Användning. Fixed & Random. Centrering. Multilevel Modeling (MLM) Var sak på sin nivå
|
|
- Anna Axelsson
- för 7 år sedan
- Visningar:
Transkript
1 Användning Multilevel Modeling (MLM) Var sak på sin nivå Kimmo Sorjonen Sektionen för Psykologi Karolinska Institutet Kärt barn har många namn: (1) Random coefficient models; () Mixed effect models; (3) Multilevel regression models; () Hierarchical linear models; (5) Multilevel covariance structure models; etc. Denna metod används när man skall predicera/förklara individuella värden (t.ex. skolbetyg) utifrån prediktorer som är både på gruppnivå (t.ex. lärarstabens kompetens) och på individnivå (t.ex. hur mycket man pluggar). Data är hierarkiska. Precis som vid vanlig regressionsanalys måste utfallsvariabeln (den beroende variabeln) vara kontinuerlig. (Det finns dock även logistisk multilevel modeling ). Fixed & Random Fixed effects: Effekten av en prediktor (lägre nivå) antas vara den samma i alla subgrupper (högre nivå). Random effects: Effekten av en prediktor (lägre nivå) antas (tillåts) variera mellan olika subgrupper (högre nivå). Fixed & Random Intercept = Värdet i utfallsvariabeln när prediktorerna har värdet noll. Det är vanligt att man centrerar variabler och då är värdet noll = medelvärdet. Fixed intercept: Värdet i utfallsvariabeln antas vara det samma i alla subgrupper (högre nivå) när prediktorerna (lägre nivå) har värdet noll. Random intercept: Värdet i utfallsvariabeln tillåts variera mellan subgrupper (högre nivå) när prediktorerna (lägre nivå) har värdet noll. Fixed & Random Centrering Utfallsvärde Utfallsvärde Prediktorvärde Fixed intercept, Fixed effect Prediktorvärde Fixed intercept, Random effect A B C D E F G H A B C D E F G H Utfallsvärde Utfallsvärde Prediktorvärde Random intercept, Fixed effect Prediktorvärde Random intercept, Random effect A B C D E F G H A B C D E F G H För att intercept skall bli meningsfulla är det vanligt att man centrerar prediktorer. Centreringen kan göras utifrån hela stickprovet eller utifrån subsamples Centrerat värde x ij x.. Intercept = Predicerad vikt om man är cm lång. Intercept = Predicerad vikt om man är av medellängd. 1
2 Centrering Varför inte OLS? Säg att vi skall predicera elevers betyg i ett visst ämne utifrån lärares estimerade kompetens. Vi samlar in data från 3 elever som har sex olika lärare (alltså 5 elever per lärare). Med OLS analys skulle vi tvingas att antingen: (1) Ge varje elev ett värde i lärarkompetens som motsvarar hans/hennes lärare och sedan predicera de 3 elevernas individuella betyg utifrån lärarkompetens. Problem: Analysen utgår ifrån att vi har 3 av varandra oberoende observerade värden på prediktorn (lärarkompetens) fast vi egentligen bara har estimerad kompetens från sex lärare. Vi får dopade frihetsgrader. () Beräkna genomsnittligt betyg för de sex lärarnas elever och sedan predicera genomsnittligt betyg utifrån de sex lärarnas individuella kompetens. Nu får vi istället endast sex värden i prediktor och utfallsvariabel, trots att vi har data från 3 elever. Analysen får låg power. Dessutom: Båda förfarandena ovan ignorerar det faktum att även värden i utfallsvariabeln (betyg) samt värden i individuella prediktorer tenderar att vara mer lika inom grupper. Dessa problem undviks genom att använda Multilevel Modeling istället för OLS. Estimeringsmetod Estimeringsmetod Maximum Likelihood (ML): För kombinationer av parametervärden estimeras sannolikheten för att erhålla aktuella data om detta är parametervärdena i populationen. Kombinationen av parametervärden som maximerar denna sannolikhet väljs ut. Restricted Maximum Likelihood (REML, RML): ML ger biased estimat i vissa situationer (t.ex. med små sample). REML algoritmen kompenserar för detta. Modellanpassning ML räknar fram en sannolikhet för att få de data vi har om de utvalda parametervärdena gäller i populationen som stickprovet representerar (Likelihood, varierar mellan och 1, ju högre värde desto bättre modell). Man tar den naturliga logaritmen av denna sannolikhet (Log Likelihood, varierar mellan och, ju högre värde desto bättre modell). Sedan multipliceras detta värde med ( LL, varierar mellan och, ju lägre värde desto bä re modell). Varför gör man så? Jo, LL har en chi fördelning och därmed kan man signifikanspröva modellens anpassning samt skillnaden mellan nestade modeller. Modellanpassning, Differens En enklare (färre parametrar) modell A sägs vara nestad i en mer generell (fler parametrar) modell B om alla parametrar som finns i A också finns i B. Anpassningen för B anpassningen för A, men är skillnaden signifikant? Detta kan testas genom att beräkna skillnaden mellan de två modellernas anpassning ( LN(Likelihood)) och se om denna skillnad är signifikant enligt chi fördelningen (df = parametrar i B minus parametrar i A). Detta är möjligt eftersom skillnaden mellan två chi värden också har en chi fördelning. OBS: Detta är möjligt endast om estimeringen gjorts med Maximum Likelihood (ML) och INTE med REML.
3 Nestning Modell A: Resultat = Intercept + Residual Modell B: Resultat = Intercept + Effekt av pluggande + Residual Modell C: Resultat = Intercept + Effekt av lärarens kompetens + Effekt av skolans ekonomi + Residual Modell D: Resultat = Intercept + Effekt av pluggande + Effekt av lärarens kompetens + Effekt av skolans ekonomi + Residual Två nivåer, Data A är nestad i B, C, och D Bär nestad i D C är nestad i D Där inte nestad i någon Modell 1 (M1), Specifikation Resultat = Grand mean + Residual (för att testa om det finns en variation mellan elevers provresultat. Modell 1 (M1), Specifikation Kan den genomsnittliga avvikelsen (kvadrerade) från medelvärdet vara lika med noll i populationen? M1, Parametrar Modell (M), Specifikation Grand mean = medelvärdet för Prov1 över hela stickprovet Vi lägger till en prediktor på individnivå (nivå 1): Resultat = Grand mean + B1 x Pluggar.cent(n1) + Residual. Enligt modellen är effekten av pluggande den samma över alla lärare (den är fixed)). Det finns en signifikant variation mellan elevernas resultat. 3
4 Modell (M), Specifikation Kan pluggandet förklara varians i resultat? All varians? M, Anpassning och Parametrar Genom att ta med pluggande som en prediktor sjönk missanpassningen från 5955 till 5, vilket är jättesignifikant, χ (df = 1) = 1375, p <.1 Både interceptet och effekten av pluggande är signifikant skilda från noll Interceptet ( = predicerat resultat om man pluggar genomsnittligt ) är signifikant högre än noll. När pluggandet ökar med en timme så ökar provresultatet med.7 poäng och denna effekt är signifikant högre än noll. M, Random effect Modell 1 (utan pluggande som prediktor) Tar vi med pluggande som prediktor så sjunker residualerna från 1 till 13. Detta innebär att 15% av variationen mellan elevernas resultat kan förklaras av skillnader i pluggande. Nedan ser vi dock att det finns en signifikant andel varians kvar att förklara. Modell 3 (M3), Specifikation Vi lägger till ett random intercept på lärarnivå (nivå ) för att testa om det finns någon signifikant skillnad i det genomsnittliga resultat mellan lärare. Resultat = Grand mean + B1 x Pluggar.cent(n1) + Intercept för lärare(n) + Residual Intercept Modell (med pluggande som prediktor) Modell 3 (M3), Specifikation Får vi en bättre anpassning om varje grupp (klass) får en egen regressionslinje? Dessa linjer skall dock vara parallella och har ett intercept som är lika med gruppens medelvärde på den beroende variabeln. M3, Anpassning och Random Genom att ta låta det genomsnittliga resultatet variera mellan lärare sjönk missanpassningen från 5 till 3, vilket är signifikant, χ (df = 1) = 1, p <.1 Genom att ta låta det genomsnittliga resultatet variera mellan lärare sjönk Residualerna från 135 (M) till 1. Alltså: 5% av variationen mellan elevers resultat som inte kan förklaras av skillnader i pluggande finns mellan lärarna. Variationen i det genomsnittliga resultatet mellan lärare är signifikant.
5 Modell (M), Specifikation Vi lägger till två prediktorer på lärarnivå (n) för att se om dessa kan förklara variationen i genomsnittligt resultat mellan lärare: Resultat = Grand mean + B1 x Pluggar(n1) + B x Lärarkomp(n) + B3 x Pluggmedel(n) + Intercept för lärare(n) + Residual Intercept M, Anpassning och Parametrar Genom att inkludera de två prediktorerna sjönk missanpassningen från 3 till 39, vilket är signifikant, χ (df = ) = 15, p <.1 Interceptet och alla effekter är signifikant skilda från noll Interceptet = predicerat provresultat om man är genomsnittlig på alla prediktorer Kontrollerat för de andra prediktorerna, associeras ett stegs ökning i eget pluggande med en ökning i resultat med,1 poäng, lärarens kompetens med en ökning med, poäng samt de andra elevernas (med samma lärare) pluggande med en ökning med,5 poäng. M, Random effects M3 Genom att inkludera lärarens kompetens samt genomsnittligt pluggande bland lärarens elever kan vi förklara 3 % av variationen i genomsnittligt provresultat mellan lärare. Residualen är variation mellan elever inom lärare (nivå 1) och påverkas inte av inkluderandet av prediktorer på lärarnivå (nivå ). Modell 5 (M5), Specifikation Vi lägger till en random effekt av pluggande (n1) för att se om effekten av pluggande (n1) skiljer sig åt mellan lärare. Intercept + Pluggar.cent M Modell 5 (M5), Specifikation Vi låter lutningen, såväl som interceptet, på regressionslinjen variera mellan grupper (klasser). M5, Anpassning och Random Genom att ta låta effekten av eget pluggande variera mellan lärare sjönk missanpassningen från 39 till 39, vilket är signifikant, χ (df = 1) =, p <.1. Variationen i effekten av elevens eget pluggande mellan lärare är signifikant. 5
6 Modell (M), Specifikation Vi lägger till två interaktioner mellan nivåerna, nämligen (a) eget pluggande (n1) x lärarkompetens (n); (b) eget pluggande (n1) x genomsnittligt pluggande (n). Detta görs för att försöka förklara varför effekten av eget pluggande varierar mellan lärare. Intercept + Pluggar.cent M, Anpassning och Parametrar Genom att inkludera de två interaktionstermerna sjönk missanpassningen från 39 till 3, vilket inte riktigt är signifikant, χ (df = ) = 5, p =. Effekten av eget pluggande interagerar signifikant med genomsnittligt pluggande för elever med samma lärare men inte med lärarens kompetens. När det genomsnittliga pluggandet för de andra eleverna med samma lärare ökar med ett, så minskar den positiva effekten av det egna pluggandet på resultatet med, M, Random effects M5 Ungefär 5% av variationen i effekten av eget pluggande som finns mellan lärare kan förklaras med lärarens kompetens och det genomsnittliga pluggandet bland lärarens elever. M, Figur M Tre nivåer, Data M, Figur
7 Upprepade mätningar Upprepade mätningar Tid (månader) Undersökningsdeltagare Första Andra Tredje Fjärde Femte Sjätte Skulle vi jämföra de olika mättillfällena med varandra (vad gäller någon utfallsvariabel) så skulle vi inte ta hänsyn till det faktum att tiden (t.ex. under behandling) är olika vid de olika mättillfällena för olika personer. Data organiseras vertikalt. En fördel med detta är att en person stryks inte helt om han/hon har ett saknat värde på utfallsvariabeln. Modell 7 (M7), Specifikation Vi beräknar om en patients grad av depression vid en viss tidpunkt är en funktion av tid under behandling. Vi testar även om startvärdet (intercept) samt effekten av tid varierar mellan individer (vi specar dem som random). M7, Anpassning och Parametrar Det finns en signifikant effekt av tid på graden av depression. Graden av depression ges av formeln Dep. = 7,99 1,1 Tid. Graden av depression sjunker alltså med tiden. M7, Random effects Varje person får sin egen regressionslinje. M7, Figur Personernas grad av depression kan inte helt förklaras av tid (Residual variansen är signifikant). Det finns en skillnad i startvärde mellan individer (Intercept), samt vad gäller effekten av tid på graden av depression mellan individer. 7
8 Modell (M), Specifikation Vi lägger till typ av behandling samt interaktionen mellan behandling och tid. M, Anpassning och Parametrar Genom att ta med behandling samt tid behandling sjönk missanpassningen från 9 till 5, vilket är signifikant, χ (df = ) = 1, p <.1. Behandling har fyra kategorier och detta blir tre dummyvariabler Effekten av tid interagerar med behandling. M, Parametrar M, Figur För behandling (= D) sjunker graden av depression med,5 per månad. Behandling 1 (= A): Linjens lutning är = +.9 (depressionen ökar alltså per månad) Behandling (= B): Linjens lutning är = 1. Behandling 3 (= C): Linjens lutning är =.3 Depressionen sjunker signifikant mer över tid för de med behandling D jämfört med de tre andra behandlingarna. M, Random effects M7 Variansen i effekten av tid på depression som finns mellan individer kan till 7,3 % förklaras av behandling (variansen sjunker från, till 1,7), men det finns fortfarande signifikant med residual variation mellan individer kvar att förklara. Modell 9 (M9), Specifikation Vi backar lite: Varför sjunker graden av depression över tid och varför är sänkningen större för vissa än för andra? Kan det ha att göra med serotonin? Serotonin är en prediktor på nivå 1. M
9 M9, Parametrar M9, Random effects M7 M7 M9 M9.7 % av förändringen (sänkningen) i depression över tid kan förklaras av förändringen (ökningen) i serotonin (effekten av tid sjunker från 1.97 till.35 när vi kontrollerar för serotonin). 7 % av skillnaden i förändringen i depression över tid mellan patienter kan förklaras av skillnaden i serotonin (variansen i effekten av tid sjunker från. till. när vi kontrollerar för serotonin). Modell 1 (M1), Specifikation Kan det vara så att skillnaden i behandlingars effektivitet kan förklaras av skillnader i serotoninhalter? M1, Parametrar 51,9 % av skillnaden i förändringen över tid mellan behandling D och A kan förklaras av skillnader i serotoninhalter (skillnaden sjunker från.3 till 1. när vi kontrollerar för serotonin). 5 % av skillnaden mellan behandling D och B och % av skillnaden mellan behandling D och C kan förklaras av skillnader i serotoninhalter. M M1 M1, Figur Serotoninhalten ökar signifikant mer för dem med behandling D än för de tre andra behandlingsgrupperna. 9
Användning. Fixed & Random. Centrering. Multilevel Modeling (MLM) Var sak på sin nivå
Användning Multilevel Modeling (MLM) Var sak på sin nivå Kimmo Sorjonen Sektionen för Psykologi Karolinska Institutet Kärt barn har många namn: (1) Random coefficient models; (2) Mixed effect models; (3)
Läs merInstuderingsfrågor till avsnittet om statistik, kursen Statistik och Metod, Psykologprogrammet på KI, T8
1 Instuderingsfrågor till avsnittet om statistik, kursen Statistik och Metod, Psykologprogrammet på KI, T8 Dessa instuderingsfrågor är främst tänkta att stämma överens med innehållet i föreläsningarna,
Läs merMultilevel Modeling med SPSS Kimmo Sorjonen ( )
1 Multilevel Modeling med SPSS Kimmo Sorjonen (2012-01-21) 1. Tvärsnittsdata, Två nivåer 1.i Variabler Data simulerar de som använts i följande studie (se Appendix A och Appendix B): Andersen, R., & van
Läs merInnehåll: 3.4 Parametriskt eller ej 3.5 Life Table 3.6 Kaplan Meier 4. Cox Regression 4.1 Hazard Function 4.2 Estimering (PL)
Innehåll: 1. Risk & Odds 1.1 Risk Ratio 1.2 Odds Ratio 2. Logistisk Regression 2.1 Ln Odds 2.2 SPSS Output 2.3 Estimering (ML) 2.4 Multipel 3. Survival Analys 3.1 vs. Logistisk 3.2 Censurerade data 3.3
Läs merInstruktioner till Inlämningsuppgiften i Statistik Kursen Statistik och Metod Psykologprogrammet (T8), Karolinska Institutet
1 Instruktioner till Inlämningsuppgiften i Statistik Kursen Statistik och Metod Psykologprogrammet (T8), Karolinska Institutet För att bli godkänd på inlämningsuppgiften krävs att man utför uppgiften om
Läs merRegressionsanalys. - en fråga om balans. Kimmo Sorjonen Sektionen för Psykologi Karolinska Institutet
Regressionsanalys - en fråga om balans Kimmo Sorjonen Sektionen för Psykologi Karolinska Institutet Innehåll: 1. Enkel reg.analys 1.1. Data 1.2. Reg.linjen 1.3. Beta (β) 1.4. Signifikansprövning 1.5. Reg.
Läs merRegressionsanalys med SPSS Kimmo Sorjonen (2010)
1 Regressionsanalys med SPSS Kimmo Sorjonen (2010) 1. Multipel regression 1.1. Variabler I det aktuella exemplet ingår följande variabler: (1) life.sat, anger i vilket utsträckning man är nöjd med livet;
Läs merIdentifikationsnummer:... Tentamen: Statistik & Metod (2PS020), Psykologprogrammet, Termin 8 Datum:
Identifikationsnummer:... Tentamen: Statistik & Metod (2PS020), Psykologprogrammet, Termin 8 Datum: 120203 Ovanstående nummer är ditt identifikationsnummer! Skriv in detta nummer på varje blad i tentan
Läs merInstruktioner till Inlämningsuppgiften i Statistik Kursen Statistik och Metod Psykologprogrammet (T8), Karolinska Institutet
1 Instruktioner till Inlämningsuppgiften i Statistik Kursen Statistik och Metod Psykologprogrammet (T8), Karolinska Institutet Uppdaterad: 130114 För att bli godkänd på inlämningsuppgiften krävs att man
Läs merInstruktioner till Inlämningsuppgiften i Statistik Kursen Statistik och Metod Psykologprogrammet (T8), Karolinska Institutet
1 Instruktioner till Inlämningsuppgiften i Statistik Kursen Statistik och Metod Psykologprogrammet (T8), Karolinska Institutet Uppdaterad: 120113 För att bli godkänd på inlämningsuppgiften krävs att man
Läs merRisk Ratio, Odds Ratio, Logistisk Regression och Survival Analys med SPSS Kimmo Sorjonen, 2012
Risk Ratio, Odds Ratio, Logistisk Regression och Survival Analys med SPSS Kimmo Sorjonen, 2012 1. Risk Ratio & Odds Ratio Risk- och odds ratio beräknar sambandet mellan två dikotoma variabler. Inom forskning
Läs merSTATISTISK ANALYS AV KOMPLEXA DATA
STATISTISK ANALYS AV KOMPLEXA DATA HIERARKISKA DATA Linda Wänström Linköpings universitet 25 November Wänström (Linköpings universitet) HIERARKISKA DATA 25 November 1 / 53 Regressionsmodell för icke-hierarkiska
Läs merSänkningen av parasitnivåerna i blodet
4.1 Oberoende (x-axeln) Kön Kön Längd Ålder Dos Dos C max Parasitnivå i blodet Beroende (y-axeln) Längd Vikt Vikt Vikt C max Sänkningen av parasitnivåerna i blodet Sänkningen av parasitnivåerna i blodet
Läs merKapitel 22: KLUSTRADE SAMPEL OCH PANELDATA
Kapitel 22: KLUSTRADE SAMPEL OCH PANELDATA Statistiska tester bygger alltid på vissa antaganden. Är feltermen homoskedastisk? Är den normalfördelad? Dessa antaganden är faktiskt aldrig uppfyllda i praktiken,
Läs merKapitel 12: TEST GÄLLANDE EN GRUPP KOEFFICIENTER - ANOVA
Kapitel 12: TEST GÄLLANDE EN GRUPP KOEFFICIENTER - ANOVA 12.1 ANOVA I EN MULTIPEL REGRESSION Exempel: Tjänar man mer som egenföretagare? Nedan visas ett utdrag ur ett dataset som innehåller information
Läs merIdentifikationsnummer:... Tentamen: Statistik & Metod (2PS020), Psykologprogrammet, Termin 8 Datum:
Identifikationsnummer:... Tentamen: Statistik & Metod (2PS020), Psykologprogrammet, Termin 8 Datum: 110319 Ovanstående nummer är ditt identifikationsnummer! Skriv in detta nummer på varje blad i tentan
Läs merUpprepade mätningar och tidsberoende analyser. Stefan Franzén Statistiker Registercentrum Västra Götaland
Upprepade mätningar och tidsberoende analyser Stefan Franzén Statistiker Registercentrum Västra Götaland Innehåll Stort område Simpsons paradox En mätning per individ Flera mätningar per individ Flera
Läs merKorrelation kausalitet. ˆ Y =bx +a KAPITEL 6: LINEAR REGRESSION: PREDICTION
KAPITEL 6: LINEAR REGRESSION: PREDICTION Prediktion att estimera "poäng" på en variabel (Y), kriteriet, på basis av kunskap om "poäng" på en annan variabel (X), prediktorn. Prediktion heter med ett annat
Läs merSambandsmått. Centralmått. Det mest frekventa värdet. Det mittersta värdet i en rangordnad fördelning. Aritmetiska medelvärdet.
PM315 HT016 Emma äck Formelsamling Centralmått Typvärde T Median Md ritmetiska medelvärdet Det mest frekventa värdet Det mittersta värdet i en rangordnad fördelning = n Spridningsmått Variationsvidd (Range)
Läs merEnvägs variansanalys (ANOVA) för test av olika väntevärde i flera grupper
Envägs variansanalys (ANOVA) för test av olika väntevärde i flera grupper Tobias Abenius February 21, 2012 Envägs variansanalys (ANOVA) I envägs variansanalys utnyttjas att
Läs merInstruktioner till Examinationen Kursen Introduktion till Multivariat Dataanalys Karolinska Institutet
1 Instruktioner till Examinationen Kursen Introduktion till Multivariat Dataanalys Karolinska Institutet Uppdaterad: 120412 För att bli godkänd skall man utföra alla sex uppgifter som beskrivs nedan. OBS:
Läs merInnehåll. Data. Skillnad SEM & Regression. Exogena & Endogena variabler. Latenta & Manifesta variabler
Innehåll Structural Equation Modeling (SEM) Ingenting är omöjligt Kimmo Sorjonen Sektionen för Psykologi Karolinska Institutet Data Latenta och manifesta variabler Typ av modell (path, CFA, SEM) Specificera
Läs merKapitel 4: SAMBANDET MELLAN VARIABLER: REGRESSIONSLINJEN
Kapitel 4: SAMBANDET MELLAN VARIABLER: REGRESSIONSLINJEN Spridningsdiagrammen nedan representerar samma korrelationskoefficient, r = 0,8. 80 80 60 60 40 40 20 20 0 0 20 40 0 0 20 40 Det finns dock två
Läs merPrediktera. Statistik för modellval och prediktion. Trend? - Syrehalt beroende på kovariater. Sambands- och trendanalys
Statistik för modellval och prediktion att beskriva, förklara och förutsäga Georg Lindgren Prediktera Matematisk statistik, Lunds universitet stik för modellval och prediktion p.1/28 Statistik för modellval
Läs merStructural Equation Modeling med Amos Kimmo Sorjonen (2012-01-24)
1 Structural Equation Modeling med Amos Kimmo Sorjonen (2012-01-24) 1. Variabler och tänkt modell Data simulerar de som använts i följande studie (se Appendix A): Hull, J. G., & Mendolia, M. (1991). Modeling
Läs merSTATISTISK ANALYS AV KOMPLEXA DATA
STATISTISK ANALYS AV KOMPLEXA DATA LONGITUDINELLA DATA Linda Wänström Linköpings universitet 9 December Linda Wänström (Linköpings universitet) LONGITUDINELLA DATA 9 December 1 / 43 Longitudinella data
Läs merMVE051/MSG Föreläsning 7
MVE051/MSG810 2016 Föreläsning 7 Petter Mostad Chalmers November 23, 2016 Överblick Deskriptiv statistik Grafiska sammanfattningar. Numeriska sammanfattningar. Estimering (skattning) Teori Några exempel
Läs merKapitel 15: INTERAKTIONER, STANDARDISERADE SKALOR OCH ICKE-LINJÄRA EFFEKTER
Kapitel 15: INTERAKTIONER, STANDARDISERADE SKALOR OCH ICKE-LINJÄRA EFFEKTER När vi mäter en effekt i data så vill vi ofta se om denna skiljer sig mellan olika delgrupper. Vi kanske testar effekten av ett
Läs merKapitel 17: HETEROSKEDASTICITET, ROBUSTA STANDARDFEL OCH VIKTNING
Kapitel 17: HETEROSKEDASTICITET, ROBUSTA STANDARDFEL OCH VIKTNING När vi gör en regressionsanalys så bygger denna på vissa antaganden: Vi antar att vi dragit ett slumpmässigt sampel från en population
Läs merSTATISTISK ANALYS AV KOMPLEXA DATA
STATISTISK ANALYS AV KOMPLEXA DATA HIERARKISKA DATA Linda Wänström Linköpings universitet 14-15 November Wänström (Linköpings universitet) HIERARKISKA DATA 14-15 November 1 / 59 Hierarkiska data Hierarkiska
Läs mer2. Finns samband mellan individbundna faktorer och kontextuella faktorer och skolresultat?
1 Teknisk bilaga till rapport 2018:10 Det är i det lokala man finner komplexiteten - Betydelsen av migrationsbakgrund och socioekonomiska faktorer för skolmisslyckanden 1 Bakgrund Denna rapport är en teknisk
Läs merResidualanalys. Finansiell statistik, vt-05. Normalfördelade? Normalfördelade? För modellen
Residualanalys För modellen Johan Koskinen, Statistiska institutionen, Stockholms universitet Finansiell statistik, vt-5 F7 regressionsanalys antog vi att ε, ε,..., ε är oberoende likafördelade N(,σ Då
Läs merStructural Equation Modeling (SEM) Ingenting är omöjligt
Structural Equation Modeling (SEM) Ingenting är omöjligt Kimmo Sorjonen Sektionen för Psykologi Karolinska Institutet Innehåll Data Latenta och manifesta variabler Typ av modell (path, CFA, SEM) Specificera
Läs merF9 SAMPLINGFÖRDELNINGAR (NCT
Stat. teori gk, ht 006, JW F9 SAMPLINGFÖRDELNINGAR (NCT 7.1-7.4) Ordlista till NCT Sample Population Simple random sampling Sampling distribution Sample mean Standard error The central limit theorem Proportion
Läs merI. Grundläggande begrepp II. Deskriptiv statistik III. Statistisk inferens Parametriska Icke-parametriska
Innehåll I. Grundläggande begrepp II. Deskriptiv statistik III. Statistisk inferens Hypotesprövnig Statistiska analyser Parametriska analyser Icke-parametriska analyser Univariata analyser Univariata analyser
Läs merT-test, Korrelation och Konfidensintervall med SPSS Kimmo Sorjonen
T-test, Korrelation och Konfidensintervall med SPSS Kimmo Sorjonen 1. One-Sample T-Test 1.1 När? Denna analys kan utföras om man vill ta reda på om en populations medelvärde på en viss variabel kan antas
Läs merFöreläsning 6 (kap 6.1, 6.3, ): Punktskattningar
Föreläsning 6 (kap 6.1, 6.3, 7.1-7.3): Punktskattningar Marina Axelson-Fisk 4 maj, 2016 Stickprov (sample) Idag: Stickprovsmedelvärde och varians Statistika (statistic) Punktskattning (point estimation)
Läs merKapitel 18: LINJÄRA SANNOLIKHETSMODELLER, LOGIT OCH PROBIT
Kapitel 18: LINJÄRA SANNOLIKHETSMODELLER, LOGIT OCH PROBIT Regressionsanalys handlar om att estimera hur medelvärdet för en variabel (y) varierar med en eller flera oberoende variabler (x). Exempel: Hur
Läs merMultipel Regressionsmodellen
Multipel Regressionsmodellen Koefficienterna i multipel regression skattas från ett stickprov enligt: Multipel Regressionsmodell med k förklarande variabler: Skattad (predicerad) Värde på y y ˆ = b + b
Läs merFöreläsning 8. NDAB02 Statistik; teori och tillämpning i biologi
Föreläsning 8 Statistik; teori och tillämpning i biologi 1 Dagens föreläsning o Enkel linjär regression (kap 17.1 17.5) o Skatta regressionslinje (kap 17.2) o Signifikant lutning? (kap 17.3, 17.5a) o Förklaringsgrad
Läs merTENTAMEN I REGRESSIONSANALYS OCH TIDSSERIEANALYS
STOCKHOLMS UNIVERSITET Statistiska institutionen Marcus Berg VT2014 TENTAMEN I REGRESSIONSANALYS OCH TIDSSERIEANALYS Fredag 23 maj 2014 kl. 12-17 Skrivtid: 5 timmar Godkända hjälpmedel: Kalkylator utan
Läs merHöftledsdysplasi hos dansk-svensk gårdshund
Höftledsdysplasi hos dansk-svensk gårdshund Sjö A Sjö B Förekomst av parasitdrabbad öring i olika sjöar Sjö C Jämföra medelvärden hos kopplade stickprov Tio elitlöpare springer samma sträcka i en för dem
Läs merGrundläggande matematisk statistik
Grundläggande matematisk statistik Linjär Regression Uwe Menzel, 2018 uwe.menzel@slu.se; uwe.menzel@matstat.de www.matstat.de Linjär Regression y i y 5 y 3 mätvärden x i, y i y 1 x 1 x 2 x 3 x 4 x 6 x
Läs merFör logitmodellen ges G (=F) av den logistiska funktionen: (= exp(z)/(1+ exp(z))
Logitmodellen För logitmodellen ges G (=F) av den logistiska funktionen: F(z) = e z /(1 + e z ) (= exp(z)/(1+ exp(z)) Funktionen motsvarar den kumulativa fördelningsfunktionen för en standardiserad logistiskt
Läs merVi har en ursprungspopulation/-fördelning med medelvärde µ.
P-värde P=probability Sannolikhetsvärde som är resultat av en statistisk test. Anger sannolikheten för att göra den observation vi har gjort eller ett sämre / mer extremt utfall om H 0 är sann. Vi har
Läs mer34% 34% 13.5% 68% 13.5% 2.35% 95% 2.35% 0.15% 99.7% 0.15% -3 SD -2 SD -1 SD M +1 SD +2 SD +3 SD
6.4 Att dra slutsatser på basis av statistisk analys en kort inledning - Man har ett stickprov, men man vill med hjälp av det få veta något om hela populationen => för att kunna dra slutsatser som gäller
Läs mer7.5 Experiment with a single factor having more than two levels
7.5 Experiment with a single factor having more than two levels Exempel: Antag att vi vill jämföra dragstyrkan i en syntetisk fiber som blandats ut med bomull. Man vet att inblandningen påverkar dragstyrkan
Läs merFaktoranalys - Som en god cigarr
Innehåll Faktoranalys - Som en god cigarr Faktoranalys. Användningsområde. Krav/rekommen. 3. Olika typer av FA 4. Faktorladdningar 5. Eigenvalue 6. Rotation 7. Laddningar & Korr. 8. Jämförelse av metoder
Läs merMedicinsk statistik II
Medicinsk statistik II Läkarprogrammet T5 HT 2014 Susann Ullén FoU-centrum Skåne Skånes Universitetssjukhus Hypotesprövning Man sätter upp en nollhypotes (H0) och en mothypotes (H1) H0: Ingen effekt H1:
Läs merBild 1. Bild 2 Sammanfattning Statistik I. Bild 3 Hypotesprövning. Medicinsk statistik II
Bild 1 Medicinsk statistik II Läkarprogrammet T5 HT 2014 Anna Jöud Arbets- och miljömedicin, Lunds universitet ERC Syd, Skånes Universitetssjukhus anna.joud@med.lu.se Bild 2 Sammanfattning Statistik I
Läs merSpridningsdiagram (scatterplot) Fler exempel. Korrelation (forts.) Korrelation. Enkel linjär regression. Enkel linjär regression (forts.
Spridningsdiagram (scatterplot) En scatterplot som visar par av observationer: reklamkostnader på -aeln and försäljning på -aeln ScatterplotofAdvertising Ependitures ()andsales () 4 Fler eempel Notera:
Läs merInstruktioner till Examinationen Kursen Metoder för Statistisk Analys Karolinska Institutet
1 Instruktioner till Examinationen Kursen Metoder för Statistisk Analys Karolinska Institutet Uppdaterad: 140518 För att bli godkänd skall man utföra alla sex uppgifter som beskrivs nedan. OBS: Undervisningen
Läs merANOVA Faktoriell (tvåvägs)
ANOVA Faktoriell (tvåvägs) Faktoriell ANOVA (tvåvägs) Två oberoende variabel ( tvåvägs ): Nominalskala eller ordinalskala. Delar in det man undersöker (personerna?) i grupper/kategorier, dvs. betingelser.
Läs merLinjär regressionsanalys. Wieland Wermke
+ Linjär regressionsanalys Wieland Wermke + Regressionsanalys n Analys av samband mellan variabler (x,y) n Ökad kunskap om x (oberoende variabel) leder till ökad kunskap om y (beroende variabel) n Utifrån
Läs merTillämpad statistik (A5), HT15 Föreläsning 10: Multipel linjär regression 1
Tillämpad statistik (A5), HT15 Föreläsning 10: Multipel linjär regression 1 Ronnie Pingel Statistiska institutionen Senast uppdaterad: 2015-11-19 Motivering Vi motiverade enkel linjär regression som ett
Läs merEn rät linje ett enkelt samband. En rät linje + slumpbrus. Observationspar (X i,y i ) MSG Staffan Nilsson, Chalmers 1.
En rät linje ett enkelt samband Y β 1 Lutning (slope) β 0 Skärning (intercept) 1 Y= β 0 + β 1 X X En rät linje + slumpbrus Y Y= β 0 + β 1 X + brus brus ~ N(0,σ) X Observationspar (X i,y i ) Y Ökar/minskar
Läs merRegressions- och Tidsserieanalys - F3
Regressions- och Tidsserieanalys - F3 Multipel regressionsanalys kap 4.8-4.10 Linda Wänström Linköpings universitet November 6, 2013 Wänström (Linköpings universitet) F3 November 6, 2013 1 / 22 Interaktion
Läs merFör logitmodellen ges G (=F) av den logistiska funktionen: (= exp(z)/(1+ exp(z))
Logitmodellen För logitmodellen ges G (=F) av den logistiska funktionen: F(z) = e z /(1 + e z ) (= exp(z)/(1+ exp(z)) Funktionen motsvarar den kumulativa fördelningsfunktionen för en standardiserad logistiskt
Läs merF18 MULTIPEL LINJÄR REGRESSION, FORTS. (NCT
Stat. teori gk, ht 006, JW F18 MULTIPEL LINJÄR REGRESSION, FORTS. (NCT 1.1, 13.1-13.6, 13.8-13.9) Modell för multipel linjär regression Modellantaganden: 1) x-värdena är fixa. ) Varje y i (i = 1,, n) är
Läs merStatistik B Regressions- och tidsserieanalys Föreläsning 1
Statistik B Regressions- och tidsserieanalys Föreläsning Kurskod: 732G7, 8 hp Lärare och examinator: Ann-Charlotte (Lotta) Hallberg Lärare och lektionsledare: Isak Hietala Labassistenter Kap 3,-3,6. Läs
Läs merOBS! Vi har nya rutiner.
KOD: Kurskod: PM2315 Kursnamn: Psykologprogrammet, kurs 15, Metoder för psykologisk forskning (15 hp) Ansvarig lärare: Jan Johansson Hanse Tentamensdatum: 14 januari 2012 Tillåtna hjälpmedel: miniräknare
Läs merFACIT!!! (bara facit,
STOCKHOLMS UNIVERSITET Psykologiska institutionen Psykologi III, VT 2012. Fristående kurs FACIT!!! (bara facit, inga tolkningar) Skrivning i Psykologi III metod, fristående kurs: Metod och Statistik avsnitt
Läs merViktiga dimensioner vid val av test (och även val av deskriptiv statistik) Biostatistik II - Hypotesprövning i teori och praktik.
Viktiga dimensioner vid val av test (och även val av deskriptiv statistik) Biostatistik II - Hypotesprövning i teori och praktik Urvalsstorlek Mätnivå/skaltyp Fördelning av data Studiedesign Frida Eek
Läs merSTATISTISK ANALYS AV KOMPLEXA DATA
STATISTISK ANALYS AV KOMPLEXA DATA LONGITUDINELLA DATA Linda Wänström Linköpings universitet Linda Wänström (Linköpings universitet) LONGITUDINELLA DATA 1 / 56 Longitudinella data Tvärsnittsdata Flera
Läs merUppgift 1. Produktmomentkorrelationskoefficienten
Uppgift 1 Produktmomentkorrelationskoefficienten Både Vikt och Längd är variabler på kvotskalan och således kvantitativa variabler. Det innebär att vi inte har så stor nytta av korstabeller om vi vill
Läs merMälardalens Högskola. Formelsamling. Statistik, grundkurs
Mälardalens Högskola Formelsamling Statistik, grundkurs Höstterminen 2015 Deskriptiv statistik Populationens medelvärde (population mean): μ = X N Urvalets medelvärde (sample mean): X = X n Där N är storleken
Läs merDifferentiell psykologi
Differentiell psykologi Torsdag 8 september 2011 Reliabilitet Dagens agenda MDI skattningsövning resultat av kriterietolkning Värt att veta om normalfördelningen Frågesport Kort info om kursboken : Personality
Läs mer1. Lära sig plotta en beroende variabel mot en oberoende variabel. 2. Lära sig skatta en enkel linjär regressionsmodell
Datorövning 1 Regressions- och tidsserieanalys Syfte 1. Lära sig plotta en beroende variabel mot en oberoende variabel 2. Lära sig skatta en enkel linjär regressionsmodell 3. Lära sig beräkna en skattning
Läs merAnalytisk statistik. Mattias Nilsson Benfatto, PhD.
Analytisk statistik Mattias Nilsson Benfatto, PhD Mattias.nilsson@ki.se Beskrivande statistik kort repetition Centralmått Spridningsmått Normalfördelning Konfidensintervall Korrelation Analytisk statistik
Läs merLösningsförslag till tentamen på. Statistik och kvantitativa undersökningar STA100, 15 hp. Fredagen den 13 e mars 2015
MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik Statistik Lösningsförslag till tentamen på Statistik och kvantitativa undersökningar STA100, 15 hp Fredagen den 13 e mars 015 1 a 13 och 14
Läs mer7.5 Experiment with a single factor having more than two levels
Exempel: Antag att vi vill jämföra dragstyrkan i en syntetisk fiber som blandats ut med bomull. Man vet att inblandningen påverkar dragstyrkan och att en inblandning mellan 10% och 40% är bra. För att
Läs merFöreläsning 12: Regression
Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är
Läs mer1/31 REGRESSIONSANALYS. Statistiska institutionen, Stockholms universitet
1/31 REGRESSIONSANALYS F1 Linda Wänström Statistiska institutionen, Stockholms universitet 2/31 Kap 4: Introduktion till regressionsanalys. Introduktion Regressionsanalys är en statistisk teknik för att
Läs merSTATISTISK ANALYS AV KOMPLEXA DATA
STATISTISK ANALYS AV KOMPLEXA DATA LONGITUDINELLA DATA Linda Wänström Linköpings universitet 12 December Linda Wänström (Linköpings universitet) LONGITUDINELLA DATA 12 December 1 / 12 Explorativ Faktoranalys
Läs merimport totalt, mkr index 85,23 100,00 107,36 103,76
1. a) F1 Kvotskala (riktiga siffror. Skillnaden mellan 3 och 5 månader är lika som skillnaden mellan 5 och 7 månader. 0 betyder att man inte haft kontakt med innovations Stockholm.) F2 Nominalskala (ingen
Läs merRättningstiden är i normalfall 15 arbetsdagar, annars är det detta datum som gäller:
Statistik 2 Provmoment: Ladokkod: Tentamen ges för: TentamensKod: Tentamen SST021 ACEKO16h, ACIVE16h 7,5 högskolepoäng Tentamensdatum: 2018-05-31 Tid: 14.00-19.00 Hjälpmedel: Valfri miniräknare Linjal
Läs merSTOCKHOLMS UNIVERSITET VT 2009 Statistiska institutionen Jörgen Säve-Söderbergh
1 STOCKHOLMS UNIVERSITET VT 2009 Statistiska institutionen Jörgen Säve-Söderbergh Skriftlig tentamen på momentet Statistisk dataanalys III (SDA III), 3 högskolepoäng ingående i kursen Undersökningsmetodik
Läs merMVE051/MSG Föreläsning 14
MVE051/MSG810 2016 Föreläsning 14 Petter Mostad Chalmers December 14, 2016 Beroende och oberoende variabler Hittills i kursen har vi tittat på modeller där alla observationer representeras av stokastiska
Läs merFaktoranalys, Cronbach s Alpha, Risk Ratio, & Odds Ratio
Faktoranalys, Cronbach s Alpha, Risk Ratio, & Odds Ratio med SPSS Kimmo Sorjonen 1. Faktoranalys Innan man utför en faktoranalys kan det vara bra att testa om det finns några outliers i data. Detta kan
Läs merBayesiansk statistik, 732g43, 7.5 hp
Bayesiansk statistik, 732g43, 7.5 hp Moment 2 - Linjär regressionsanalys Bertil Wegmann STIMA, IDA, Linköpings universitet Bertil Wegmann (STIMA, LiU) Bayesiansk statistik 1 / 29 Översikt moment 2: linjär
Läs merAnalys av medelvärden. Jenny Selander , plan 3, Norrbacka, ingång via den Samhällsmedicinska kliniken
Analys av medelvärden Jenny Selander jenny.selander@ki.se 524 800 29, plan 3, Norrbacka, ingång via den Samhällsmedicinska kliniken Jenny Selander, Kvant. metoder, FHV T1 december 20111 Innehåll Normalfördelningen
Läs merAnalytisk statistik. Tony Pansell, optiker Universitetslektor
Analytisk statistik Tony Pansell, optiker Universitetslektor Analytisk statistik Att dra slutsatser från det insamlade materialet. Två metoder: 1. att generalisera från en mindre grupp mot en större grupp
Läs merSkolprestationer på kommunnivå med hänsyn tagen till socioekonomi
1(6) PCA/MIH Johan Löfgren 2016-11-10 Skolprestationer på kommunnivå med hänsyn tagen till socioekonomi 1 Inledning Sveriges kommuner och landsting (SKL) presenterar varje år statistik över elevprestationer
Läs merUppgift 1. Deskripitiv statistik. Lön
Uppgift 1 Deskripitiv statistik Lön Variabeln Lön är en kvotvariabel, även om vi knappast kommer att uppleva några negativa värden. Det är sannolikt vår intressantaste variabel i undersökningen, och mot
Läs merχ 2, chi-två Test av anpassning: sannolikheter specificerade Data: n observationer klassificerade i K olika kategorier:
Stat. teori gk, ht 006, JW F1 χ -TEST (NCT 16.1-16.) Ordlista till NCT Goodness-of-fit-test χ, chi-square Test av anpassning χ, chi-två Test av anpassning: sannolikheter specificerade i förväg Data: n
Läs merST-fredag i Biostatistik & Epidemiologi När ska jag använda vilket test?
ST-fredag i Biostatistik & Epidemiologi När ska jag använda vilket test? Mikael Eriksson Specialistläkare CIVA Karolinska Universitetssjukhuset, Solna Grund för hypotestestning 1. Definiera noll- och alternativhypotes,
Läs merKvantitativ strategi Univariat analys 2. Wieland Wermke
+ Kvantitativ strategi Univariat analys 2 Wieland Wermke + Sammanfattande mått: centralmått n Beroende på skalnivån finns det olika mått, som betecknar variablernas fördelning n Typvärde eller modalvärde
Läs merPoissonregression. E(y x1, x2,.xn) = exp( 0 + 1x1 +.+ kxk)
Poissonregression En lämplig utgångspunkt om vi har en beroende variabel som är en count variable, en variabel som antar icke-negativa heltalsvärden med ganska liten variation E(y x1, x2,.xn) = exp( 0
Läs merFlerfaktorförsök. Blockförsök, randomiserade block. Modell: yij i bj eij. Förutsättningar:
Flerfaktorförsök Blockförsök, randomiserade block Modell: yij i bj eij i 1,,, a j 1,,, b y ij vara en observation för den i:te behandlingen och det j:e blocket gemensamma medelvärdet ( grand mean ) effekt
Läs merRepetitionsföreläsning
Population / Urval / Inferens Repetitionsföreläsning Ett företag som tillverkar byxor gör ett experiment för att kontrollera kvalitén. Man väljer slumpmässigt ut 100 par som man utsätter för hård nötning
Läs merkodnr: 2) OO (5p) Klassindelningar
kodnr: 1) KH (10p) a) Förklara innebörden av kausalitetsbegreppet i ett kvantitativt-metodologiskt sammanhang (2p) b) Förklara innebörden av begreppet nonsenssamband (2p) c) Argumentera för och motivera
Läs merRättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller:
Matematisk Statistik Provmoment: Ladokkod: Tentamen ges för: Tentamen TT091A TGMAS15h 7,5 högskolepoäng TentamensKod: Tentamensdatum: 30 Maj Tid: 9-13 Hjälpmedel: Miniräknare (nollställd) samt allmänspråklig
Läs merLUNDS UNIVERSITET 1(6) STATISTISKA INSTITUTIONEN Per-Erik Isberg
LUNDS UNIVERSITET 1(6) STATISTISKA INSTITUTIONEN Per-Erik Isberg Simulering i MINITAB Det finns goda möjligheter att utföra olika typer av simuleringar i Minitab. Gemensamt för dessa är att man börjar
Läs merTentamen för kursen. Linjära statistiska modeller. 17 februari
STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Tentamen för kursen Linjära statistiska modeller 17 februari 2010 9 14 Examinator: Anders Björkström, tel. 16 45 54, bjorks@math.su.se Återlämning: Rum 312,
Läs merTentamen för kursen. Linjära statistiska modeller. 22 augusti
STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Tentamen för kursen Linjära statistiska modeller 22 augusti 2008 9 14 Examinator: Anders Björkström, tel. 16 45 54, bjorks@math.su.se Återlämning: Rum 312, hus
Läs merTentamen på Statistik och kvantitativa undersökningar STA001, 15 hp. Exempeltenta 4
MÄLARDALENS HÖGSKOLA Akademin för hållbar samhälls- och teknikutveckling Statistik Tentamen på Statistik och kvantitativa undersökningar STA001, 15 hp Tillåtna hjälpmedel: Miniräknare (Formelsamling bifogas
Läs merRegressions- och Tidsserieanalys - F3
Regressions- och Tidsserieanalys - F3 Multipel regressionsanalys kap 4.8-4.10 Linda Wänström Linköpings universitet 7 maj Wänström (Linköpings universitet) F3 7 maj 1 / 26 Lite som vi inte hann med när
Läs merVariansanalys med SPSS Kimmo Sorjonen (2012-01-19)
1 Variansanalys med SPSS Kimmo Sorjonen (2012-01-19) 1. Envägs ANOVA för oberoende mätningar 1.1 Variabler Data simulerar det som använts i följande undersökning (se Appendix A): Petty, R. E., & Cacioppo,
Läs merFöreläsning 8: Konfidensintervall
Föreläsning 8: Konfidensintervall Matematisk statistik Chalmers University of Technology Maj 4, 2015 Projektuppgift Projektet går ut på att studera frisättningen av dopamin hos nervceller och de två huvudsakliga
Läs merBilaga 6 till rapport 1 (5)
till rapport 1 (5) Bilddiagnostik vid misstänkt prostatacancer, rapport UTV2012/49 (2014). Värdet av att undvika en prostatabiopsitagning beskrivning av studien SBU har i samarbete med Centrum för utvärdering
Läs mer