Innehåll: 3.4 Parametriskt eller ej 3.5 Life Table 3.6 Kaplan Meier 4. Cox Regression 4.1 Hazard Function 4.2 Estimering (PL)
|
|
- Barbro Gunnarsson
- för 8 år sedan
- Visningar:
Transkript
1
2 Innehåll: 1. Risk & Odds 1.1 Risk Ratio 1.2 Odds Ratio 2. Logistisk Regression 2.1 Ln Odds 2.2 SPSS Output 2.3 Estimering (ML) 2.4 Multipel 3. Survival Analys 3.1 vs. Logistisk 3.2 Censurerade data 3.3 Data, SPSS 3.4 Parametriskt eller ej 3.5 Life Table 3.6 Kaplan Meier 4. Cox Regression 4.1 Hazard Function 4.2 Estimering (PL) 4.3 Data, SPSS 4.4 SPSS Output 4.5 Diagnostik 4.6 Interaktion 4.7 Tids beroende prediktor
3 1. Risk & Odds Risk Odds 1 Odds Odds Risk 1 Risk Risk = Antal med utfall dividerat med totalt antal (kan variera mellan 0 och 1) Odds = Antal med utfall dividerat med antal utan utfall (kan variera mellan 0 och ) Kvinnor Män Risk(kvinna) Odds(kvinna) 2 8 2/(2+8)=0,2 2/8=0, /(5+5)=0,5 5/5= /(8+2)=0,8 8/2=4
4 1.1 Risk Ratio Ej missbruk Missbruk Ej demens Demens Risk för demens om man har missbrukat jämfört med inte missbrukat: RR = (122 / 173) / (43 / 77) = 0,705 / 0,558 = 1,263 26% riskökning för demens om man har missbrukat jämfört med om man inte har missbrukat.
5 1.1 Risk Ratio Ej missbrukat 34 Estimering av populationens RR för demens om man har missbrukat jämfört med om man inte har missbrukat. RR(sample = 1.263) Missbrukat Ej demens Demens SEln( RR ) 1 p1 N p p0 N p Formeln ger medelfel för ln(rr); p1 = andel med utfall (demens) i exponerad grupp (missbrukat); N1 = antal exponerade p0 = andel med utfall (demens) i icke exponerad grupp (ej missbrukat); N0 = antal icke exponerade 95% CI RR e ln( RR) 1.96SEln( RR ) e Med 95% säkerhet ligger populationens RR någonstans mellan och 1.575
6 Ej demens Demens 1.2 Odds Ratio Ej missbrukat 34 Missbrukat OR p q (1 /(1 p) q) p = risk för utfall i grupp 1 q = risk för utfall i grupp 2 Odds för demens om man har missbrukat jämfört med inte missbrukat : OR = (122 / 51) / (43 / 34) = 2,392 / 1,265 = 1,891 Oddsen att ha demens är 1,9 gånger så hög om man har missbrukat jämfört med om man inte har missbrukat.
7 Ej demens Demens 1.2 Odds Ratio Ej missbrukat 34 (n11) 43 (n12) 77 Estimering av populationens OR för demens om man har missbrukat jämfört med om man inte har missbrukat. OR(sample) = Missbrukat 51 (n21) 122 (n22) SEln( OR ) 1 n 11 1 n 12 1 n 21 1 n Formeln ger medelfel för ln(or). 95% CI e ln( OR) 1.96SEln( OR ) e Med 95% säkerhet ligger populationens OR någonstans mellan och 3.299
8 1.2 Odds Ratio OR skiljer sig signifikant från 1.
9 2. Logistisk regression Används när man skall predicera värden på en dikotom variabel. Använder sig av den naturliga logaritmen av oddskvoter (eftersom dessa tenderar att vara linjära även med en dikotom beroende variabel). Undviker problem med orimliga predicerade värden.
10 2.1 Logistisk regression Det fina med Ln Odds Odds(man) Vikt Ln(Odds(man)) Vikt
11 2.2 Logistisk regression, SPSS Output Alltså: Ln Odds (man) = 0,103 x Vikt 7,221 När vikt ökar med ett kilo ökar odds för man med 10.9%.
12 2.2 Logistisk regression Exempelberäkning Ln Odds (man) = 0,103 x Vikt 7,221 Vikt = 70 Ln Odds (man) = 0,011 Odds (man) = e 0,011 = 0,989 P (man) = 0,989 / (1 + 0,989) = 49,7% Vikt = 80 Ln Odds (man) = 1,019 Odds (man) = e 1,019 = 2,770 P (man) = 2,770 / (1 + 2,770) = 73,5%
13 2.3 Logistisk regression Estimering Logistisk regression (liksom många andra metoder) använder sig av Maximum Likelihood estimering. För olika parametervärden beräknar ML sannolikheten för att få de data vi har, givet att dessa parametervärden gäller i populationen. Vi presenteras med de parameterestimat som ger högst sannolikhet för att ge upphov till de data som vi har. ML går ut på att maximera den s.k. Likelihood funktionen: LF Y { P i *(1 P i i ) 1Yi } Excel Kalkylblad Π = produkten av P i = sannolikhet för individ i att ha värdet 1 på den beroende variabeln Y i = individens värde på den beroende variabeln (0 eller 1)
14 2.4 Logistisk regression Multipel, SPSS
15 3. Survival Analys Används när den beroende variabeln innehåller två olika bitar information: (1) Har händelsen av intresse inträffat för försökspersonen (ja/nej)?; (2) Om ja, hur lång tid tog det innan händelsen inträffade? Logistisk regression skulle inte ta hänsyn till det senare. Oftast är data censurerade. Survival = Det har inte skett någon förändring, t.ex. man har inte dött, men kan också vara att man inte blivit frisk.
16 3.1 Survival Analys, vs. Logistisk Logistisk Regression Cox Regression
17 3.2 Survival Analys, Censurerade data Exempel: Överlevnad hos cancerpatienter (händelse = död i cancer). 1. Ocensurerade data: Riskperiodens början är känd samt tidpunkt för händelse. 2. Höger censurerade: Tidpunkt för händelse är okänd (t.ex. för att den ännu inte inträffat). 3. Vänster censurerade: Tidpunkt för riskperiodens början är okänd. 4. Slumpmässig censurering: Riskperioden avslutas, men inte p.g.a. att händelsen inträffar. Vänster censurerade data är svårare att hantera än de två övriga Tid (år)
18 3.3 Survival Analys, Data, SPSS Tid = Dagar från Diagnos till Dödtid (om död) alternativt från Diagnos till Uppföljning (om ej död). Tid kan ses som tid under risk. Om vi t.ex. skall predicera hazard för död i cancer och en patient dör i en bilolycka skall tid vara tid från baseline till död, men utfalls variabeln död i cancer skall vara lika med noll (vi har ett fall av s.k. slumpmässig censurering).
19 3.4 Survival Analys, Parametriskt eller inte Icke parametriska metoder: Gör inga antaganden om överlevnadsfunktionens utformning i populationen. Ex: Life Tables, Kaplan Meier Parametriska metoder: Gör antaganden om överlevnadsfunktionens utformning i populationen. Ex: Weibull modeller. Semi parametriska metoder: Gör antaganden om Hazard rate, men inga övriga antagenden om överlevnadsfunktionens utformning i populationen. Ex: Cox regression
20 3.5 Survival Analys, Life Table Används kanske framför allt för att ge en deskriptiv beskrivning av hur överlevnaden utvecklas (minskar) över tid.
21 3.6 Survival Analys, Kaplan Meier Till skillnad från Life Tables går tidsperioderna från en händelse till nästa istället för att vara lika långa.
22 3.6 Survival Analys, Kaplan Meier Man kan jämföra överlevnaden i olika grupper. Kontinuerliga prediktorer måste kategoriseras. Problematiskt om gruppernas överlevnadslinjer korsar varandra (= skillnaden i överlevnad mellan grupperna interagerar med tid).
23 4. Cox Proportional Hazard Model Kräver inte information om överlevnadsfunktionens utformning. Modellen antar att förhållandet mellan två individers h är den samma över hela tidsperioden (= proportionell). Beräknade parametrar påverkas av överlevnadstidernas rangordning, men inte av de absoluta värdena. Tillåter inkluderandet av prediktorer som förändras över tid.
24 4.1 Cox, Hazard Function Den villkorade sannolikheten för att händelsen skall ha inträffat vid tidpunkt t + dt, givet att den inte inträffat vid tidpunkt t. Funktionen är ett gränsvärde beräknat på a dt 0. Ju längre tid det tar för händelsen att inträffa, desto lägre är sannolikheten (hazard) för att händelsen inträffar inom tidsperioden dt. Hazard funktionen kan tolkas som ett mått på förändringshastighet (eller kanske som death rate per tidsenhet ).
25 Andra funktioner Probability Density Function (PDF): Som hazard, men inte villkorad (sannolikheten för att händelsen skall inträffa under dt). Cumulative Distribution Function (CDF): Sannolikheten för att dt ett visst bestämt värde. Survivor Function: Sannolikheten för att händelsen INTE skall ha inträffat vid en viss bestämd tidpunkt (1 CDF). Cumulative Hazard Function: Förväntat antal personer som upplevt händelsen vid en viss tidpunkt.
26 Cox Proportional Hazard Model Hazard h för händelse för en individ i vid en tidpunkt t ges av formeln: Ln h i (t) = β 0 + β 1 x i1 + β 2 x i2 + β 0 = intercept = hazard om alla prediktorer = 0 β 1 = effekt av prediktor 1 på hazard för händelse x i1 = individens värde på prediktor 1 osv Modellen antar att förhållandet mellan två individers h är den samma över hela tidsperioden (= proportional)
27 4.2 Cox, Estimering Cox an vänder sig av s.k. Partial Likelihood estimering, som går ut på att maximera följande funktion: Estimerad hazard för individen i PL n i1 n j1 e Y x ij i e x i i Antar värdet 1 för ickecensurerade personer och 0 för censurerade Summan av hazard för de andra individerna som inte upplevt händelsen vid den aktuella tidpunkten.
28 4.3 Cox, Data, SPSS
29 4.4 Cox, SPSS Output 2LL för nollmodellen, där hazard för död antas bero endast på tiden. Modellens 2LL sjunker med när vi inkluderar intelligens som en prediktor (från till ) vilket är en signifikant förbättring (p <.001). En ökning i intelligens med ett stanine steg är associerad med en sänkning i Ln(hazard för död) med Detta motsvarar en sänkning i hazard med 1 e 0.13 = = 12.2% och effekten är signifikant (p <.001).
30 4.5 Cox, Diagnostik Proportionaliteten i hazard kan t.ex. diagnostiseras genom att man tittar på ett s.k. Log minus log diagram. Linjerna bör vara parallella.
31 4.6 Cox, Interaktion På samma sätt som i anna regression (linjär, logistisk) kan man testa om prediktorer interagerar i sin effekt på hazard för händelse. I det aktuella fallet finne vi att: Effekt av Intelligens på Ln(hazard för död) = * Emotionell kontroll; ju lägre man ligger i Emotionell kontroll, desto starkare negativ association mellan Intelligens och hazard för död. Effekt Emotionell kontroll på Ln(hazard för död) = * Intelligens; ju lägre man ligger i Intelligens, desto starkare negativ association mellan Emotionell kontroll och hazard för död.
32 Höga värden i Intelligens eller Emotionell kontroll skyddar mot eventuella låga värden i den andra variabeln. 4.6 Cox, Interaktion
33 4.7 Cox, Tids beroende prediktorer Ibland har man upprepade mätningar av en eller flera prediktorer. I så fall bör man specificera prediktorerna som tids beroende och estimera hur värdet från den senaste mätningen av prediktorn påverkar hazard för utfall. Alternativt, om man tror att effekten av prediktorn är fördröjd, kan man beräkna hur hazard för utfall vid tidpunkten t påverkas av värdet i prediktorn vid tidpunkten t c.
34 4.7 Cox, Tids beroende prediktorer Formeln nedan ger att: SBP = SBP0 om Tid < Tid1; SBP = SBP1 om Tid Tid1 och < Tid2; SBP = SBP2 om Tid Tid2
35 4.7 Cox, Tids beroende prediktorer Hade vi inte tagit hänsyn till att SBP varierar mellan de olika mättillfällena, och endast använt oss av SBP0 som prediktor, hade vi fått en svagare effekt av SBP på hazard för död.
36 Sammanfattning: 1. Risk & Odds 1.1 Risk Ratio 1.2 Odds Ratio 2. Logistisk Regression 2.1 Ln Odds 2.2 SPSS Output 2.3 Estimering (ML) 2.4 Multipel 3. Survival Analys 3.1 vs. Logistisk 3.2 Censurerade data 3.3 Data, SPSS 3.4 Parametriskt eller ej 3.5 Life Table 3.6 Kaplan Meier 4. Cox Regression 4.1 Hazard Function 4.2 Estimering (PL) 4.3 Data, SPSS 4.4 SPSS Output 4.5 Diagnostik 4.6 Interaktion 4.7 Tids beroende prediktor
Innehåll: har missbrukat jämfört med om man inte har. missbrukat. Risk 1 Odds Risk. Odds 1 Risk. Odds
22 5 Innehåll:. Rsk & Odds. Rsk Rato.2 Odds Rato 2. Logstsk Regresson 2. Ln Odds 2.2 SPSS Output 2.3 Estmerng (ML) 2.4 Multpel 3. Survval Analys 3. vs. Logstsk 3.2 Censurerade data 3.3 Data, SPSS 3.4 Parametrskt
Risk Ratio, Odds Ratio, Logistisk Regression och Survival Analys med SPSS Kimmo Sorjonen, 2012
Risk Ratio, Odds Ratio, Logistisk Regression och Survival Analys med SPSS Kimmo Sorjonen, 2012 1. Risk Ratio & Odds Ratio Risk- och odds ratio beräknar sambandet mellan två dikotoma variabler. Inom forskning
Användning. Fixed & Random. Centrering. Multilevel Modeling (MLM) Var sak på sin nivå
Användning Multilevel Modeling (MLM) Var sak på sin nivå Kimmo Sorjonen Sektionen för Psykologi Karolinska Institutet Kärt barn har många namn: (1) Random coefficient models; () Mixed effect models; (3)
Regressionsanalys med SPSS Kimmo Sorjonen (2010)
1 Regressionsanalys med SPSS Kimmo Sorjonen (2010) 1. Multipel regression 1.1. Variabler I det aktuella exemplet ingår följande variabler: (1) life.sat, anger i vilket utsträckning man är nöjd med livet;
Användning. Fixed & Random. Centrering. Multilevel Modeling (MLM) Var sak på sin nivå
Användning Multilevel Modeling (MLM) Var sak på sin nivå Kimmo Sorjonen Sektionen för Psykologi Karolinska Institutet Kärt barn har många namn: (1) Random coefficient models; (2) Mixed effect models; (3)
Faktoranalys - Som en god cigarr
Innehåll Faktoranalys - Som en god cigarr Faktoranalys. Användningsområde. Krav/rekommen. 3. Olika typer av FA 4. Faktorladdningar 5. Eigenvalue 6. Rotation 7. Laddningar & Korr. 8. Jämförelse av metoder
ST-fredag i Biostatistik & Epidemiologi När ska jag använda vilket test?
ST-fredag i Biostatistik & Epidemiologi När ska jag använda vilket test? Mikael Eriksson Specialistläkare CIVA Karolinska Universitetssjukhuset, Solna Grund för hypotestestning 1. Definiera noll- och alternativhypotes,
Instuderingsfrågor till avsnittet om statistik, kursen Statistik och Metod, Psykologprogrammet på KI, T8
1 Instuderingsfrågor till avsnittet om statistik, kursen Statistik och Metod, Psykologprogrammet på KI, T8 Dessa instuderingsfrågor är främst tänkta att stämma överens med innehållet i föreläsningarna,
Överlevnadsanalys. 732G34 Statistisk analys av komplexa data
Överlevnadsanalys 732G34 Statistisk analys av komplexa data 1 Tvärsnittsstudie Prospektiv Kohortstudie Observationsstudie Tvärsnittsstudie Retrospektiv Experimentell studie (alltid prospektiv) Klinisk
Överlevnadsanalys. Överlevnadsanalys med tidsberoende kovariater. Tid till en händelse: observationer i kalendertid och som tid från start.
Överlevnadsanalys Överlevnadsanalys med tidsberoende kovariater Peter Höglund USiL 10 februari 2010 Kaplan-Meier Logrank test Cox-regression Tidsberoende kovariater (Tidsuppdaterade kovariater tas inte
Till ampad statistik (A5) Förläsning 13: Logistisk regression
Till ampad statistik (A5) Förläsning 13: Logistisk regression Ronnie Pingel Statistiska institutionen Senast uppdaterad: 2016-03-08 Exempel 1: NTU2015 Exempel 2: En jobbannons Exempel 3 1 1 Klofstad, C.
Regressionsanalys. - en fråga om balans. Kimmo Sorjonen Sektionen för Psykologi Karolinska Institutet
Regressionsanalys - en fråga om balans Kimmo Sorjonen Sektionen för Psykologi Karolinska Institutet Innehåll: 1. Enkel reg.analys 1.1. Data 1.2. Reg.linjen 1.3. Beta (β) 1.4. Signifikansprövning 1.5. Reg.
Upprepade mätningar och tidsberoende analyser. Stefan Franzén Statistiker Registercentrum Västra Götaland
Upprepade mätningar och tidsberoende analyser Stefan Franzén Statistiker Registercentrum Västra Götaland Innehåll Stort område Simpsons paradox En mätning per individ Flera mätningar per individ Flera
Poissonregression. E(y x1, x2,.xn) = exp( 0 + 1x1 +.+ kxk)
Poissonregression En lämplig utgångspunkt om vi har en beroende variabel som är en count variable, en variabel som antar icke-negativa heltalsvärden med ganska liten variation E(y x1, x2,.xn) = exp( 0
För logitmodellen ges G (=F) av den logistiska funktionen: (= exp(z)/(1+ exp(z))
Logitmodellen För logitmodellen ges G (=F) av den logistiska funktionen: F(z) = e z /(1 + e z ) (= exp(z)/(1+ exp(z)) Funktionen motsvarar den kumulativa fördelningsfunktionen för en standardiserad logistiskt
För logitmodellen ges G (=F) av den logistiska funktionen: (= exp(z)/(1+ exp(z))
Logitmodellen För logitmodellen ges G (=F) av den logistiska funktionen: F(z) = e z /(1 + e z ) (= exp(z)/(1+ exp(z)) Funktionen motsvarar den kumulativa fördelningsfunktionen för en standardiserad logistiskt
Upplägg Dag 1 Tid till händelse Censurering Livslängdstabeller Överlevnadsfunktionen Kaplan-Meier Parametrisk skattning Jämföra överlevnadskurvor
Survival analysis (Dag 1) Upplägg Dag 1 Tid till händelse Censurering Livslängdstabeller Överlevnadsfunktionen Kaplan-Meier Parametrisk skattning Jämföra överlevnadskurvor Henrik Källberg, 2012 Survival
Multilevel Modeling med SPSS Kimmo Sorjonen ( )
1 Multilevel Modeling med SPSS Kimmo Sorjonen (2012-01-21) 1. Tvärsnittsdata, Två nivåer 1.i Variabler Data simulerar de som använts i följande studie (se Appendix A och Appendix B): Andersen, R., & van
Instruktioner till Examinationen Kursen Introduktion till Multivariat Dataanalys Karolinska Institutet
1 Instruktioner till Examinationen Kursen Introduktion till Multivariat Dataanalys Karolinska Institutet Uppdaterad: 120412 För att bli godkänd skall man utföra alla sex uppgifter som beskrivs nedan. OBS:
Statistiska metoder för säkerhetsanalys
F10: Intensiteter och Poissonmodeller Frågeställningar Konstant V.v.=Var Cyklister Poissonmodeller för frekvensdata Vi gör oberoende observationer av de (absoluta) frekvenserna n 1, n 2,..., n k från den
FAKTORER SOM PÅVERKAR RISKEN ATT AVLIDA EFTER EN STROKE
FAKTORER SOM PÅVERKAR RISKEN ATT AVLIDA EFTER EN STROKE En överlevnadsanalys med fokus på interaktion mellan kön och socioekonomiska faktorer Fredrik Nilsson, Mikael Marklund Hjelm Kandidatuppsats 15 hp
Logistisk regression och Indexteori. Patrik Zetterberg. 7 januari 2013
Föreläsning 9 Logistisk regression och Indexteori Patrik Zetterberg 7 januari 2013 1 / 33 Logistisk regression I logistisk regression har vi en binär (kategorisk) responsvariabel Y i som vanligen kodas
Regressionsanalys Enkel regressionsanalys Regressionslinjen
--9 Regreionanaly - en fråga om balan Kimmo Sorjonen Sektionen för Pykologi Karolinka Intitutet. Enkel reg.analy.. Data.. Reg.linjen.. Beta (β).. Signifikan.. Reg. om Var..6. Korr. & Förklarad var..7.
Agenda. Statistik Termin 11, Läkarprogrammet, VT14. Forskningsprocessen. Agenda (forts.) Data - skalnivåer. Den heliga treenigheten
Agenda Statistik Termin 11, Läkarprogrammet, VT14 I: Grundläggande begrepp och beskrivande statistik II: Exempel på typisk forskning III. Frågestund Martin Cernvall martin.cernvall@pubcare.uu.se Grundläggande
Korrelation kausalitet. ˆ Y =bx +a KAPITEL 6: LINEAR REGRESSION: PREDICTION
KAPITEL 6: LINEAR REGRESSION: PREDICTION Prediktion att estimera "poäng" på en variabel (Y), kriteriet, på basis av kunskap om "poäng" på en annan variabel (X), prediktorn. Prediktion heter med ett annat
Kapitel 18: LINJÄRA SANNOLIKHETSMODELLER, LOGIT OCH PROBIT
Kapitel 18: LINJÄRA SANNOLIKHETSMODELLER, LOGIT OCH PROBIT Regressionsanalys handlar om att estimera hur medelvärdet för en variabel (y) varierar med en eller flera oberoende variabler (x). Exempel: Hur
ANOVA Faktoriell (tvåvägs)
ANOVA Faktoriell (tvåvägs) Faktoriell ANOVA (tvåvägs) Två oberoende variabel ( tvåvägs ): Nominalskala eller ordinalskala. Delar in det man undersöker (personerna?) i grupper/kategorier, dvs. betingelser.
Bild 1. Bild 2 Sammanfattning Statistik I. Bild 3 Hypotesprövning. Medicinsk statistik II
Bild 1 Medicinsk statistik II Läkarprogrammet T5 HT 2014 Anna Jöud Arbets- och miljömedicin, Lunds universitet ERC Syd, Skånes Universitetssjukhus anna.joud@med.lu.se Bild 2 Sammanfattning Statistik I
Agenda. Statistik Termin 10, Läkarprogrammet, VT15. Agenda (forts.) Forskningsprocessen. Data - skalnivåer. Den heliga treenigheten
Agenda Statistik Termin 10, Läkarprogrammet, VT15 I: Grundläggande begrepp och beskrivande statistik II: Exempel på typisk forskning III. Frågestund Martin Cernvall martin.cernvall@pubcare.uu.se Grundläggande
1. INLEDNING Problemformulering Syfte Avgränsningar 4 2. TIDIGARE STUDIER 5 3. METOD Överlevnadsanalys 6 3.
Sammanfattning Denna uppsats använder sig av SCB:s registerdata som omfattar samtliga par som gifte sig för första gången under 1998, dessa par studeras under cirka elva år fram till den 31 december 2008.
Statistik Termin 10, Läkarprogrammet, HT16
I: Grundläggande begrepp och beskrivande statistik II: Exempel på typisk forskning III. Frågestund Statistik Termin 10, Läkarprogrammet, HT16 Martin Cernvall martin.cernvall@pubcare.uu.se Måndag 29/8 -
Tillvägaghångssätt för skattning av körkortsmodell
Siamak Baradaran sia@kth.se Tillvägaghångssätt för skattning av körkortsmodell 1 Syfte med modellen Syftet med denna forskning har varit att utveckla en beskrivande modell som kan hjälpa oss att förstå
Instruktioner till Examinationen Kursen Metoder för Statistisk Analys Karolinska Institutet
1 Instruktioner till Examinationen Kursen Metoder för Statistisk Analys Karolinska Institutet Uppdaterad: 140518 För att bli godkänd skall man utföra alla sex uppgifter som beskrivs nedan. OBS: Undervisningen
Sammanfattning. Förord
Sammanfattning Varför regerar vissa ledare längre än andra? Uppsatsen använder ett datamaterial över ledares tid vid makten i 167 länder från början av 1800-talet till 1987 för att försöka besvara denna
SAMMA SJUKVÅRD I HELA
SAMMA SJUKVÅRD I HELA RIKET? EN JÄMFÖRELSE AV ÖVERLEVNAD VID BEHANDLING AV ALLVARLIGA SJUKDOMAR. SARAH WOLF Examensarbete för Kandidatexamen 2017:K16 Naturvetenskaplig fakultet Matematikcentrum Matematisk
Legitimacy of newness and smallness - En studie i överlevnad för små och nya företag
Legitimacy of newness and smallness - En studie i överlevnad för små och nya företag Cecilia Söderberg Kandidatuppsats i matematisk statistik Bachelor Thesis in Mathematical Statistics Kandidatuppsats
Regressionsanalys Enkel regressionsanalys Regressionslinjen
-9-6 Regreionanaly - om en mak åt en hungrande Kimmo Sorjonen Sektionen för Pykologi Karolinka Intitutet. Enkel reg.analy.. Data.. Reg.linjen.. Beta (β).. Signifikan.. Reg. om Var..6. Korr. & Förklarad
HELT NY VERSION. Uppgradera till version 13. Statistica förvandlar data till information
STATISTIC A1 3 HELT NY VERSION Uppgradera till version 13 Statistica förvandlar data till information UPPGRADERINGSKAMPA1N6J TOM 31 DECEMBER 20 Uppgradera till nya Statistica 13! Statistica utvecklas ständigt
Instruktioner till Inlämningsuppgiften i Statistik Kursen Statistik och Metod Psykologprogrammet (T8), Karolinska Institutet
1 Instruktioner till Inlämningsuppgiften i Statistik Kursen Statistik och Metod Psykologprogrammet (T8), Karolinska Institutet Uppdaterad: 130114 För att bli godkänd på inlämningsuppgiften krävs att man
Statistik 1 för biologer, logopeder och psykologer
Innehåll 1 Analys av korstabeller 2 Innehåll 1 Analys av korstabeller 2 Korstabeller Vi har tidigare under kursen redan bekantat oss med korstabeller. I en korstabell redovisar man fördelningen på två
Modeller för fler än två valmöjligheter. Förekommer både som logit- och som probitmodeller.
Multinominella modeller Modeller för fler än två valmöjligheter. Förekommer både som logit- och som probitmodeller. Möjligt att, genom olika modellformuleringar, beakta att vissa regressorer varierar mellan
I. Grundläggande begrepp II. Deskriptiv statistik III. Statistisk inferens Parametriska Icke-parametriska
Innehåll I. Grundläggande begrepp II. Deskriptiv statistik III. Statistisk inferens Hypotesprövnig Statistiska analyser Parametriska analyser Icke-parametriska analyser Univariata analyser Univariata analyser
Skattar vi alltid vad vi tror? Om individuell risk och populationsrisk
Skattar vi alltid vad vi tror? Om individuell risk och populationsrisk Idag: AstraZeneca i Lund I morgon: Statistik-konsulterna Innehåll Risker på individ- och populationsnivå Preliminaria Logrank test/cox
Multipel Regressionsmodellen
Multipel Regressionsmodellen Koefficienterna i multipel regression skattas från ett stickprov enligt: Multipel Regressionsmodell med k förklarande variabler: Skattad (predicerad) Värde på y y ˆ = b + b
Regression med Genetiska Algoritmer
Regression med Genetiska Algoritmer Projektarbete, Artificiell intelligens, 729G43 Jimmy Eriksson, jimer336 770529-5991 2014 Inledning Hur många kramar finns det i världen givet? Att kunna estimera givet
En rät linje ett enkelt samband. En rät linje + slumpbrus. Observationspar (X i,y i ) MSG Staffan Nilsson, Chalmers 1.
En rät linje ett enkelt samband Y β 1 Lutning (slope) β 0 Skärning (intercept) 1 Y= β 0 + β 1 X X En rät linje + slumpbrus Y Y= β 0 + β 1 X + brus brus ~ N(0,σ) X Observationspar (X i,y i ) Y Ökar/minskar
Exempel på tentamensuppgifter
STOCKHOLMS UNIVERSITET 4 mars 2010 Matematiska institutionen Avd. för matematisk statistik Mikael Andersson Exempel på tentamensuppgifter Uppgift 1 Betrakta en allmän I J-tabell enligt 1 2 3 J Σ 1 n 11
Grundläggande Biostatistik. Joacim Rocklöv, Lektor Epidemiologi och global hälsa Umeå Universitet
Grundläggande Biostatistik Joacim Rocklöv, Lektor Epidemiologi och global hälsa Umeå Universitet Formell analys Informell data analys Design and mätning Problem Formell analys Informell data analys Hur
Repetitionsföreläsning
Population / Urval / Inferens Repetitionsföreläsning Ett företag som tillverkar byxor gör ett experiment för att kontrollera kvalitén. Man väljer slumpmässigt ut 100 par som man utsätter för hård nötning
Tre av tio har avgått
Statistiska institutionen Tre av tio har avgått En överlevnadsstudie av tiden till avgång för kommunfullmäktigeledamöter i Stockholms län. Three in ten has resigned A survival analysis of time to resignation
Stokastiska signaler. Mediesignaler
Stokastiska signaler Mediesignaler Stokastiska variabler En slumpvariabel är en funktion eller en regel som tilldelar ett nummer till varje resultatet av ett experiment Symbol som representerar resultatet
F23 forts Logistisk regression + Envägs-ANOVA
F23 forts Logistisk regression + Envägs-ANOVA Repetition Detta går inteattbeskriva på någotrimligtsättmed en linjär funktion PY Xx) β 0 +β x Den skattade linjen går utanför intervallet0, ): Y ärenbinärvariabel0-,dikotom)manvillmodellera,
Weibullanalys. Maximum-likelihoodskattning
1 Weibullanalys Jan Enger Matematisk statistik KTH Weibull-fördelningen är en mycket viktig fördelning inom tillförlitlighetsanalysen. Den används ofta för att modellera mekaniska komponenters livslängder.
Instruktioner till Frivillig Inlämningsuppgift 2 och Datorövning 3-4. Fortsättningskurs i statistik, moment 1, Statistisk Teori, 10 poäng.
STOCKHOLMS UNIVERSITET HT 2005 Statistiska institutionen 2005-10-12 MC Instruktioner till Frivillig Inlämningsuppgift 2 och Datorövning 3-4 Fortsättningskurs i statistik, moment 1, Statistisk Teori, 10
Överlevnadsanalys inom en streamingtjänst En jämförelse i risk mellan abonnemangstyper
Linköpings universitet Institutionen för datavetenskap Kandidatuppsats, 15 hp Statistik Vårterminen 2016 LIU-IDA/STAT-G--16/006 SE Överlevnadsanalys inom en streamingtjänst En jämförelse i risk mellan
Regressions- och Tidsserieanalys - F7
Regressions- och Tidsserieanalys - F7 Tidsserieregression, kap 6.1-6.4 Linda Wänström Linköpings universitet November 25 Wänström (Linköpings universitet) F7 November 25 1 / 28 Tidsserieregressionsanalys
Extremvärden att extrapolera utanför data och utanför teori/modell. Statistik för modellval och prediktion p.1/27
Extremvärden att extrapolera utanför data och utanför teori/modell Statistik för modellval och prediktion p.1/27 Ledning utgjuter sig Centrala Uppsala översvämmades på tisdagskvällen för andra gången den
Kapitel 12: TEST GÄLLANDE EN GRUPP KOEFFICIENTER - ANOVA
Kapitel 12: TEST GÄLLANDE EN GRUPP KOEFFICIENTER - ANOVA 12.1 ANOVA I EN MULTIPEL REGRESSION Exempel: Tjänar man mer som egenföretagare? Nedan visas ett utdrag ur ett dataset som innehåller information
MULTIPEL IMPUTATION. Ett sätt att fylla i hålen i ditt datamaterial?
MULTIPEL IMPUTATION Ett sätt att fylla i hålen i ditt datamaterial? Pär Ola Bendahl IKVL, Avdelningen för Onkologi Lunds Universitet Par Ola.Bendahl@med.lu.se Översikt 1. Introduktion till problemet 2.
TENTAMEN I REGRESSIONSANALYS OCH TIDSSERIEANALYS
STOCKHOLMS UNIVERSITET Statistiska institutionen Marcus Berg VT2014 TENTAMEN I REGRESSIONSANALYS OCH TIDSSERIEANALYS Fredag 23 maj 2014 kl. 12-17 Skrivtid: 5 timmar Godkända hjälpmedel: Kalkylator utan
VANLIGA TERMER OCH BEGREPP INOM MEDICINSK VETENSKAP OCH STATISTIK
VANLIGA TERMER OCH BEGREPP INOM MEDICINSK VETENSKAP OCH STATISTIK TERM Analytisk statistik Bias Confounder (förväxlingsfaktor)) Deskriptiv statistik Epidemiologi Fall-kontrollstudie (case-control study)
import totalt, mkr index 85,23 100,00 107,36 103,76
1. a) F1 Kvotskala (riktiga siffror. Skillnaden mellan 3 och 5 månader är lika som skillnaden mellan 5 och 7 månader. 0 betyder att man inte haft kontakt med innovations Stockholm.) F2 Nominalskala (ingen
DATORÖVNING 4: DISKRETA
IDA/Statistik 2008-09-25 Annica Isaksson DATORÖVNING 4: DISKRETA SANNOLIKHETSFÖRDELNINGAR. I denna datorövning ska du illustrera olika sannolikhetsfördelningar samt beräkna sannolikheter i dessa m h a
Insulinantikroppars påverkan på risken för hypoglykemi hos patienter med diabetes typ 2 behandlade med inhalerat eller subkutant insulin
Magisteruppsats i statistik, 91-120 hp Insulinantikroppars påverkan på risken för hypoglykemi hos patienter med diabetes typ 2 behandlade med inhalerat eller subkutant insulin Författare: Linnea Wahlgren
Matematisk statistik KTH. Formelsamling i matematisk statistik
Matematisk statistik KTH Formelsamling i matematisk statistik Vårterminen 2017 1 Kombinatorik ) n n! = k k! n k)!. Tolkning: mängd med n element. ) n = antalet delmängder av storlek k ur en k 2 Stokastiska
Spridningsdiagram (scatterplot) Fler exempel. Korrelation (forts.) Korrelation. Enkel linjär regression. Enkel linjär regression (forts.
Spridningsdiagram (scatterplot) En scatterplot som visar par av observationer: reklamkostnader på -aeln and försäljning på -aeln ScatterplotofAdvertising Ependitures ()andsales () 4 Fler eempel Notera:
F18 MULTIPEL LINJÄR REGRESSION, FORTS. (NCT
Stat. teori gk, ht 006, JW F18 MULTIPEL LINJÄR REGRESSION, FORTS. (NCT 1.1, 13.1-13.6, 13.8-13.9) Modell för multipel linjär regression Modellantaganden: 1) x-värdena är fixa. ) Varje y i (i = 1,, n) är
Föreläsning 9. NDAB01 Statistik; teori och tillämpning i biologi
Föreläsning 9 Statistik; teori och tillämpning i biologi 1 (kap. 20) Introduktion I föregående föreläsning diskuterades enkel linjär regression, där en oberoende variabel X förklarar variationen hos en
PROGRAMFÖRKLARING I. Statistik för modellval och prediktion. Ett exempel: vågriktning och våghöjd
Statistik för modellval och prediktion att beskriva, förklara och förutsäga Georg Lindgren PROGRAMFÖRKLARING I Matematisk statistik, Lunds universitet stik för modellval och prediktion p.1/4 Statistik
Analys av miljööverträdelser i Sverige. Miljösanktionsavgiftens påverkan på återfall. Analysis of environmental violations in Sweden
Kandidatuppsats Statistiska institutionen Bachelor thesis, Department of Statistics Nr 2015:8 Analys av miljööverträdelser i Sverige Miljösanktionsavgiftens påverkan på återfall Analysis of environmental
Föreläsning 4. NDAB01 Statistik; teori och tillämpning i biologi
Föreläsning 4 Statistik; teori och tillämpning i biologi 1 Dagens föreläsning o Icke-parametriska test Mann-Whitneys test (kap 8.10 8.11) Wilcoxons test (kap 9.5) o Transformationer (kap 13) o Ev. Andelar
Instruktioner till Inlämningsuppgift 1 och Datorövning 1
STOCKHOLMS UNIVERSITET HT 2005 Statistiska institutionen 2005-10-14 MC Instruktioner till Inlämningsuppgift 1 och Datorövning 1 Kurs i Ekonometri, 5 poäng. Uppgiften ingår i examinationen för kursen och
Relativ överlevnad i cancerstudier
20 oktober 2010 Innehåll 1 Överlevnad och relativ överlevnad översikt Innehåll 1 Överlevnad och relativ överlevnad översikt 2 Innehåll 1 Överlevnad och relativ överlevnad översikt 2 3 Innehåll 1 Överlevnad
Betrakta kopparutbytet från malm från en viss gruva. För att kontrollera detta tar man ut n =16 prover och mäter kopparhalten i dessa.
Betrakta kopparutbytet från malm från en viss gruva. Anta att budgeten för utbytet är beräknad på att kopparhalten ligger på 70 %. För att kontrollera detta tar man ut n =16 prover och mäter kopparhalten
Tentamen MVE301 Sannolikhet, statistik och risk
Tentamen MVE31 Sannolikhet, statistik och risk 218-1-12 kl. 8:3-13:3 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Olof Elias, telefon: 31-7725325 Hjälpmedel: Valfri miniräknare.
ÖVNINGSUPPGIFTER KAPITEL 8
ÖVNINGSUPPGIFTER KAPITEL 8 SAMPEL KONTRA POPULATION 1. Nedan beskrivs fyra frågeställningar. Ange om populationen är ändlig eller oändlig i respektive fall. Om ändlig, beskriv också vem eller vad som ingår
Matematisk statistik KTH. Formel- och tabellsamling i matematisk statistik
Matematisk statistik KTH Formel- och tabellsamling i matematisk statistik Varterminen 2005 . Kombinatorik n = k n! k!n k!. Tolkning: n k mängd med n element. 2. Stokastiska variabler V X = EX 2 EX 2 =
Fråga nr a b c d 2 D
Fråga nr a b c d 1 B 2 D 3 C 4 B 5 B 6 A 7 a) Första kvartilen: 33 b) Medelvärde: 39,29 c) Standardavvikelse: 7,80 d) Pearson measure of skewness 1,07 Beräkningar: L q1 = (7 + 1) 1 4 = 2 29-10 105,8841
Regressionsmodellering inom sjukförsäkring
Matematisk Statistik, KTH / SHB Capital Markets Aktuarieföreningen 4 februari 2014 Problembeskrivning Vi utgår från Försäkringsförbundets sjuklighetsundersökning och betraktar en portfölj av sjukförsäkringskontrakt.
Kapitel 15: INTERAKTIONER, STANDARDISERADE SKALOR OCH ICKE-LINJÄRA EFFEKTER
Kapitel 15: INTERAKTIONER, STANDARDISERADE SKALOR OCH ICKE-LINJÄRA EFFEKTER När vi mäter en effekt i data så vill vi ofta se om denna skiljer sig mellan olika delgrupper. Vi kanske testar effekten av ett
Föreläsning 8, Matematisk statistik 7.5 hp för E, HT-15 Punktskattningar
Föreläsning 8, Matematisk statistik 7.5 hp för E, HT-15 Punktskattningar Anna Lindgren 25 november 2015 Anna Lindgren anna@maths.lth.se FMSF20 F8: Statistikteori 1/17 Matematisk statistik slumpens matematik
Structural Equation Modeling med Amos Kimmo Sorjonen (2012-01-24)
1 Structural Equation Modeling med Amos Kimmo Sorjonen (2012-01-24) 1. Variabler och tänkt modell Data simulerar de som använts i följande studie (se Appendix A): Hull, J. G., & Mendolia, M. (1991). Modeling
Hur länge ska fisken vara i dammen?
Hur länge ska fisken vara i dammen? Frågeställning Uppgift 10 fiskodling Uppgiften går ut på att ta reda på hur länge ett stim fisk ska växa upp i en fiskodling för att få den maximala vikten tillsammans.
Medicinsk statistik II
Medicinsk statistik II Läkarprogrammet termin 5 VT 2013 Susanna Lövdahl, Msc, doktorand Klinisk koagulationsforskning, Lunds universitet E-post: susanna.lovdahl@med.lu.se Dagens föreläsning Fördjupning
Upphandling av måltidsverksamhet inom äldreomsorgen
Uppsala universitet HT 2015 Statistiska institutionen Examensarbete 15 hp Upphandling av måltidsverksamhet inom äldreomsorgen En logistisk regressionsanalys Författare: Henrik Olsson Handledare: Anna Bornefalk-Hermansson
Sänkningen av parasitnivåerna i blodet
4.1 Oberoende (x-axeln) Kön Kön Längd Ålder Dos Dos C max Parasitnivå i blodet Beroende (y-axeln) Längd Vikt Vikt Vikt C max Sänkningen av parasitnivåerna i blodet Sänkningen av parasitnivåerna i blodet
Missing data och imputation eller Får man hitta på data? Lars Lindhagen, UCR 2014-05-21
Missing data och imputation eller Får man hitta på data? Lars Lindhagen, UCR 2014-05-21 Inledning Saknat data finns alltid, åtminstone i stora registerstudier. Ett problem som måste hanteras på något sätt.
Statistiska samband: regression och korrelation
Statistiska samband: regression och korrelation Vi ska nu gå igenom något som kallas regressionsanalys och som innebär att man identifierar sambandet mellan en beroende variabel (x) och en oberoende variabel
MVE051/MSG Föreläsning 7
MVE051/MSG810 2016 Föreläsning 7 Petter Mostad Chalmers November 23, 2016 Överblick Deskriptiv statistik Grafiska sammanfattningar. Numeriska sammanfattningar. Estimering (skattning) Teori Några exempel
Medicinsk statistik III Läkarprogrammet, Termin 5 VT 2016
Medicinsk statistik III Läkarprogrammet, Termin 5 VT 2016 Jonas Björk E-post: jonas.bjork@med.lu.se Medicinsk statistik III Innehåll och läsanvisningar Statistik för binära utfall Kapitel 12 Dimensionering
Vid formulering av den linjära regressionsmodellen utgår man ifrån att; Sambandet mellan Y-variabel och X-variabel är linjärt m a p parametrar
ICKE-LINJÄRA MODELLER Vid formulering av den linjära regressionsmodellen utgår man ifrån att; Y i = 1 + 2 X 2i + u i Sambandet mellan Y-variabel och X-variabel är linjärt m a p parametrar cov(x i,u i )
SF1901 Sannolikhetsteori och statistik I
SF1901 Sannolikhetsteori och statistik I Jimmy Olsson Föreläsning 10 27 november 2017 1 / 28 Idag Mer om punktskattningar Minsta-kvadrat-metoden (Kap. 11.6) Intervallskattning (Kap. 12.2) Tillämpning på
Läsanvisningar - Medicinsk statistik - Läkarprogrammet T10
Läsanvisningar - Medicinsk statistik - Läkarprogrammet T10 Läsanvisningarna baseras på boken Björk J. Praktisk statistik för medicin och hälsa, Liber Förlag (2011), som är gemensam kursbok för statistikavsnitten
Tentamen MVE300 Sannolikhet, statistik och risk
Tentamen MVE300 Sannolikhet, statistik och risk 205-08-8 kl. 8.30-3.30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Johan Jonasson, telefon: 0706-985223 03-7723546 Hjälpmedel:
Faktoranalys, Cronbach s Alpha, Risk Ratio, & Odds Ratio
Faktoranalys, Cronbach s Alpha, Risk Ratio, & Odds Ratio med SPSS Kimmo Sorjonen 1. Faktoranalys Innan man utför en faktoranalys kan det vara bra att testa om det finns några outliers i data. Detta kan
Föreläsning 11. Slumpvandring och Brownsk Rörelse. Patrik Zetterberg. 11 januari 2013
Föreläsning 11 Slumpvandring och Brownsk Rörelse Patrik Zetterberg 11 januari 2013 1 / 1 Stokastiska Processer Vi har tidigare sett exempel på olika stokastiska processer: ARIMA - Kontinuerlig process
Lektionsanteckningar 11-12: Normalfördelningen
Lektionsanteckningar 11-12: Normalfördelningen När utfallsrummet för en slumpvariabel kan anta vilket värde som helst i ett givet intervall är variabeln kontinuerlig. Det är väsentligt att utfallsrummet
Instruktioner till Inlämningsuppgiften i Statistik Kursen Statistik och Metod Psykologprogrammet (T8), Karolinska Institutet
1 Instruktioner till Inlämningsuppgiften i Statistik Kursen Statistik och Metod Psykologprogrammet (T8), Karolinska Institutet Uppdaterad: 120113 För att bli godkänd på inlämningsuppgiften krävs att man
Föreläsning 10, del 1: Icke-linjära samband och outliers
Föreläsning 10, del 1: och outliers Pär Nyman par.nyman@statsvet.uu.se 19 september 2014-1 - Sammanfattning av tidigare kursvärderingar: - 2 - Sammanfattning av tidigare kursvärderingar: Kursen är för
Föreläsning 8, Matematisk statistik 7.5 hp för E Punktskattningar
Föreläsning 8, Matematisk statistik 7.5 hp för E Punktskattningar Stas Volkov Stanislav Volkov s.volkov@maths.lth.se FMSF20 F8: Statistikteori 1/20 Översikt Exempel Repetition Exempel Matematisk statistik