta projekt skall vi försöka hitta begripliga tolkningar av

Läs mer

Övningar. c) Om någon vektor i R n kan skrivas som linjär kombination av v 1,..., v m på precis ett sätt så. m = n.

Övningar. c) Om någon vektor i R n kan skrivas som linjär kombination av v 1,..., v m på precis ett sätt så. m = n. Övningar Linjära rum 1 Låt v 1,, v m vara vektorer i R n Ge bevis eller motexempel till följande påståenden Satser ur boken får användas a) Om varje vektor i R n kan skrivas som linjär kombination av v

Läs mer

6.1 Skalärprodukt, norm och ortogonalitet. TMV141 Linjär algebra E VT 2011 Vecka 6. Lärmål 6.1. Skalärprodukt. Viktiga begrepp

6.1 Skalärprodukt, norm och ortogonalitet. TMV141 Linjär algebra E VT 2011 Vecka 6. Lärmål 6.1. Skalärprodukt. Viktiga begrepp 6.1 Skalärprodukt, norm och ortogonalitet TMV141 Linjär algebra E VT 2011 Vecka 6 Skalärprodukt Norm/längd Normerad vektor/enhetsvektor Avståndet mellan två vektorer Ortogonala vektorer Ortogonala komplementet

Läs mer

Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla punktskattningar

Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla punktskattningar Lunds tekniska högskola Matematikcentrum Matematisk statistik Laboration 3 Matematisk statistik AK för CDIFysiker, FMS012/MASB03, HT15 Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen Lördagen den 5 juni, 2010 DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen Lördagen den 5 juni, 2010 DEL A SF624 Algebra och geometri Lösningsförslag till tentamen Lördagen den 5 juni, 200 DEL A ( Betrakta det komplexa talet w = i. (a Skriv potenserna w n på rektangulär form, för n = 2,, 0,, 2. ( (b Bestäm

Läs mer

DIAGONALISERING AV EN MATRIS

DIAGONALISERING AV EN MATRIS DIAGONALISERING AV EN MATRIS Definition ( Diagonaliserbar matris ) Låt A vara en kvadratisk matris dvs en matris av typ n n. Matrisen A är diagonaliserbar om det finns en inverterbar matris P och en diagonalmatris

Läs mer

4x az = 0 2ax + y = 0 ax + y + z = 0

4x az = 0 2ax + y = 0 ax + y + z = 0 LUNDS TEKNISKA HÖGSKOLA MATEMATIK TENTAMENSSKRIVNING LINJÄR ALGEBRA 206-03-4 kl 8 3 INGA HJÄLPMEDEL Lösningarna skall vara försedda med ordentliga motiveringar Alla koordinatsystem får antas vara ortonormerade

Läs mer

Instruktioner till arbetet med miniprojekt II

Instruktioner till arbetet med miniprojekt II Lunds tekniska högskola Matematikcentrum Matematisk statistik FMS035: Matematisk statistik för M Miniprojekt II, 17 maj 2013 Instruktioner till arbetet med miniprojekt II Innan ni börjar arbeta vid Datorlaboration

Läs mer

Inlämningsuppgift 1: Portföljvalsteori

Inlämningsuppgift 1: Portföljvalsteori STOCKHOLMS UNIVERSITET 20 november 2006 Matematiska institutionen Avd. för matematisk statistik Mikael Andersson Inlämningsuppgift 1: Portföljvalsteori Syftet med denna inlämningsuppgift är att ni skall

Läs mer

Resultat. Principalkomponentanalys för alla icke-kategoriska variabler

Resultat. Principalkomponentanalys för alla icke-kategoriska variabler Introduktion Den första delen av laborationen baserar sig på mätdata som skapades i samband med en medicinsk studie där en ny metod för att mäta ögontryck utvärderas. Den nya metoden som testas, Applanation

Läs mer

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression LABORATION 5 MATEMATISK STATISTIK AK FÖR CDE, FMS012, VT08

Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression LABORATION 5 MATEMATISK STATISTIK AK FÖR CDE, FMS012, VT08 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 5 MATEMATISK STATISTIK AK FÖR CDE, FMS012, VT08 Laboration 5: Regressionsanalys Syftet med den här laborationen är att du skall

Läs mer

Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet Per-Erik Isberg. Laboration 1. Simulering

Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet Per-Erik Isberg. Laboration 1. Simulering Matematikcentrum (7) Matematisk Statistik Lunds Universitet Per-Erik Isberg Laboration Simulering HT 006 Introduktion Syftet med laborationen är dels att vi skall bekanta oss med lite av de olika funktioner

Läs mer

1. (Dugga 1.1) (a) Bestäm v (3v 2u) om v = . (1p) and u =

1. (Dugga 1.1) (a) Bestäm v (3v 2u) om v = . (1p) and u = Kursen bedöms med betyg,, 5 eller underkänd, där 5 är högsta betyg. För godkänt betyg krävs minst poäng från uppgifterna -7. Var och en av dessa sju uppgifter kan ge maximalt poäng. För var och en av uppgifterna

Läs mer

Gör uppgift 6.10 i arbetsmaterialet (ingår på övningen 16 maj). För 10 torskar har vi värden på variablerna Längd (cm) och Ålder (år).

Gör uppgift 6.10 i arbetsmaterialet (ingår på övningen 16 maj). För 10 torskar har vi värden på variablerna Längd (cm) och Ålder (år). Matematikcentrum Matematisk statistik MASB11: BIOSTATISTISK GRUNDKURS DATORLABORATION 4, 21 MAJ 2018 REGRESSION OCH FORTSÄTTNING PÅ MINIPROJEKT II Syfte Syftet med dagens laboration är att du ska bekanta

Läs mer

Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs VT2014, lp3. Laboration 2. Fördelningar och simulering

Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs VT2014, lp3. Laboration 2. Fördelningar och simulering Matematikcentrum 1(6) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs VT2014, lp3 Laboration 2 Fördelningar och simulering Introduktion 2014-02-06 Syftet med laborationen är dels

Läs mer

2.1 Mikromodul: stokastiska processer

2.1 Mikromodul: stokastiska processer 2. Mikromodul: stokastiska processer 9 2. Mikromodul: stokastiska processer 2.. Stokastiska variabler En stokastiskt variabel X beskrivs av dess täthetsfunktion p X (x), vars viktigaste egenskaper sammanfattas

Läs mer

Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs HT2007. Laboration. Simulering

Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs HT2007. Laboration. Simulering Matematikcentrum 1(7) Matematisk Statistik Lunds Universitet MASB11 - Biostatistisk grundkurs HT007 Laboration Simulering Grupp A: 007-11-1, 8.15-.00 Grupp B: 007-11-1, 13.15-15.00 Introduktion Syftet

Läs mer

Övningar. MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik. Linjär algebra 2. Senast korrigerad:

Övningar. MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik. Linjär algebra 2. Senast korrigerad: MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik Linjär algebra 2 Senast korrigerad: 2006-02-10 Övningar Linjära rum 1. Låt v 1,..., v m vara vektorer i R n. Ge bevis eller motexempel till

Läs mer

SF1624 Algebra och geometri

SF1624 Algebra och geometri SF1624 Algebra och geometri Tjugofemte föreläsningen Mats Boij Institutionen för matematik KTH 10 december, 2009 Tentamens struktur Tentamen består av tio uppgifter uppdelade på två delar, Del A och Del

Läs mer

repetera begreppen sannolikhetsfunktion, frekvensfunktion och fördelningsfunktion

repetera begreppen sannolikhetsfunktion, frekvensfunktion och fördelningsfunktion Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF25: MATEMATISK STATISTIK KOMPLETTERANDE PROJEKT DATORLABORATION 1, 14 NOVEMBER 2017 Syfte Syftet med dagens laboration är att du ska träna

Läs mer

Avsnitt 6, Egenvärden och egenvektorer. Redan första produktelementet avslöjar att matrisen inte är en ortogonal matris. En matris 1 0.

Avsnitt 6, Egenvärden och egenvektorer. Redan första produktelementet avslöjar att matrisen inte är en ortogonal matris. En matris 1 0. Avsnitt Egenvärden och egenvektorer W Vilka av följande matriser är ortogonala? b d En matris A a a a n a a a n a a a n a m a m a mn är en ortogonal matris om dess kolumner bildar en ON-bas för rummet

Läs mer

Datorövning 1: Fördelningar

Datorövning 1: Fördelningar Lunds tekniska högskola Matematikcentrum Matematisk statistik FMS012/MASB03: MATEMATISK STATISTIK, 9 HP, VT-17 Datorövning 1: Fördelningar I denna datorövning ska du utforska begreppen sannolikhet och

Läs mer

SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till modelltentamen DEL A SF624 Algebra och geometri Lösningsförslag till modelltentamen DEL A () (a) Använd Gauss-Jordans metod för att bestämma lösningsmängden till ekvationssystemet 2x + 4x 2 + 2x 3 + 2x 4 = 2, 3x + 6x 2 x 3

Läs mer

Laboration 4: Hypotesprövning och styrkefunktion

Laboration 4: Hypotesprövning och styrkefunktion LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, AK FÖR L, FMS 032, HT-07 Laboration 4: Hypotesprövning och styrkefunktion 1 Syfte I denna laboration

Läs mer

Matematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10. Laboration. Regressionsanalys (Sambandsanalys)

Matematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10. Laboration. Regressionsanalys (Sambandsanalys) Matematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10 Laboration Regressionsanalys (Sambandsanalys) Grupp A: 2010-11-24, 13.15 15.00 Grupp B: 2010-11-24, 15.15 17.00 Grupp C: 2010-11-25,

Läs mer

Linjär algebra kurs TNA002

Linjär algebra kurs TNA002 Linjär algebra kurs TNA002 Lektionsanteckningar klass ED1 I detta dokument finns ett utdrag av de tavelanteckningar som uppkommit under lektionstid under kursen TNA002. Alltså kan detta dokument långt

Läs mer

Att göra före det schemalagda labpasset.

Att göra före det schemalagda labpasset. Institutionen för teknikvetenskap och matematik S0001M Matematisk statistik LABORATION 1 Laborationen avser att illustrera några grundläggande begrepp inom beskrivande statistik och explorativ dataanalys.

Läs mer

Egenvärden och egenvektorer. Linjär Algebra F15. Pelle

Egenvärden och egenvektorer. Linjär Algebra F15. Pelle Egenvärden och egenvektorer Linjär Algebra F1 Egenvärden och egenvektorer Pelle 2016-03-07 Egenvärde och egenvektor Om A är en n n matris så kallas ett tal λ egenvärde och en kolonnvektor v 0 egenvektor

Läs mer

Diagonalisering och linjära system ODE med konstanta koe cienter.

Diagonalisering och linjära system ODE med konstanta koe cienter. Diagonalisering och linjära system ODE med konstanta koe cienter. Variabelbyte i linjära system di erentialekvationer. Målet med det kapitlet i kursen är att lösa linjära system di erentialekvationer på

Läs mer

Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla punktskattningar

Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla punktskattningar LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 3 MATEMATISK STATISTIK AK FÖR CDIFYSIKER, FMS012/MASB03, HT12 Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla

Läs mer

Föreläsningsanteckningar Linjär Algebra II Lärarlyftet

Föreläsningsanteckningar Linjär Algebra II Lärarlyftet Föreläsningsanteckningar Linjär Algebra II Lärarlyftet Per Alexandersson Repetera hur man nner bas för rum som spänns upp av några vektorer Reptetera hur man nner bas för summa och snitt av delrum. Reptetera

Läs mer

Laboration 4 R-versionen

Laboration 4 R-versionen Matematikcentrum 1(5) Matematisk Statistik Lunds Universitet MASB11 VT13, lp3 Laboration 4 R-versionen Regressionsanalys 2013-03-07 Syftet med laborationen är att vi skall bekanta oss med lite av de funktioner

Läs mer

Tentamen i Linjär algebra (TATA31/TEN1) ,

Tentamen i Linjär algebra (TATA31/TEN1) , Linköpings universitet Matematiska institutionen Ulf Janfalk Kurskod: TATA Provkod: TEN Tentamen i Linjär algebra TATA/TEN 6, 4 9. Inga hjälpmedel. Ej räknedosa. För godkänt räcker 9 poäng och minst uppgifter

Läs mer

Institutionen för teknikvetenskap och matematik, S0001M LABORATION 2

Institutionen för teknikvetenskap och matematik, S0001M LABORATION 2 Institutionen för teknikvetenskap och matematik, S0001M LABORATION 2 Laborationen avser att illustrera användandet av normalfördelningsdiagram, konfidensintervall vid jämförelser samt teckentest. En viktig

Läs mer

1 Förberedelseuppgifter

1 Förberedelseuppgifter LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 2 MATEMATISK STATISTIK FÖR B, K, N, BME OCH KEMISTER; FMS086 & MASB02 Syfte: Syftet med dagens laborationen är att du skall: bli

Läs mer

Laboration 2: Styrkefunktion samt Regression

Laboration 2: Styrkefunktion samt Regression Lunds Tekniska Högskola Matematikcentrum Matematisk statistik Laboration 2 Styrkefunktion & Regression FMSF70&MASB02, HT19 Laboration 2: Styrkefunktion samt Regression Syfte Styrkefunktion Syftet med dagens

Läs mer

SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011

SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Avd. Matematisk statistik Tobias Rydén 2011-09-30 SF1905 Sannolikhetsteori och statistik: Lab 2 ht 2011 Förberedelser. Innan du går till laborationen, läs igenom den här handledningen. Repetera också i

Läs mer

Frågorna 1 till 6 ska svaras med ett kryss för varje korrekt påstående. Varje uppgift ger 1 poäng.

Frågorna 1 till 6 ska svaras med ett kryss för varje korrekt påstående. Varje uppgift ger 1 poäng. ATM-Matematik Mikael Forsberg 34-4 3 3 Matematik med datalogi, mfl. Linjär algebra mag4 6 3 Skrivtid: 9:-4:. Inga hjälpmedel. Lösningarna skall vara fullständiga och lätta att följa. Börja varje ny uppgift

Läs mer

Linjär Algebra, Föreläsning 2

Linjär Algebra, Föreläsning 2 Linjär Algebra, Föreläsning 2 Tomas Sjödin Linköpings Universitet Geometriska vektorer, rummen R n och M n 1 En (geometrisk) vektor är ett objekt som har storlek och riktning, men inte någon naturlig startpunkt.

Läs mer

SF1624 Algebra och geometri Tentamen Torsdag, 9 juni 2016

SF1624 Algebra och geometri Tentamen Torsdag, 9 juni 2016 SF624 Algebra och geometri Tentamen Torsdag, 9 juni 26 Skrivtid: 8: 3: Tillåtna hjälpmedel: inga Examinator: Tilman Bauer Tentamen består av nio uppgifter som vardera ger maximalt fyra poäng. Del A på

Läs mer

Tentamen i Linjär algebra , 8 13.

Tentamen i Linjär algebra , 8 13. LINKÖPINGS UNIVERSITET Matematiska Institutionen Ulf Janfalk Kurskod: ETE5 Provkod: TEN Tentamen i Linjär algebra 5 8, 8. Inga hjälpmedel. Ej räknedosa. Resultatet meddelas vi e-post. För godkänt räcker

Läs mer

Prov i matematik Civilingenjörsprogrammen EL, IT, K, X, ES, F, Q, W, Enstaka kurs LINJÄR ALGEBRA

Prov i matematik Civilingenjörsprogrammen EL, IT, K, X, ES, F, Q, W, Enstaka kurs LINJÄR ALGEBRA UPPSALA UNIVERSITET Matematiska institutionen Volodymyr Mazorchuk Ryszard Rubinsztein Prov i matematik Civilingenjörsprogrammen EL, IT, K, X, ES, F, Q, W, Enstaka kurs LINJÄR ALGEBRA 007 08 16 Skrivtid:

Läs mer

SF1624 Algebra och geometri Tentamen med lösningsförslag onsdag, 11 januari 2017

SF1624 Algebra och geometri Tentamen med lösningsförslag onsdag, 11 januari 2017 SF64 Algebra och geometri Tentamen med lösningsförslag onsdag, januari 7. (a) För vilka värden på k har ekvationssystemet (med avseende på x, y och z) kx + ky + z 3 x + ky + z 4x + 3y + 3z 8 en entydig

Läs mer

Multiplicera 7med A λ 1 I från vänster: c 1 (Av 1 λ 1 v 1 )+c 2 (Av 2 λ 1 v 2 )+c 3 (Av 3 λ 1 v 3 ) = 0

Multiplicera 7med A λ 1 I från vänster: c 1 (Av 1 λ 1 v 1 )+c 2 (Av 2 λ 1 v 2 )+c 3 (Av 3 λ 1 v 3 ) = 0 Diagonalisering Anm. Begreppet diagonaliserbarhet är relevant endast för linjära avbildningar mellan rum av samma dimension, d.v.s. sådana som representeras av kvadratiska matriser. När vi i fortsättningen

Läs mer

Multivariata metoder

Multivariata metoder Multivariata metoder F3 Linda Wänström Linköpings universitet 17 september Wänström (Linköpings universitet) Multivariata metoder 17 september 1 / 21 Principalkomponentanalys Syfte med principalkomponentanalys

Läs mer

Laboration 2: 1 Syfte. 2 Väntevärde och varians hos en s.v. X med fördelningen F X (x) MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08

Laboration 2: 1 Syfte. 2 Väntevärde och varians hos en s.v. X med fördelningen F X (x) MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK MATEMATISK STATISTIK, AK FÖR BYGG, FMS 601, HT-08 Laboration 2: Om väntevärden och fördelningar 1 Syfte I denna laboration skall vi försöka

Läs mer

Första sidan är ett försättsblad (laddas ned från kurshemsidan) Alla frågor som nns i uppgiftstexten är besvarade

Första sidan är ett försättsblad (laddas ned från kurshemsidan) Alla frågor som nns i uppgiftstexten är besvarade HT 2011 Inlämningsuppgift 1 Statistisk teori med tillämpningar Instruktioner Ett av problemen A, B eller C tilldelas gruppen vid första övningstillfället. Rapporten ska lämnas in senast 29/9 kl 16.30.

Läs mer

TMV166 Linjär algebra för M, vt 2016

TMV166 Linjär algebra för M, vt 2016 TMV166 Linjär algebra för M, vt 2016 Lista över alla lärmål Nedan följer en sammanfattning av alla lärmål i kursen, uppdelade enligt godkänt- och överbetygskriterier. Efter denna lista följer ytterligare

Läs mer

Uppgift 1 - programmet, Uppg6.m, visade jag på föreläsning 1. Luftmotståndet på ett objekt som färdas genom luft ges av formeln

Uppgift 1 - programmet, Uppg6.m, visade jag på föreläsning 1. Luftmotståndet på ett objekt som färdas genom luft ges av formeln Matlab-föreläsning (4), 10 september, 015 Innehåll m-filer (script) - fortsättning från föreläsning 1 In- och utmatning Sekvenser, vektorer och matriser Upprepning med for-slingor (inledning) Matlab-script

Läs mer

1 Syfte. 2 Moment hos och faltning av fördelningar MATEMATISK STATISTIK, AK FÖR L, FMS 033, HT-04. 2.2 Angående grafisk presentation

1 Syfte. 2 Moment hos och faltning av fördelningar MATEMATISK STATISTIK, AK FÖR L, FMS 033, HT-04. 2.2 Angående grafisk presentation LUNDS TEKNISKA HÖSKOLA ATEATIKCENTRU ATEATISK STATISTIK ATEATISK STATISTIK, AK FÖR L, FS 33, HT-4!"$&' (*) 1 Syfte I den första delen av detta projekt skall vi försöka hitta begripliga tolkningar av begreppen

Läs mer

Datorövning 1 Fördelningar

Datorövning 1 Fördelningar Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF20: MATEMATISK STATISTIK, ALLMÄN KURS, 7.5HP FÖR E, HT-15 Datorövning 1 Fördelningar I denna datorövning ska du utforska begreppen sannolikhet

Läs mer

1 Produktivitet kontra kvalitet vid tillverkning av bilar

1 Produktivitet kontra kvalitet vid tillverkning av bilar LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK FMS 035: MATEMATISK STATISTIK FÖR M, VT-11 DATORLABORATION 5 Syfte Syftet med dagens laboration är att du ska lära dig tolka ett av de vanligaste

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen DEL A SF1624 Algebra och geometri Lösningsförslag till tentamen 14129 DEL A 1 (a) Bestäm linjen genom punkterna A = (,, 1) och B = (2, 4, 1) (1 p) (b) Med hjälp av projektion kan man bestämma det kortaste avståndet

Läs mer

LYCKA TILL! kl 8 13

LYCKA TILL! kl 8 13 LUNDS TEKNISK HÖGSKOL MTEMTIK TENTMENSSKRIVNING Linjär algebra 0 0 kl 8 3 ING HJÄLPMEDEL Förklara dina beteckningar och motivera lösningarna väl Om inget annat anges är koordinatsystemen ortonormerade

Läs mer

Föreläsning 12: Regression

Föreläsning 12: Regression Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är

Läs mer

Basbyten och linjära avbildningar

Basbyten och linjära avbildningar Föreläsning 11, Linjär algebra IT VT2008 1 Basbyten och linjära avbildningar Innan vi fortsätter med egenvärden så ska vi titta på hur matrisen för en linjär avbildning beror på vilken bas vi använder.

Läs mer

träna på att använda olika grafiska metoder för att undersöka vilka fördelningar ett datamaterial kan komma från

träna på att använda olika grafiska metoder för att undersöka vilka fördelningar ett datamaterial kan komma från Matematikcentrum Matematisk statistik MASB11: BIOSTATISTISK GRUNDKURS DATORLABORATION 1, 1 APRIL 215 FÖRDELNINGAR, SIMULERING OCH FÖRDELNINGSANPASSNING Syfte Syftet med dagens laboration är att du ska

Läs mer

SKRIVNING I VEKTORGEOMETRI

SKRIVNING I VEKTORGEOMETRI SKRIVNING I VEKTORGEOMETRI 017-05-09 Om inget annat uttryckligen sägs, kan koordinaterna för en vektor i antas vara givna i en ON-bas. Baser i rummet kan dessutom antas vara positivt orienterade. 1. Bestäm

Läs mer

SF1624 Algebra och geometri Lösningsförslag till tentamen Fredagen den 23 oktober, 2009 DEL A

SF1624 Algebra och geometri Lösningsförslag till tentamen Fredagen den 23 oktober, 2009 DEL A SF1624 Algebra och geometri Lösningsförslag till tentamen Fredagen den 23 oktober, 2009 DEL A (1) (a) Bestäm de övriga rötterna till ekvationen z 3 11z 2 + 43z 65 = 0 när det är känt att en av rötterna

Läs mer

1 Syfte. 2 Förberedelseuppgifter DATORLABORATION 1 MATEMATISK STATISTIK, AK FÖR L, FMS 033, HT-03

1 Syfte. 2 Förberedelseuppgifter DATORLABORATION 1 MATEMATISK STATISTIK, AK FÖR L, FMS 033, HT-03 LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 1 MATEMATISK STATISTIK, AK FÖR L, FMS 0, HT-0! "$&%')(+*,-./01.02% 1 Syfte Syftet med den här laborationen är att du ska bli

Läs mer

Laboration 3: Enkla punktskattningar, styrkefunktion och bootstrap

Laboration 3: Enkla punktskattningar, styrkefunktion och bootstrap LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 3, HT -06 MATEMATISK STATISTIK FÖR F, PI OCH NANO, FMS 012 MATEMATISK STATISTIK FÖR FYSIKER, MAS 233 Laboration 3: Enkla punktskattningar,

Läs mer

bli bekant med summor av stokastiska variabler.

bli bekant med summor av stokastiska variabler. LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORÖVNING 2 MATEMATISK STATISTIK FÖR E FMSF20 Syfte: Syftet med dagens laborationen är att du skall: få förståelse för diskreta, bivariate

Läs mer

Vektorerna är parallella med planet omm de är vinkelräta mot planets normal, dvs mot

Vektorerna är parallella med planet omm de är vinkelräta mot planets normal, dvs mot Kursen bedöms med betyg,, eller underkänd, där är högsta betyg. För godkänt betyg krävs minst poäng från uppgifterna -7. Var och en av dessa sju uppgifter kan ge maximalt poäng. För var och en av uppgifterna

Läs mer

TAIU07 Matematiska beräkningar med Matlab

TAIU07 Matematiska beräkningar med Matlab TAIU07 Matematiska beräkningar med Matlab Laboration 1. Vektorberäkningar Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion I denna övning skall vi träna på

Läs mer

Kapitel 4: SAMBANDET MELLAN VARIABLER: REGRESSIONSLINJEN

Kapitel 4: SAMBANDET MELLAN VARIABLER: REGRESSIONSLINJEN Kapitel 4: SAMBANDET MELLAN VARIABLER: REGRESSIONSLINJEN Spridningsdiagrammen nedan representerar samma korrelationskoefficient, r = 0,8. 80 80 60 60 40 40 20 20 0 0 20 40 0 0 20 40 Det finns dock två

Läs mer

Basbyte (variabelbyte)

Basbyte (variabelbyte) Basbyte (variabelbyte) En vektors koordinater beror på valet av bas! Tänk på geometriska vektorer här. v har längden 2 och pekar rakt uppåt i papprets plan. Kan vi då skriva v (, 2)? Om vi valt basvektorer

Läs mer

Stokastiska vektorer

Stokastiska vektorer TNG006 F2 9-05-206 Stokastiska vektorer 2 Kovarians och korrelation Definition 2 Antag att de sv X och Y har väntevärde och standardavvikelse µ X och σ X resp µ Y och σ Y Då kallas för kovariansen mellan

Läs mer

Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 9p av totalt 20p Hjälpmedel: MATLAB

Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 9p av totalt 20p Hjälpmedel: MATLAB MAI/Linköpings universitet Fredrik Berntsson Tentamen TANA17 Matematiska beräkningar Provkod: DAT1 Godkänd: 9p av totalt 20p Hjälpmedel: MATLAB Redovisning Lös först uppgifterna i Matlab. Då du har en

Läs mer

DATORÖVNING 2 MATEMATISK STATISTIK FÖR D, I, PI OCH FYSIKER; FMSF45 & MASB03. bli bekant med summor av stokastiska variabler.

DATORÖVNING 2 MATEMATISK STATISTIK FÖR D, I, PI OCH FYSIKER; FMSF45 & MASB03. bli bekant med summor av stokastiska variabler. LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORÖVNING 2 MATEMATISK STATISTIK FÖR D, I, PI OCH FYSIKER; FMSF45 & MASB03 Syfte: Syftet med dagens laborationen är att du skall: få förståelse

Läs mer

Miniprojekt: Vattenledningsnäten i Lutorp och Vingby 1

Miniprojekt: Vattenledningsnäten i Lutorp och Vingby 1 11 oktober 215 Miniprojekt 1 (5) Beräkningsvetenskap I/KF Institutionen för informationsteknologi Teknisk databehandling Besöksadress: MIC hus 2, Polacksbacken Lägerhyddsvägen 2 Postadress: Box 337 751

Läs mer

Laboration: Vektorer och matriser

Laboration: Vektorer och matriser Laboration: Vektorer och matriser Grundläggande om matriser Begreppet matris är en utvidgning av vektorbegreppet, och det används bl a när man löser linjära ekvationssystem. Namnet Matlab står för MATrix

Läs mer

Tentamen för kursen. Linjära statistiska modeller. 16 augusti 2007 9 14

Tentamen för kursen. Linjära statistiska modeller. 16 augusti 2007 9 14 STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Tentamen för kursen Linjära statistiska modeller 16 augusti 2007 9 14 Examinator: Anders Björkström, tel. 16 45 54, bjorks@math.su.se Återlämning: Rum 312, hus

Läs mer

TANA17 Matematiska beräkningar med Matlab

TANA17 Matematiska beräkningar med Matlab TANA17 Matematiska beräkningar med Matlab Laboration 3. Funktioner Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion I denna laboration skall vi träna på att

Läs mer

Tentamen i Linjär algebra (TATA31/TEN1) ,

Tentamen i Linjär algebra (TATA31/TEN1) , Linköpings universitet Matematiska institutionen Ulf Janfalk Kurskod: TATA Provkod: TEN Tentamen i Linjär algebra TATA/TEN) 8, 9. Inga hjälpmedel. Ej räknedosa. För godkänt räcker 9 poäng och minst uppgifter

Läs mer

Lektionsanteckningar 11-12: Normalfördelningen

Lektionsanteckningar 11-12: Normalfördelningen Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet

Läs mer

Matematisk statistik, Föreläsning 5

Matematisk statistik, Föreläsning 5 Matematisk statistik, Föreläsning 5 Ove Edlund LTU 2011-12-09 Ove Edlund (LTU) Matematisk statistik, Föreläsning 5 2011-12-09 1 / 25 Laboration 4 Jobba i grupper med storlek 2 Ove Edlund (LTU) Matematisk

Läs mer

Crash Course Algebra och geometri. Ambjörn Karlsson c januari 2016

Crash Course Algebra och geometri. Ambjörn Karlsson c januari 2016 Crash Course Algebra och geometri Ambjörn Karlsson c januari 2016 ambjkarlsson@gmail.com 1 Contents 1 Projektion och minsta avstånd 4 2 Geometriska avbildningar och avbildningsmatriser 5 3 Kärnan 6 3.1

Läs mer