Användning. Fixed & Random. Centrering. Multilevel Modeling (MLM) Var sak på sin nivå

Storlek: px
Starta visningen från sidan:

Download "Användning. Fixed & Random. Centrering. Multilevel Modeling (MLM) Var sak på sin nivå"

Transkript

1 Användning Multilevel Modeling (MLM) Var sak på sin nivå Kimmo Sorjonen Sektionen för Psykologi Karolinska Institutet Kärt barn har många namn: (1) Random coefficient models; (2) Mixed effect models; (3) Multilevel regression models; (4) Hierarchical linear models; (5) Multilevel covariance structure models; etc. Denna metod används när man skall predicera/förklara individuella id värden (t.ex. skolbetyg) utifrån prediktorer som är både på gruppnivå (t.ex. lärarstabens kompetens) och på individnivå (t.ex. hur mycket man pluggar). Data är hierarkiska. Precis som vid vanlig regressionsanalys måste utfallsvariabeln (den beroende variabeln) vara kontinuerlig. Fixed & Random Fixed effects: Effekten av en prediktor antas vara den samma i alla subgrupper. Effekten av tid antas vara den samma för alla individer (vid upprepade mätningar). Fixed effects betecknas ofta med γ (lilla gamma). Random effects: Effekten av en prediktor antas (tillåts) variera mellan olika subgrupper. Effekten av tid antas (tillåts) variera mellan olika individer (vid upprepade mätningar). Fixed & Random Intercept = Värdet i utfallsvariabeln när prediktorerna har värdet noll. Det är vanligt att man centrerar variabler och då är värdet noll = medelvärdet. Fixed intercept: Värdet i utfallsvariabeln antas vara det samma i alla subgrupper när prediktorerna har värdet noll. Värdet i utfallsvariabeln antas vara det samma för alla individer när tid = 0 (vid upprepade mätningar) Random intercept: Värdet i utfallsvariabeln tillåts variera mellan subgrupper när prediktorerna har värdet noll. Värdet i utfallsvariabeln tillåts variera mellan individer när tid = 0 (vid upprepade mätningar) Fixed & Random Centrering Utfallsvärde Utfallsvärde Prediktorvärde Fixed intercept, Fixed effect Prediktorvärde Fixed intercept, Random effect A B C D E F G H A B C D E F G H Utfallsvärde Utfallsvärde Prediktorvärde Random intercept, Fixed effect Prediktorvärde Random intercept, Random effect A B C D E F G H A B C D E F G H För att intercept skall bli meningsfulla är det vanligt att man centrerar prediktorer. Centreringen kan göras utifrån hela stickprovet eller utifrån subsamples Centrerat värde x ij x.. Intercept = Predicerad vikt om man är 0 cm lång. Intercept = Predicerad vikt om man är av medellängd. 1

2 Centrering Varför inte OLS? Problem med att köra vanlig regressionsanalys på hierarkiska data: Om individer tilldelas värden på gruppnivå så får man dopade d fih frihetsgrader (om 300 elever på tre skolor kl får ett värde som motsvarar lärarkompetensen på hans/hennes skola så baseras analysen av effekten av lärarkompetens på en utfallsvariabel (t.ex. betyg) på 300 värden, trots att man bara har data från tre skolor). Analysen ignorerar att det finns ett beroende mellan individerna (personer i samma grupp tenderar att vara mer lika än personer i olika grupper). Estimeringsmetod Två nivåer, Data Maximum Likelihood (ML) Restricted Maximum Likelihood (REML, RML) 2N0, Modellspecifikation Modell 1, 2N0: Två Nivåer, Nollmodell (utan prediktorer) Y ij = + + (för att testa om det finns en skillnad mellan lärare, alltså om random intercept kan antas avvika från noll) 2

3 2N0, Modellanpassning 2N0, Modellanpassning Ett test utförs där utifrån modellen predicerade parametervärden jämförs med observerade parametervärden och ett signifikansvärde beräknas för denna skillnad (ju bättre modellen dll passar med data, desto högre blir detta värde, variation mellan 0 och 1). Tar man den naturliga logaritmen av detta värde så får man ett värde som varierar mellan och 0 (ju högre värde, desto bättre anpassning). Multiplicerar man i sin tur detta värde med 2 så får man en funktion med chi2 fördelning (ju lägre värde, desto bättre anpassning). En enklare (färre parametrar) modell A sägs vara nestad i en mer generell (fler parametrar) modell B om alla parametrar som finns i A också finns i B. Anpassningen för B anpassningen för A, men är skillnaden signifikant? Detta kan testas genom att beräkna skillnaden mellan de två modellernas anpassning ( 2 LN(Likelihood)) och se om denna skillnad är signifikant enligt chi2 fördelningen (df = parametrar i B minus parametrar i A). Detta är möjligt eftersom skillnaden mellan två chi2 värden också har en chi2 fördelning. OBS: Detta är möjligt endast om estimeringen gjorts med Maximum Likelihood (ML) och INTE med REML. 2N0, Modellanpassning 2N0, Parametrar Y ij = + + Det finns variation på lärarnivå Y ij = + Ingen variation på lärarnivå = medelvärdet för Prov1 över hela stickprovet Den högra modellen är nestad i den vänstra men enklare (saknar,). Skillnaden mellan de två modellernas anpassning är signifikant, = 234 och χ 2 = 234 (df = 1), p < Att anta variation på lärarnivå ger alltså en signifikant bättre anpassning till data. = varians på individnivå (mellan elever) = varians på lärarnivå. Detta är alltså 13 / ( ) = 8% av den totala variansen. Vi ser att det finns en signifikant variation på lärarnivå. 2N1RI, Modellspecifikation Modell 2, 2N1RI: Två Nivåer, Nivå 1 Modell med Random Intercept Vi lägger till en prediktor på individnivå (nivå 1): Y ij = + + γ X ij + (för att testa om hur mycket man pluggar (centrerat), X ij, har någon effekt på provresultatet. Enligt modellen är effekten av pluggande den samma över alla lärare (den är fixed)). γ 3

4 2N1RI, Anpassning och Parametrar 2N1RI, Random effect Genom att ta med pluggande som en prediktor sjönk missanpassningen från till 64434, vilket är jättesignifikant, χ 2 (df = 1) = 1287, p < Både interceptet och effekten av pluggande är signifikant skilda från noll Nollmodell (utan pluggande som prediktor) 13,5% ((147,5 127,6) / 147,5) av inomgruppsvariansen kan förklaras utifrån skillnad i pluggande. Variansen i provresultat mellan lärare kan till 35,2% ((12,5 8,1) / 12,5) förklaras med skillnader i elevernas pluggande. Interceptet ( = predicerat provresultat om man pluggar genomsnittligt ) är signifikant högre än noll. γ När pluggandet ökar med en timme så ökar provresultatet med 0.64 poäng och denna effekt är signifikant högre än noll. 2N2RI, Modellspecifikation Modell 3, 2N2RI: Två Nivåer, Nivå 2 Modell med Random Intercept Vi lägger till två prediktorer på lärarnivå (nivå 2): Y ij = + γ 01 W j1 + γ 02 W j2 + γ X ij + + (för att testa om lärarens kompetens (centrerat), W j1, samt hur mycket lärarens elever pluggar i genomsnitt (centrerat), W j2,, har någon effekt på enskilda studenters provresultat). γ 02 γ 01 γ 2N2RI, Anpassning och Parametrar 2N2RI, Random effects Genom att ta med prediktorerna på lärarnivå sjönk missanpassningen från till 64329, vilket är signifikant, χ 2 (df = 2) = 5, p < Interceptet och alla effekter är signifikant skilda från noll Interceptet ( = predicerat provresultat om man är genomsnittlig på alla prediktorer Kontrollerat för de andra prediktorerna, associeras ett stegs ökning i lärarkomp. med en ökning i resultat med 0,08 poäng, de andra elevernas (med samma lärare) pluggande med en ökning med 0,56 poäng och det egna pluggandet med 0,61 poäng. Ingenting av inomgruppsvariansen i Y ij = + + γ X ij + provresultat kan förklaras utifrån skillnad i lärarens kompetens och genomsnittligt pluggande på lärarnivå. Däremot kan dessa två prediktorer på lärarnivå förklara 37% ((8,1 5,1)/ 8,1) av variansen mellan lärare. Y ij = + γ 01 W j1 + γ 02 W j2 + γ X ij + + 4

5 2NRSRI, Modellspecifikation Modell 4, 2NRSRI: Två Nivåer, Modell med Random Slope och Random Intercept Vi lägger till en random effect av pluggande (u 1j ): Y ij = + γ 01 W j1 + γ 02 W j2 + γ X ij + u 1j X ij + + (för att testa om effekten av pluggande på provresultatet varierar mellan lärare). γ 02 γ 01 γ u 1j 2NRSRI, Anpassning 2NRSRI, Random effects Genom att låta effekten av pluggande variera mellan lärare sjönk missanpassningen från till 643, vilket är signifikant, χ 2 (df = 1) = 19, p <.0001 Interceptet och alla effekter är signifikant skilda från noll Interceptet ( = predicerat provresultat om man är genomsnittlig på alla prediktorer Kontrollerat för de andra prediktorerna, associeras ett stegs ökning i lärarkomp. med en ökning i resultat med 0,08 poäng, de andra elevernas (med samma lärare) pluggande med en ökning med 0,56 poäng och det egna pluggandet med 0,62 poäng. Inomgruppsvariansen i prov Y ij = + γ 01 W j1 + γ 02 W j2 + γ X ij + + resultat samt variansen mellan lärare påverkas inte så mycket av att vi tar med random effect av pluggande i modellen. I den nedre tabellen ser vi att denna random effect är signifikant högre än noll (effekten av pluggande på provresultat varierar alltså mellan lärare). Y ij = + γ 01 W j1 + γ 02 W j2 + γ X ij + u 1j X ij + + 2NRSRI+I, Modellspecifikation Modell 5, 2NRSRI+I: Två Nivåer, Modell med Random Slope och Random Intercept samt Interaktion Vi lägger till en effekt av interaktionen mellan pluggande och lärarens kompetens (γ 11 ) och en interaktion mellan pluggande och genomsnittligt pluggande för de med samma lärare (γ 12 ): Y ij = + γ 01 W j1 + γ 02 W j2 + γ X ij + γ 11 (X ij W j1 )+ γ 12 (X ij W j2 ) + u 1j X ij + + (för att testa om variationen av effekten av pluggande mellan lärare kan förklaras av dessa interaktioner). γ 02 γ 01 γ γ 11 γ 12 u 1j 5

6 2NRSRI+I, Anpassning och Parametrar Tre nivåer, Data Kontrollerat för de andra prediktorerna, är varje timmes ökning i det genomsnittliga pluggandet för de som har samma lärare associerad med en sänkning i effekten av den enskildas pluggande med 0,02 steg. Genom att ta med de två interaktionstermerna sjönk missanpassningen från 643 till 64304, vilket är signifikant, χ 2 (df = 2) = 6, p <.05 (nätt och jämnt). Interceptet och huvudeffekterna är signifikant skilda från noll. En av interaktionerna är också signifikant. 3N0, Modellspecifikation Modell 6, 3N0: Tre Nivåer, Nollmodell (inga prediktorer) Nollmodell: Y ijk = 0 + u 00k + r 0jk + k (för att testa om det finns variation på rektors respektive lärarnivå, alltså om random intercept u 00k och r 0jk kan antas avvika från noll) u 00k 0 r 0jk k 3N0, Anpassning och Random effects Modell 7, 3N3RI: Tre Nivåer, Nivå 3 modell med Random Intercept Y ijk = 0 + u 00k + r 0jk + k 92,2% av variansen i provresultatet finns mellan elever, 2,3% mellan rektorer, och 5,5% mellan lärare. Alla dessa värden är signifikant högre än noll. 6

7 3N3RI, Modellspecifikation Modell med prediktorer på tre nivåer: Y ijk = Z k1 + γ 01k W j1 + γ 1jk X i1 + u 00k + r 0jk + k (för att testa om variationen på rektorsnivå kan förklaras av rektorns tjänsteår (Z k1 ), om variansen på lärarnivå kan förklaras av lärarens kompetens (W j1), och om variansen på individnivå kan förklaras av hur mycket man pluggar (X i1 ) γ 01k γ 1jk k 1 0 r 0jk u 00k 3N3RI, Anpassning och Parametrar Kontrollerat för de andra prediktorerna, är en ökning i rektorns tjänstetid med ett år associerad med en ökning i provresultatet med 7,8 poäng, o.s.v. Alla effekter är positiva och signifikanta Genom att ta med de tre prediktorerna (på tre nivåer) sjönk missanpassningen från till 59694, vilket är synnerligen signifikant, χ 2 (df = 3) = 5992, p < Interceptet och effekten av de tre prediktorerna är signifikant skilda från noll. 3N3RI, Random effects Y ijk = 0 + u 00k + r 0jk + k Genom att ta med de tre prediktorerna i modellen kan vi förklara 50% av variansen mellan eleverna vad gäller provresultat (nivå 1) 73% av variansen mellan lärare (nivå 2) och 92% av variansen mellan rektorer (ej längre sign.). Modell 8, 3NRSRI: Tre Nivåer, Modell med Random Intercept och Random Slopes Y ijk = Z k1 + γ 01k W j1 + γ 1jk X i1 + u 00k + r 0jk + k 3NRSRI, Modellspecifikation Vi lägger till en random effect av lärarens kompetens (u 01k ): Y ijk = Z k1 + γ 01k W j1 + γ 1jk X i1 + u 01k + u 00k + r 0jk + k (för att testa om effekten av lärarens kompetens varierar mellan rektorer) γ 01k γ 1jk k 1 r 0jk 0 u 00k u 01k 3NRSRI, Anpassning och Parametrar Kontrollerat för de andra prediktorerna, är en ökning i rektorns tjänstetid med ett år associerad med en ökning i provresultatet med 7,8 poäng, o.s.v. Alla effekter är positiva och signifikanta Genom att låta effekten av lärarens kompetens variera mellan rektorer sjönk missanpassningen från till 59682, vilket är signifikant, χ 2 (df = 1) = 12, p <.001. Interceptet och effekten av de tre prediktorerna är signifikant skilda från noll. 7

8 3NRSRI, Random effects Genom att låta effekten av lärarens kompetens variera mellan rektorer kan vi förklara ytterligare 53% av variansen mellan rektorer och 22% av variansen mellan lärare. I den nedre tabellen ser vi också att effekten av lärarens kompetens på provresultatet varierar signifikant mellan rektorer (p =.019). Modell 9, 3NRSRI+I: Tre Nivåer, Modell med Random Slopes och Random Intercept samt Interaktion u 00k k u 01k r 0jk 3NRSRI+I, Modellspecifikation 3NRSRI+I, Anpassning och Parametrar Vi lägger till en effekt av interaktionen mellan lärarens kompetens och rektorns tjänstetid (γ 011 ): Y ijk = Z k1 + γ 01k W j1 + γ 011 (Z k1 W j1 )+ γ 1jk X i1 + u 01k + u 00k + r 0jk + k (för att testa om variationen av effekten av lärarens kompetens mellan rektorer kan förklaras med rektorns tjänstetid). γ 01k γ 1jk γ 011 k 1 r 0jk 0 u 00k u 01k Huvudeffekterna är positiva (ökat värde är associerad med ökat provresultat) och signifikanta. Interaktionen är inte signifikant Genom att ta med interaktionen mellan rektorns tjänstetid och lärarens kompetens sjönk missanpassningen från 59681,588 till 59681,579, vilket är långt ifrån signifikant, χ 2 (df = 1) = 0,009, p =.924. Interceptet och huvudeffekterna, men inte interaktionen, är signifikant skilda från noll. Upprepade mätningar Upprepade mätningar Tid (måna ader) Undersökningsdeltagare Första Andra Tredje Fjärde Femte Sjätte Skulle vi jämföra de olika mättillfällena med varandra (vad gäller någon utfallsvariabel) så skulle vi inte ta hänsyn till det faktum att tiden (t.ex. under behandling) är olika vid de olika mättillfällena för olika personer. Data organiseras vertikalt. En fördel med detta är att en person stryks inte helt om han/hon har ett saknat värde på utfallsvariabeln. 8

9 UMETRSRI, Modellspecifikation Modell, UMETRSRI: Upprepad Mätning, Modell med Effekt av Tid samt Random Slopes och Random Intercept Vi beräknar om en patients grad av depression vid tidpunkten t (Y ti ) är en funktion av tid under behandling (T t1 ). Vi tar även med den kvadratiska tidstermen(t 2 t1) för att testa om effekten av tid kan antas vara icke linjär: Y ti = + γ T ti + γ 20 T 2 ti + r 0i + r 1i + ε ti. Vi tar med två extra feltermer för att testa om det finns individuella skillnader i startvärde samt effekt av tid (vi utgår ifrån att effekten av kvadrerad tid är fixed). γ γ 20 ε ti r 0i r 1i UMETRSRI, Anpassning och Parametrar UMETRSRI, Random effects Det finns en signifikant icke linjär effekt av tid på graden av depression. Graden av depression ges av formeln Dep. = 79,12 2,62 Tid + 0,12 Tid 2. Graden av depression sjunker alltså med tiden, men sänkningen är avtagande. Y ti = + γ T ti + γ 20 T 2 ti + r 0i + r 1i + ε ti Det finns en signifikant variation mellan individer vid en viss tidpunkt (Residual), i startvärde (Intercept), samt vad gäller effekten av tid på graden av depression. Modell 11, UMET+PI,RSRI: Upprepad Mätning, Modell med Effekt av Tid plus Prediktorer och Interaktion samt Random Slopes och Random Intercept UMET+PI,RSRI, Modellspecifikation Vi lägger till typ av behandling (B i ) och kön (K i ) samt interaktionerna mellan tid och behandling (T ti B i ) och tid och kön (T ti K i ): Y ti = + γ T ti + γ 20 T 2 ti + γ 01 B i + γ 02 K i + γ 03 (T ti B i ) + γ 04 (T ti K i ) + r 0i + r 1i + ε ti. γ 20 γ γ 01 γ 02 γ 03 γ 04 Behandling har fyra kategorier och detta blir tre dummyvariabler ε ti r 0i r 1i 9

10 Effekten av tid interagerar med behandling men inte med kön. UMET+PI,RSRI, Anpassning och Parametrar Genom att ta med de två prediktorerna samt tre interaktioner sjönk missanpassningen från 2859 till 2794, vilket är signifikant, χ 2 (df = 8) = 65, p < UMET+PI,RSRI, Parametrar Generellt sett sjunker graden av depression med 4 poäng per månad (men effekten är avtagande). När en prediktor är en kategorivariabler jämförs den sista kategorin med övriga. Här ser vi att patienterna med bh behandlingarna 1 och 2 (A och B) har signifikant högre genomsnittlig grad av depression jämfört med behandling 4 (D). Effekten av tid är mer positiv (mindre avtagande) i de tre andra grupperna jämfört med grupp 4 (D).

Användning. Fixed & Random. Centrering. Multilevel Modeling (MLM) Var sak på sin nivå

Användning. Fixed & Random. Centrering. Multilevel Modeling (MLM) Var sak på sin nivå Användning Multilevel Modeling (MLM) Var sak på sin nivå Kimmo Sorjonen Sektionen för Psykologi Karolinska Institutet Kärt barn har många namn: (1) Random coefficient models; () Mixed effect models; (3)

Läs mer

Instuderingsfrågor till avsnittet om statistik, kursen Statistik och Metod, Psykologprogrammet på KI, T8

Instuderingsfrågor till avsnittet om statistik, kursen Statistik och Metod, Psykologprogrammet på KI, T8 1 Instuderingsfrågor till avsnittet om statistik, kursen Statistik och Metod, Psykologprogrammet på KI, T8 Dessa instuderingsfrågor är främst tänkta att stämma överens med innehållet i föreläsningarna,

Läs mer

Multilevel Modeling med SPSS Kimmo Sorjonen ( )

Multilevel Modeling med SPSS Kimmo Sorjonen ( ) 1 Multilevel Modeling med SPSS Kimmo Sorjonen (2012-01-21) 1. Tvärsnittsdata, Två nivåer 1.i Variabler Data simulerar de som använts i följande studie (se Appendix A och Appendix B): Andersen, R., & van

Läs mer

Regressionsanalys med SPSS Kimmo Sorjonen (2010)

Regressionsanalys med SPSS Kimmo Sorjonen (2010) 1 Regressionsanalys med SPSS Kimmo Sorjonen (2010) 1. Multipel regression 1.1. Variabler I det aktuella exemplet ingår följande variabler: (1) life.sat, anger i vilket utsträckning man är nöjd med livet;

Läs mer

Regressionsanalys. - en fråga om balans. Kimmo Sorjonen Sektionen för Psykologi Karolinska Institutet

Regressionsanalys. - en fråga om balans. Kimmo Sorjonen Sektionen för Psykologi Karolinska Institutet Regressionsanalys - en fråga om balans Kimmo Sorjonen Sektionen för Psykologi Karolinska Institutet Innehåll: 1. Enkel reg.analys 1.1. Data 1.2. Reg.linjen 1.3. Beta (β) 1.4. Signifikansprövning 1.5. Reg.

Läs mer

Instruktioner till Inlämningsuppgiften i Statistik Kursen Statistik och Metod Psykologprogrammet (T8), Karolinska Institutet

Instruktioner till Inlämningsuppgiften i Statistik Kursen Statistik och Metod Psykologprogrammet (T8), Karolinska Institutet 1 Instruktioner till Inlämningsuppgiften i Statistik Kursen Statistik och Metod Psykologprogrammet (T8), Karolinska Institutet För att bli godkänd på inlämningsuppgiften krävs att man utför uppgiften om

Läs mer

Innehåll: 3.4 Parametriskt eller ej 3.5 Life Table 3.6 Kaplan Meier 4. Cox Regression 4.1 Hazard Function 4.2 Estimering (PL)

Innehåll: 3.4 Parametriskt eller ej 3.5 Life Table 3.6 Kaplan Meier 4. Cox Regression 4.1 Hazard Function 4.2 Estimering (PL) Innehåll: 1. Risk & Odds 1.1 Risk Ratio 1.2 Odds Ratio 2. Logistisk Regression 2.1 Ln Odds 2.2 SPSS Output 2.3 Estimering (ML) 2.4 Multipel 3. Survival Analys 3.1 vs. Logistisk 3.2 Censurerade data 3.3

Läs mer

Identifikationsnummer:... Tentamen: Statistik & Metod (2PS020), Psykologprogrammet, Termin 8 Datum:

Identifikationsnummer:... Tentamen: Statistik & Metod (2PS020), Psykologprogrammet, Termin 8 Datum: Identifikationsnummer:... Tentamen: Statistik & Metod (2PS020), Psykologprogrammet, Termin 8 Datum: 120203 Ovanstående nummer är ditt identifikationsnummer! Skriv in detta nummer på varje blad i tentan

Läs mer

Instruktioner till Inlämningsuppgiften i Statistik Kursen Statistik och Metod Psykologprogrammet (T8), Karolinska Institutet

Instruktioner till Inlämningsuppgiften i Statistik Kursen Statistik och Metod Psykologprogrammet (T8), Karolinska Institutet 1 Instruktioner till Inlämningsuppgiften i Statistik Kursen Statistik och Metod Psykologprogrammet (T8), Karolinska Institutet Uppdaterad: 120113 För att bli godkänd på inlämningsuppgiften krävs att man

Läs mer

Instruktioner till Inlämningsuppgiften i Statistik Kursen Statistik och Metod Psykologprogrammet (T8), Karolinska Institutet

Instruktioner till Inlämningsuppgiften i Statistik Kursen Statistik och Metod Psykologprogrammet (T8), Karolinska Institutet 1 Instruktioner till Inlämningsuppgiften i Statistik Kursen Statistik och Metod Psykologprogrammet (T8), Karolinska Institutet Uppdaterad: 130114 För att bli godkänd på inlämningsuppgiften krävs att man

Läs mer

Risk Ratio, Odds Ratio, Logistisk Regression och Survival Analys med SPSS Kimmo Sorjonen, 2012

Risk Ratio, Odds Ratio, Logistisk Regression och Survival Analys med SPSS Kimmo Sorjonen, 2012 Risk Ratio, Odds Ratio, Logistisk Regression och Survival Analys med SPSS Kimmo Sorjonen, 2012 1. Risk Ratio & Odds Ratio Risk- och odds ratio beräknar sambandet mellan två dikotoma variabler. Inom forskning

Läs mer

STATISTISK ANALYS AV KOMPLEXA DATA

STATISTISK ANALYS AV KOMPLEXA DATA STATISTISK ANALYS AV KOMPLEXA DATA HIERARKISKA DATA Linda Wänström Linköpings universitet 25 November Wänström (Linköpings universitet) HIERARKISKA DATA 25 November 1 / 53 Regressionsmodell för icke-hierarkiska

Läs mer

Sänkningen av parasitnivåerna i blodet

Sänkningen av parasitnivåerna i blodet 4.1 Oberoende (x-axeln) Kön Kön Längd Ålder Dos Dos C max Parasitnivå i blodet Beroende (y-axeln) Längd Vikt Vikt Vikt C max Sänkningen av parasitnivåerna i blodet Sänkningen av parasitnivåerna i blodet

Läs mer

Kapitel 22: KLUSTRADE SAMPEL OCH PANELDATA

Kapitel 22: KLUSTRADE SAMPEL OCH PANELDATA Kapitel 22: KLUSTRADE SAMPEL OCH PANELDATA Statistiska tester bygger alltid på vissa antaganden. Är feltermen homoskedastisk? Är den normalfördelad? Dessa antaganden är faktiskt aldrig uppfyllda i praktiken,

Läs mer

Kapitel 15: INTERAKTIONER, STANDARDISERADE SKALOR OCH ICKE-LINJÄRA EFFEKTER

Kapitel 15: INTERAKTIONER, STANDARDISERADE SKALOR OCH ICKE-LINJÄRA EFFEKTER Kapitel 15: INTERAKTIONER, STANDARDISERADE SKALOR OCH ICKE-LINJÄRA EFFEKTER När vi mäter en effekt i data så vill vi ofta se om denna skiljer sig mellan olika delgrupper. Vi kanske testar effekten av ett

Läs mer

Sambandsmått. Centralmått. Det mest frekventa värdet. Det mittersta värdet i en rangordnad fördelning. Aritmetiska medelvärdet.

Sambandsmått. Centralmått. Det mest frekventa värdet. Det mittersta värdet i en rangordnad fördelning. Aritmetiska medelvärdet. PM315 HT016 Emma äck Formelsamling Centralmått Typvärde T Median Md ritmetiska medelvärdet Det mest frekventa värdet Det mittersta värdet i en rangordnad fördelning = n Spridningsmått Variationsvidd (Range)

Läs mer

STATISTISK ANALYS AV KOMPLEXA DATA

STATISTISK ANALYS AV KOMPLEXA DATA STATISTISK ANALYS AV KOMPLEXA DATA HIERARKISKA DATA Linda Wänström Linköpings universitet 14-15 November Wänström (Linköpings universitet) HIERARKISKA DATA 14-15 November 1 / 59 Hierarkiska data Hierarkiska

Läs mer

Tentamen för kursen. Linjära statistiska modeller. 27 oktober

Tentamen för kursen. Linjära statistiska modeller. 27 oktober STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Tentamen för kursen Linjära statistiska modeller 27 oktober 2017 9 14 Examinator: Ola Hössjer, tel. 070/672 12 18, ola@math.su.se Återlämning: Meddelas via kurshemsida

Läs mer

Upprepade mätningar och tidsberoende analyser. Stefan Franzén Statistiker Registercentrum Västra Götaland

Upprepade mätningar och tidsberoende analyser. Stefan Franzén Statistiker Registercentrum Västra Götaland Upprepade mätningar och tidsberoende analyser Stefan Franzén Statistiker Registercentrum Västra Götaland Innehåll Stort område Simpsons paradox En mätning per individ Flera mätningar per individ Flera

Läs mer

Instruktioner till Examinationen Kursen Introduktion till Multivariat Dataanalys Karolinska Institutet

Instruktioner till Examinationen Kursen Introduktion till Multivariat Dataanalys Karolinska Institutet 1 Instruktioner till Examinationen Kursen Introduktion till Multivariat Dataanalys Karolinska Institutet Uppdaterad: 120412 För att bli godkänd skall man utföra alla sex uppgifter som beskrivs nedan. OBS:

Läs mer

2. Finns samband mellan individbundna faktorer och kontextuella faktorer och skolresultat?

2. Finns samband mellan individbundna faktorer och kontextuella faktorer och skolresultat? 1 Teknisk bilaga till rapport 2018:10 Det är i det lokala man finner komplexiteten - Betydelsen av migrationsbakgrund och socioekonomiska faktorer för skolmisslyckanden 1 Bakgrund Denna rapport är en teknisk

Läs mer

Multipel Regressionsmodellen

Multipel Regressionsmodellen Multipel Regressionsmodellen Koefficienterna i multipel regression skattas från ett stickprov enligt: Multipel Regressionsmodell med k förklarande variabler: Skattad (predicerad) Värde på y y ˆ = b + b

Läs mer

Tentamen för kursen. Linjära statistiska modeller. 13 januari

Tentamen för kursen. Linjära statistiska modeller. 13 januari STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Tentamen för kursen Linjära statistiska modeller 13 januari 2017 9 14 Examinator: Ola Hössjer, tel. 070/672 12 18, ola@math.su.se Återlämning: Meddelas via kurshemsida

Läs mer

F18 MULTIPEL LINJÄR REGRESSION, FORTS. (NCT

F18 MULTIPEL LINJÄR REGRESSION, FORTS. (NCT Stat. teori gk, ht 006, JW F18 MULTIPEL LINJÄR REGRESSION, FORTS. (NCT 1.1, 13.1-13.6, 13.8-13.9) Modell för multipel linjär regression Modellantaganden: 1) x-värdena är fixa. ) Varje y i (i = 1,, n) är

Läs mer

STATISTISK ANALYS AV KOMPLEXA DATA

STATISTISK ANALYS AV KOMPLEXA DATA STATISTISK ANALYS AV KOMPLEXA DATA LONGITUDINELLA DATA Linda Wänström Linköpings universitet 9 December Linda Wänström (Linköpings universitet) LONGITUDINELLA DATA 9 December 1 / 43 Longitudinella data

Läs mer

Structural Equation Modeling med Amos Kimmo Sorjonen (2012-01-24)

Structural Equation Modeling med Amos Kimmo Sorjonen (2012-01-24) 1 Structural Equation Modeling med Amos Kimmo Sorjonen (2012-01-24) 1. Variabler och tänkt modell Data simulerar de som använts i följande studie (se Appendix A): Hull, J. G., & Mendolia, M. (1991). Modeling

Läs mer

Residualanalys. Finansiell statistik, vt-05. Normalfördelade? Normalfördelade? För modellen

Residualanalys. Finansiell statistik, vt-05. Normalfördelade? Normalfördelade? För modellen Residualanalys För modellen Johan Koskinen, Statistiska institutionen, Stockholms universitet Finansiell statistik, vt-5 F7 regressionsanalys antog vi att ε, ε,..., ε är oberoende likafördelade N(,σ Då

Läs mer

Kapitel 12: TEST GÄLLANDE EN GRUPP KOEFFICIENTER - ANOVA

Kapitel 12: TEST GÄLLANDE EN GRUPP KOEFFICIENTER - ANOVA Kapitel 12: TEST GÄLLANDE EN GRUPP KOEFFICIENTER - ANOVA 12.1 ANOVA I EN MULTIPEL REGRESSION Exempel: Tjänar man mer som egenföretagare? Nedan visas ett utdrag ur ett dataset som innehåller information

Läs mer

Identifikationsnummer:... Tentamen: Statistik & Metod (2PS020), Psykologprogrammet, Termin 8 Datum:

Identifikationsnummer:... Tentamen: Statistik & Metod (2PS020), Psykologprogrammet, Termin 8 Datum: Identifikationsnummer:... Tentamen: Statistik & Metod (2PS020), Psykologprogrammet, Termin 8 Datum: 110319 Ovanstående nummer är ditt identifikationsnummer! Skriv in detta nummer på varje blad i tentan

Läs mer

Grundläggande matematisk statistik

Grundläggande matematisk statistik Grundläggande matematisk statistik Linjär Regression Uwe Menzel, 2018 uwe.menzel@slu.se; uwe.menzel@matstat.de www.matstat.de Linjär Regression y i y 5 y 3 mätvärden x i, y i y 1 x 1 x 2 x 3 x 4 x 6 x

Läs mer

InStat Exempel 4 Korrelation och Regression

InStat Exempel 4 Korrelation och Regression InStat Exempel 4 Korrelation och Regression Vi ska analysera ett datamaterial som innehåller information om kön, längd och vikt för 2000 personer. Materialet är jämnt fördelat mellan könen (1000 män och

Läs mer

Korrelation kausalitet. ˆ Y =bx +a KAPITEL 6: LINEAR REGRESSION: PREDICTION

Korrelation kausalitet. ˆ Y =bx +a KAPITEL 6: LINEAR REGRESSION: PREDICTION KAPITEL 6: LINEAR REGRESSION: PREDICTION Prediktion att estimera "poäng" på en variabel (Y), kriteriet, på basis av kunskap om "poäng" på en annan variabel (X), prediktorn. Prediktion heter med ett annat

Läs mer

För logitmodellen ges G (=F) av den logistiska funktionen: (= exp(z)/(1+ exp(z))

För logitmodellen ges G (=F) av den logistiska funktionen: (= exp(z)/(1+ exp(z)) Logitmodellen För logitmodellen ges G (=F) av den logistiska funktionen: F(z) = e z /(1 + e z ) (= exp(z)/(1+ exp(z)) Funktionen motsvarar den kumulativa fördelningsfunktionen för en standardiserad logistiskt

Läs mer

Innehåll. Data. Skillnad SEM & Regression. Exogena & Endogena variabler. Latenta & Manifesta variabler

Innehåll. Data. Skillnad SEM & Regression. Exogena & Endogena variabler. Latenta & Manifesta variabler Innehåll Structural Equation Modeling (SEM) Ingenting är omöjligt Kimmo Sorjonen Sektionen för Psykologi Karolinska Institutet Data Latenta och manifesta variabler Typ av modell (path, CFA, SEM) Specificera

Läs mer

Kapitel 4: SAMBANDET MELLAN VARIABLER: REGRESSIONSLINJEN

Kapitel 4: SAMBANDET MELLAN VARIABLER: REGRESSIONSLINJEN Kapitel 4: SAMBANDET MELLAN VARIABLER: REGRESSIONSLINJEN Spridningsdiagrammen nedan representerar samma korrelationskoefficient, r = 0,8. 80 80 60 60 40 40 20 20 0 0 20 40 0 0 20 40 Det finns dock två

Läs mer

ANOVA Faktoriell (tvåvägs)

ANOVA Faktoriell (tvåvägs) ANOVA Faktoriell (tvåvägs) Faktoriell ANOVA (tvåvägs) Två oberoende variabel ( tvåvägs ): Nominalskala eller ordinalskala. Delar in det man undersöker (personerna?) i grupper/kategorier, dvs. betingelser.

Läs mer

Statistik B Regressions- och tidsserieanalys Föreläsning 1

Statistik B Regressions- och tidsserieanalys Föreläsning 1 Statistik B Regressions- och tidsserieanalys Föreläsning Kurskod: 732G7, 8 hp Lärare och examinator: Ann-Charlotte (Lotta) Hallberg Lärare och lektionsledare: Isak Hietala Labassistenter Kap 3,-3,6. Läs

Läs mer

För logitmodellen ges G (=F) av den logistiska funktionen: (= exp(z)/(1+ exp(z))

För logitmodellen ges G (=F) av den logistiska funktionen: (= exp(z)/(1+ exp(z)) Logitmodellen För logitmodellen ges G (=F) av den logistiska funktionen: F(z) = e z /(1 + e z ) (= exp(z)/(1+ exp(z)) Funktionen motsvarar den kumulativa fördelningsfunktionen för en standardiserad logistiskt

Läs mer

Prediktera. Statistik för modellval och prediktion. Trend? - Syrehalt beroende på kovariater. Sambands- och trendanalys

Prediktera. Statistik för modellval och prediktion. Trend? - Syrehalt beroende på kovariater. Sambands- och trendanalys Statistik för modellval och prediktion att beskriva, förklara och förutsäga Georg Lindgren Prediktera Matematisk statistik, Lunds universitet stik för modellval och prediktion p.1/28 Statistik för modellval

Läs mer

Spridningsdiagram (scatterplot) Fler exempel. Korrelation (forts.) Korrelation. Enkel linjär regression. Enkel linjär regression (forts.

Spridningsdiagram (scatterplot) Fler exempel. Korrelation (forts.) Korrelation. Enkel linjär regression. Enkel linjär regression (forts. Spridningsdiagram (scatterplot) En scatterplot som visar par av observationer: reklamkostnader på -aeln and försäljning på -aeln ScatterplotofAdvertising Ependitures ()andsales () 4 Fler eempel Notera:

Läs mer

Poissonregression. E(y x1, x2,.xn) = exp( 0 + 1x1 +.+ kxk)

Poissonregression. E(y x1, x2,.xn) = exp( 0 + 1x1 +.+ kxk) Poissonregression En lämplig utgångspunkt om vi har en beroende variabel som är en count variable, en variabel som antar icke-negativa heltalsvärden med ganska liten variation E(y x1, x2,.xn) = exp( 0

Läs mer

Linjär regressionsanalys. Wieland Wermke

Linjär regressionsanalys. Wieland Wermke + Linjär regressionsanalys Wieland Wermke + Regressionsanalys n Analys av samband mellan variabler (x,y) n Ökad kunskap om x (oberoende variabel) leder till ökad kunskap om y (beroende variabel) n Utifrån

Läs mer

TENTAMEN I REGRESSIONSANALYS OCH TIDSSERIEANALYS

TENTAMEN I REGRESSIONSANALYS OCH TIDSSERIEANALYS STOCKHOLMS UNIVERSITET Statistiska institutionen Marcus Berg VT2014 TENTAMEN I REGRESSIONSANALYS OCH TIDSSERIEANALYS Fredag 23 maj 2014 kl. 12-17 Skrivtid: 5 timmar Godkända hjälpmedel: Kalkylator utan

Läs mer

En rät linje ett enkelt samband. En rät linje + slumpbrus. Observationspar (X i,y i ) MSG Staffan Nilsson, Chalmers 1.

En rät linje ett enkelt samband. En rät linje + slumpbrus. Observationspar (X i,y i ) MSG Staffan Nilsson, Chalmers 1. En rät linje ett enkelt samband Y β 1 Lutning (slope) β 0 Skärning (intercept) 1 Y= β 0 + β 1 X X En rät linje + slumpbrus Y Y= β 0 + β 1 X + brus brus ~ N(0,σ) X Observationspar (X i,y i ) Y Ökar/minskar

Läs mer

Skolprestationer på kommunnivå med hänsyn tagen till socioekonomi

Skolprestationer på kommunnivå med hänsyn tagen till socioekonomi 1(6) PCA/MIH Johan Löfgren 2016-11-10 Skolprestationer på kommunnivå med hänsyn tagen till socioekonomi 1 Inledning Sveriges kommuner och landsting (SKL) presenterar varje år statistik över elevprestationer

Läs mer

Instruktioner till Examinationen Kursen Metoder för Statistisk Analys Karolinska Institutet

Instruktioner till Examinationen Kursen Metoder för Statistisk Analys Karolinska Institutet 1 Instruktioner till Examinationen Kursen Metoder för Statistisk Analys Karolinska Institutet Uppdaterad: 140518 För att bli godkänd skall man utföra alla sex uppgifter som beskrivs nedan. OBS: Undervisningen

Läs mer

kodnr: 2) OO (5p) Klassindelningar

kodnr: 2) OO (5p) Klassindelningar kodnr: 1) KH (10p) a) Förklara innebörden av kausalitetsbegreppet i ett kvantitativt-metodologiskt sammanhang (2p) b) Förklara innebörden av begreppet nonsenssamband (2p) c) Argumentera för och motivera

Läs mer

T-test, Korrelation och Konfidensintervall med SPSS Kimmo Sorjonen

T-test, Korrelation och Konfidensintervall med SPSS Kimmo Sorjonen T-test, Korrelation och Konfidensintervall med SPSS Kimmo Sorjonen 1. One-Sample T-Test 1.1 När? Denna analys kan utföras om man vill ta reda på om en populations medelvärde på en viss variabel kan antas

Läs mer

Structural Equation Modeling (SEM) Ingenting är omöjligt

Structural Equation Modeling (SEM) Ingenting är omöjligt Structural Equation Modeling (SEM) Ingenting är omöjligt Kimmo Sorjonen Sektionen för Psykologi Karolinska Institutet Innehåll Data Latenta och manifesta variabler Typ av modell (path, CFA, SEM) Specificera

Läs mer

7.5 Experiment with a single factor having more than two levels

7.5 Experiment with a single factor having more than two levels 7.5 Experiment with a single factor having more than two levels Exempel: Antag att vi vill jämföra dragstyrkan i en syntetisk fiber som blandats ut med bomull. Man vet att inblandningen påverkar dragstyrkan

Läs mer

Tentamen för kursen. Linjära statistiska modeller. 22 augusti

Tentamen för kursen. Linjära statistiska modeller. 22 augusti STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Tentamen för kursen Linjära statistiska modeller 22 augusti 2008 9 14 Examinator: Anders Björkström, tel. 16 45 54, bjorks@math.su.se Återlämning: Rum 312, hus

Läs mer

Kapitel 17: HETEROSKEDASTICITET, ROBUSTA STANDARDFEL OCH VIKTNING

Kapitel 17: HETEROSKEDASTICITET, ROBUSTA STANDARDFEL OCH VIKTNING Kapitel 17: HETEROSKEDASTICITET, ROBUSTA STANDARDFEL OCH VIKTNING När vi gör en regressionsanalys så bygger denna på vissa antaganden: Vi antar att vi dragit ett slumpmässigt sampel från en population

Läs mer

Tillämpad statistik (A5), HT15 Föreläsning 11: Multipel linjär regression 2

Tillämpad statistik (A5), HT15 Föreläsning 11: Multipel linjär regression 2 Tillämpad statistik (A5), HT15 Föreläsning 11: Multipel linjär regression 2 Ronnie Pingel Statistiska institutionen Senast uppdaterad: 2015-11-23 Faktum är att vi i praktiken nästan alltid har en blandning

Läs mer

ordinalskala kvotskala F65A nominalskala F65B kvotskala nominalskala (motivering krävs för full poäng)

ordinalskala kvotskala F65A nominalskala F65B kvotskala nominalskala (motivering krävs för full poäng) 1 F1 ordinalskala F2 kvotskala F65A nominalskala F65B kvotskala F81 nominalskala (motivering krävs för full poäng) b) Variabler som används är F2 och F65b. Eftersom det är kvotskala på båda kan vi använda

Läs mer

FACIT!!! (bara facit,

FACIT!!! (bara facit, STOCKHOLMS UNIVERSITET Psykologiska institutionen Psykologi III, VT 2012. Fristående kurs FACIT!!! (bara facit, inga tolkningar) Skrivning i Psykologi III metod, fristående kurs: Metod och Statistik avsnitt

Läs mer

Envägs variansanalys (ANOVA) för test av olika väntevärde i flera grupper

Envägs variansanalys (ANOVA) för test av olika väntevärde i flera grupper Envägs variansanalys (ANOVA) för test av olika väntevärde i flera grupper Tobias Abenius February 21, 2012 Envägs variansanalys (ANOVA) I envägs variansanalys utnyttjas att

Läs mer

STATISTISK ANALYS AV KOMPLEXA DATA

STATISTISK ANALYS AV KOMPLEXA DATA STATISTISK ANALYS AV KOMPLEXA DATA LONGITUDINELLA DATA Linda Wänström Linköpings universitet Linda Wänström (Linköpings universitet) LONGITUDINELLA DATA 1 / 66 Longitudinella data Tvärsnittsdata Flera

Läs mer

Mälardalens Högskola. Formelsamling. Statistik, grundkurs

Mälardalens Högskola. Formelsamling. Statistik, grundkurs Mälardalens Högskola Formelsamling Statistik, grundkurs Höstterminen 2015 Deskriptiv statistik Populationens medelvärde (population mean): μ = X N Urvalets medelvärde (sample mean): X = X n Där N är storleken

Läs mer

Regressions- och Tidsserieanalys - F7

Regressions- och Tidsserieanalys - F7 Regressions- och Tidsserieanalys - F7 Tidsserieregression, kap 6.1-6.4 Linda Wänström Linköpings universitet November 25 Wänström (Linköpings universitet) F7 November 25 1 / 28 Tidsserieregressionsanalys

Läs mer

Regressions- och Tidsserieanalys - F3

Regressions- och Tidsserieanalys - F3 Regressions- och Tidsserieanalys - F3 Multipel regressionsanalys kap 4.8-4.10 Linda Wänström Linköpings universitet November 6, 2013 Wänström (Linköpings universitet) F3 November 6, 2013 1 / 22 Interaktion

Läs mer

Exempel på tentamensuppgifter

Exempel på tentamensuppgifter STOCKHOLMS UNIVERSITET 4 mars 2010 Matematiska institutionen Avd. för matematisk statistik Mikael Andersson Exempel på tentamensuppgifter Uppgift 1 Betrakta en allmän I J-tabell enligt 1 2 3 J Σ 1 n 11

Läs mer

F7 Polynomregression och Dummyvariabler

F7 Polynomregression och Dummyvariabler F7 Polnomregression och Dummvariabler Antag att man börjar med enkel linjär regression. Kap Polnomregression Emellanåt upptäcker man samband som är kvadratiska, kubiska osv. Allmänt: polnom av k:te ordningen

Läs mer

Faktoranalys - Som en god cigarr

Faktoranalys - Som en god cigarr Innehåll Faktoranalys - Som en god cigarr Faktoranalys. Användningsområde. Krav/rekommen. 3. Olika typer av FA 4. Faktorladdningar 5. Eigenvalue 6. Rotation 7. Laddningar & Korr. 8. Jämförelse av metoder

Läs mer

STATISTISK ANALYS AV KOMPLEXA DATA

STATISTISK ANALYS AV KOMPLEXA DATA STATISTISK ANALYS AV KOMPLEXA DATA LONGITUDINELLA DATA Linda Wänström Linköpings universitet 12 December Linda Wänström (Linköpings universitet) LONGITUDINELLA DATA 12 December 1 / 12 Explorativ Faktoranalys

Läs mer

OBS! Vi har nya rutiner.

OBS! Vi har nya rutiner. KOD: Kurskod: PM2315 Kursnamn: Psykologprogrammet, kurs 15, Metoder för psykologisk forskning (15 hp) Ansvarig lärare: Jan Johansson Hanse Tentamensdatum: 14 januari 2012 Tillåtna hjälpmedel: miniräknare

Läs mer

I. Grundläggande begrepp II. Deskriptiv statistik III. Statistisk inferens Parametriska Icke-parametriska

I. Grundläggande begrepp II. Deskriptiv statistik III. Statistisk inferens Parametriska Icke-parametriska Innehåll I. Grundläggande begrepp II. Deskriptiv statistik III. Statistisk inferens Hypotesprövnig Statistiska analyser Parametriska analyser Icke-parametriska analyser Univariata analyser Univariata analyser

Läs mer

Till ampad statistik (A5) Förläsning 13: Logistisk regression

Till ampad statistik (A5) Förläsning 13: Logistisk regression Till ampad statistik (A5) Förläsning 13: Logistisk regression Ronnie Pingel Statistiska institutionen Senast uppdaterad: 2016-03-08 Exempel 1: NTU2015 Exempel 2: En jobbannons Exempel 3 1 1 Klofstad, C.

Läs mer

Bild 1. Bild 2 Sammanfattning Statistik I. Bild 3 Hypotesprövning. Medicinsk statistik II

Bild 1. Bild 2 Sammanfattning Statistik I. Bild 3 Hypotesprövning. Medicinsk statistik II Bild 1 Medicinsk statistik II Läkarprogrammet T5 HT 2014 Anna Jöud Arbets- och miljömedicin, Lunds universitet ERC Syd, Skånes Universitetssjukhus anna.joud@med.lu.se Bild 2 Sammanfattning Statistik I

Läs mer

Analys av medelvärden. Jenny Selander , plan 3, Norrbacka, ingång via den Samhällsmedicinska kliniken

Analys av medelvärden. Jenny Selander , plan 3, Norrbacka, ingång via den Samhällsmedicinska kliniken Analys av medelvärden Jenny Selander jenny.selander@ki.se 524 800 29, plan 3, Norrbacka, ingång via den Samhällsmedicinska kliniken Jenny Selander, Kvant. metoder, FHV T1 december 20111 Innehåll Normalfördelningen

Läs mer

Föreläsning 9. NDAB01 Statistik; teori och tillämpning i biologi

Föreläsning 9. NDAB01 Statistik; teori och tillämpning i biologi Föreläsning 9 Statistik; teori och tillämpning i biologi 1 (kap. 20) Introduktion I föregående föreläsning diskuterades enkel linjär regression, där en oberoende variabel X förklarar variationen hos en

Läs mer

1. Lära sig plotta en beroende variabel mot en oberoende variabel. 2. Lära sig skatta en enkel linjär regressionsmodell

1. Lära sig plotta en beroende variabel mot en oberoende variabel. 2. Lära sig skatta en enkel linjär regressionsmodell Datorövning 1 Regressions- och tidsserieanalys Syfte 1. Lära sig plotta en beroende variabel mot en oberoende variabel 2. Lära sig skatta en enkel linjär regressionsmodell 3. Lära sig beräkna en skattning

Läs mer

Bygga linjära modeller! Didrik Vanhoenacker 2007

Bygga linjära modeller! Didrik Vanhoenacker 2007 Bygga linjära modeller! Didrik Vanhoenacker 2007 1 Bygga enkla modeller Tänk att vi ska försöka förstå vad som styr hur många blommor korsblommiga växter har. T ex hos Lomme och Penningört. Hittills har

Läs mer

STATISTISK ANALYS AV KOMPLEXA DATA

STATISTISK ANALYS AV KOMPLEXA DATA STATISTISK ANALYS AV KOMPLEXA DATA LONGITUDINELLA DATA Linda Wänström Linköpings universitet Linda Wänström (Linköpings universitet) LONGITUDINELLA DATA 1 / 56 Longitudinella data Tvärsnittsdata Flera

Läs mer

Höftledsdysplasi hos dansk-svensk gårdshund

Höftledsdysplasi hos dansk-svensk gårdshund Höftledsdysplasi hos dansk-svensk gårdshund Sjö A Sjö B Förekomst av parasitdrabbad öring i olika sjöar Sjö C Jämföra medelvärden hos kopplade stickprov Tio elitlöpare springer samma sträcka i en för dem

Läs mer

Föreläsning 6 (kap 6.1, 6.3, ): Punktskattningar

Föreläsning 6 (kap 6.1, 6.3, ): Punktskattningar Föreläsning 6 (kap 6.1, 6.3, 7.1-7.3): Punktskattningar Marina Axelson-Fisk 4 maj, 2016 Stickprov (sample) Idag: Stickprovsmedelvärde och varians Statistika (statistic) Punktskattning (point estimation)

Läs mer

Regressions- och Tidsserieanalys - F3

Regressions- och Tidsserieanalys - F3 Regressions- och Tidsserieanalys - F3 Multipel regressionsanalys kap 4.8-4.10 Linda Wänström Linköpings universitet 7 maj Wänström (Linköpings universitet) F3 7 maj 1 / 26 Lite som vi inte hann med när

Läs mer

Kvantitativ strategi Univariat analys 2. Wieland Wermke

Kvantitativ strategi Univariat analys 2. Wieland Wermke + Kvantitativ strategi Univariat analys 2 Wieland Wermke + Sammanfattande mått: centralmått n Beroende på skalnivån finns det olika mått, som betecknar variablernas fördelning n Typvärde eller modalvärde

Läs mer

Logistisk regression och Indexteori. Patrik Zetterberg. 7 januari 2013

Logistisk regression och Indexteori. Patrik Zetterberg. 7 januari 2013 Föreläsning 9 Logistisk regression och Indexteori Patrik Zetterberg 7 januari 2013 1 / 33 Logistisk regression I logistisk regression har vi en binär (kategorisk) responsvariabel Y i som vanligen kodas

Läs mer

Faktoranalys, Cronbach s Alpha, Risk Ratio, & Odds Ratio

Faktoranalys, Cronbach s Alpha, Risk Ratio, & Odds Ratio Faktoranalys, Cronbach s Alpha, Risk Ratio, & Odds Ratio med SPSS Kimmo Sorjonen 1. Faktoranalys Innan man utför en faktoranalys kan det vara bra att testa om det finns några outliers i data. Detta kan

Läs mer

MVE051/MSG Föreläsning 7

MVE051/MSG Föreläsning 7 MVE051/MSG810 2016 Föreläsning 7 Petter Mostad Chalmers November 23, 2016 Överblick Deskriptiv statistik Grafiska sammanfattningar. Numeriska sammanfattningar. Estimering (skattning) Teori Några exempel

Läs mer

Föreläsning 2. Kap 3,7-3,8 4,1-4,6 5,2 5,3

Föreläsning 2. Kap 3,7-3,8 4,1-4,6 5,2 5,3 Föreläsning Kap 3,7-3,8 4,1-4,6 5, 5,3 1 Kap 3,7 och 3,8 Hur bra är modellen som vi har anpassat? Vi bedömer modellen med hjälp av ett antal kriterier: visuell bedömning, om möjligt F-test, signifikanstest

Läs mer

Föreläsning 12: Regression

Föreläsning 12: Regression Föreläsning 12: Regression Matematisk statistik David Bolin Chalmers University of Technology Maj 15, 2014 Binomialfördelningen Låt X Bin(n, p). Vi observerar x och vill ha information om p. p = x/n är

Läs mer

Regressionsanalys Enkel regressionsanalys Regressionslinjen

Regressionsanalys Enkel regressionsanalys Regressionslinjen --9 Regreionanaly - en fråga om balan Kimmo Sorjonen Sektionen för Pykologi Karolinka Intitutet. Enkel reg.analy.. Data.. Reg.linjen.. Beta (β).. Signifikan.. Reg. om Var..6. Korr. & Förklarad var..7.

Läs mer

Föreläsning 9. NDAB02 Statistik; teori och tillämpning i biologi

Föreläsning 9. NDAB02 Statistik; teori och tillämpning i biologi Föreläsning 9 Statistik; teori och tillämpning i biologi 1 (kap. 20) Introduktion I föregående föreläsning diskuterades enkel linjär regression, där en oberoende variabel X förklarar variationen hos en

Läs mer

7.5 Experiment with a single factor having more than two levels

7.5 Experiment with a single factor having more than two levels Exempel: Antag att vi vill jämföra dragstyrkan i en syntetisk fiber som blandats ut med bomull. Man vet att inblandningen påverkar dragstyrkan och att en inblandning mellan 10% och 40% är bra. För att

Läs mer

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 7. Multipel regression. (LLL Kap 15) Multipel Regressionsmodellen

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 7. Multipel regression. (LLL Kap 15) Multipel Regressionsmodellen Finansiell Statistik (GN, 7,5 hp,, HT 8) Föreläsning 7 Multipel regression (LLL Kap 5) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics (Basic-level course,

Läs mer

MVE051/MSG Föreläsning 14

MVE051/MSG Föreläsning 14 MVE051/MSG810 2016 Föreläsning 14 Petter Mostad Chalmers December 14, 2016 Beroende och oberoende variabler Hittills i kursen har vi tittat på modeller där alla observationer representeras av stokastiska

Läs mer

Kapitel 18: LINJÄRA SANNOLIKHETSMODELLER, LOGIT OCH PROBIT

Kapitel 18: LINJÄRA SANNOLIKHETSMODELLER, LOGIT OCH PROBIT Kapitel 18: LINJÄRA SANNOLIKHETSMODELLER, LOGIT OCH PROBIT Regressionsanalys handlar om att estimera hur medelvärdet för en variabel (y) varierar med en eller flera oberoende variabler (x). Exempel: Hur

Läs mer

10.1 Enkel linjär regression

10.1 Enkel linjär regression Exempel: Hur mycket dragkraft behövs för att en halvledare skall lossna från sin sockel vid olika längder på halvledarens ben. De halvledare vi betraktar är av samma storlek (bortsett benlängden). 70 Scatterplot

Läs mer

Tentamen för kursen. Linjära statistiska modeller. 17 februari

Tentamen för kursen. Linjära statistiska modeller. 17 februari STOCKHOLMS UNIVERSITET MATEMATISK STATISTIK Tentamen för kursen Linjära statistiska modeller 17 februari 2010 9 14 Examinator: Anders Björkström, tel. 16 45 54, bjorks@math.su.se Återlämning: Rum 312,

Läs mer

Föreläsning 8, Matematisk statistik 7.5 hp för E Punktskattningar

Föreläsning 8, Matematisk statistik 7.5 hp för E Punktskattningar Föreläsning 8, Matematisk statistik 7.5 hp för E Punktskattningar Stas Volkov Stanislav Volkov s.volkov@maths.lth.se FMSF20 F8: Statistikteori 1/20 Översikt Exempel Repetition Exempel Matematisk statistik

Läs mer

Statistiska samband: regression och korrelation

Statistiska samband: regression och korrelation Statistiska samband: regression och korrelation Vi ska nu gå igenom något som kallas regressionsanalys och som innebär att man identifierar sambandet mellan en beroende variabel (x) och en oberoende variabel

Läs mer

Skrivning i ekonometri torsdagen den 8 februari 2007

Skrivning i ekonometri torsdagen den 8 februari 2007 LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL STA2:3 Skrivning i ekonometri torsdagen den 8 februari 27. Vi vill undersöka hur variationen i lön för 2 belgiska löntagare = WAGE (timlön i euro)

Läs mer

Föreläsning 8. NDAB02 Statistik; teori och tillämpning i biologi

Föreläsning 8. NDAB02 Statistik; teori och tillämpning i biologi Föreläsning 8 Statistik; teori och tillämpning i biologi 1 Dagens föreläsning o Enkel linjär regression (kap 17.1 17.5) o Skatta regressionslinje (kap 17.2) o Signifikant lutning? (kap 17.3, 17.5a) o Förklaringsgrad

Läs mer

Regressions- och Tidsserieanalys - F3

Regressions- och Tidsserieanalys - F3 Regressions- och Tidsserieanalys - F3 Multipel regressionsanalys kap 4.8-4.10 Linda Wänström Linköpings universitet Wänström (Linköpings universitet) F3 1 / 21 Interaktion Ibland ser sambandet mellan en

Läs mer

Enkel linjär regression. Enkel linjär regression. Enkel linjär regression

Enkel linjär regression. Enkel linjär regression. Enkel linjär regression Enkel linjär regression Exempel.7 i boken (sida 31). Hur mycket dragkraft behövs för att en halvledare skall lossna från sin sockel vid olika längder på halvledarens ben och höjder på sockeln. De halvledare

Läs mer

Flerfaktorförsök. Blockförsök, randomiserade block. Modell: yij i bj eij. Förutsättningar:

Flerfaktorförsök. Blockförsök, randomiserade block. Modell: yij i bj eij. Förutsättningar: Flerfaktorförsök Blockförsök, randomiserade block Modell: yij i bj eij i 1,,, a j 1,,, b y ij vara en observation för den i:te behandlingen och det j:e blocket gemensamma medelvärdet ( grand mean ) effekt

Läs mer

För Godkänt krävs minst 12 poäng i kvalitativ metodik och minst 12 poäng i statistiska metoder. Tentamen består av totalt 11 huvudfrågor.

För Godkänt krävs minst 12 poäng i kvalitativ metodik och minst 12 poäng i statistiska metoder. Tentamen består av totalt 11 huvudfrågor. KOD: Kurskod: PM2315 Kursnamn: Metoder för psykologisk forskning (15 hp) Provmoment: Delkurs I: Kvalitativa och statistiska metoder Ansvarig lärare: Petra oström / Emma äck Tentamensdatum: 2016-04-18 Plats:

Läs mer

Verksamhetsutvärdering av Mattecentrum

Verksamhetsutvärdering av Mattecentrum Verksamhetsutvärdering av Mattecentrum April 2016 www.numbersanalytics.se info@numbersanalytics.se Presskontakt: Oskar Eriksson, 0732 096657 oskar@numbersanalytics.se INNEHÅLLSFÖRTECKNING Inledning...

Läs mer

34% 34% 13.5% 68% 13.5% 2.35% 95% 2.35% 0.15% 99.7% 0.15% -3 SD -2 SD -1 SD M +1 SD +2 SD +3 SD

34% 34% 13.5% 68% 13.5% 2.35% 95% 2.35% 0.15% 99.7% 0.15% -3 SD -2 SD -1 SD M +1 SD +2 SD +3 SD 6.4 Att dra slutsatser på basis av statistisk analys en kort inledning - Man har ett stickprov, men man vill med hjälp av det få veta något om hela populationen => för att kunna dra slutsatser som gäller

Läs mer