Modellering av en Tankprocess
|
|
- Lisa Lund
- för 8 år sedan
- Visningar:
Transkript
1 UPPSL UNIVERSITET SYSTEMTEKNIK EKL och PS 2002, R 2004, BC 2009, 2013 Modellering av dynamiska system Modellering av en Tankprocess Sammanfattning En tankprocess modelleras utifrån kända fysikaliska relationer. Modellparametrar bestäms experimentellt och den slutgiltiga modellen valideras. Obligatoriska förberedelseuppgifter: Läs igenom Exempel 2.5 i kurskompendiet. Lös förberedelseuppgifterna. Namn Handledarens kommentarer Årskurs Inskrivningsår Utförd den Lab godkänd Sign
2 Innehåll 1 Introduktion Processbeskrivning Inloggning och uppstart Processmodellering Fysikalisk modellering Experimentell Bestämning av Modellparametrar Estimering av K s1 och K s Estimering av a 1 och a Estimering av Kp Modellvalidering 7 1
3 q 1in h 1 y 1 q 1ut = q 2in u PUMP h 2 y 2 q 2ut Vatten Figur 1: Tankprocessen. 1 Introduktion Målet med laborationen är att illustrera hur fysikalisk modellering kan användas för att skapa en adekvat beskrivning av ett verkligt system. tt kunskap om detta förfarande är viktigt har vi sett flera exempel på under kursens gång. Genom att använda kända fysikaliska relationer, baserade på rimliga antaganden, skall en tankprocess modelleras. Modellparametrar skall experimentellt bestämmas. Den erhållna matematiska modellen skall slutligen valideras genom några enkla test. 1.1 Processbeskrivning Processen som vi betraktar i denna laboration är en sk dubbeltank. Den består av två cylindriska vattentankar placerade ovanpå varandra. Den inre diametern kan antas vara lika för båda tankarna, dvs tankarna har samma tvärsnittsarea. Varje tank har även ett litet hål i botten. På grund av diverse fel vid framställningsprocessen av tankarna kan storleken på tankarnas bottenhål, dvs bottenhålens area, variera. Vattnet från den övre tanken rinner ner i den nedre tanken medan vattnet i den nedre tanken rinner ner i en behållare. Med hjälp av en elektrisk pump transporteras vattnet från behållaren upp till den övre tanken igen. Varje tank har dessutom en givare som ger en spänning proportionell mot vattennivån i den aktuella tanken. Figur 1 ger en schematisk bild av tankprocessen. Insignal till systemet är spänningen u (volt) som läggs på den elektriska pumpen. Vattenflödet från pumpen, q pump, är approximativt proportionellt mot den pålagda spänningen u, dvs q pump = K p u (1) Utsignalerna från processen är spänningarna y 1 och y 2 (volt) över nivågivarna i övre respektive nedre tanken. Eftersom givarna kan antas vara linjära fås följande samband mellan erhållen 2
4 spänning och vattenhöjd (h 1 och h 2 ) i respektive tank: y 1 = K s1 h 1 y 2 = K s2 h 2 där K s1 och K s2 är proportionalitetskonstanter för nivågivarna. (2) (3) 1.2 Inloggning och uppstart ssistenten informerar om hur man loggar in samt startar upp datorn! Notera att det är viktigt att resultat presenteras med minst tre/fyra värdesiffror. I vissa fall kan MTLB formatet long (skriv format long i MTLB) vara användbart. Se även help format. 2 Processmodellering 2.1 Fysikalisk modellering Utifrån exemplen 2.1 och 2.5 i kurskompendiet Modellering av Dynamiska System fås att tankprocessen kan beskrivas av två kopplade differentialekvationer dh 1 dt = q 1in q 1ut dh 2 dt = q 2in q 2ut där är tvärsnittsarean av en tank. Flödet in i den övre tanken, q 1in, är självklart identiskt med flödet igenom den elektriska pumpen, q pump, medan flödet in i den nedre tanken, q 2in, är lika med flödet ut ur den övre tanken, q 1ut. Förberedelseuppgift 1: Baserat på de antaganden som görs i Exempel 2.5 i kurskompendiet samt (1), visa att vårt tanksystem (4)-(5) kan beskrivas med följande modell: dh 1 dt = a 1 2gh1 + K p u (6) dh 2 dt = a 2 2gh2 + a 1 2gh1. (7) där a 1 och a 2 betecknar arean av bottenhålet för den övre respektive den nedre tanken. (4) (5) 3
5 ntag nu att vi låter u = u 0 vara konstant. Efter en viss tid kommer vattennivån i tankarna atthastabiliseratsigpåenkonstantnivå.vihardånåttjämvikt(stationäritet), dvsdh 1 /dt = dh 2 /dt = 0. Förberedelseuppgift 2: nge jämviktspunkterna för systemet (6)-(7) då u = u 0. Uttryck svaret som funktion av a 1, a 2, Kp, u 0 och g. 2.2 Experimentell Bestämning av Modellparametrar Målet i detta avsnitt är att bestämma parametrarna i vår tankmodell, beskriven av ekvationerna (6) och (7), experimentellt. För att justera insignalen u [0, 9.99], dvs bestämma inflödet till den övre tanken används MTLB-funktionen proc da(0,u). Den på motorn pålagda spänningen styrs alltså av u. 4
6 2.2.1 Estimering av K s1 och K s2 ppliceraenkonstant spänningu = u 0 påpumpenochlåt vattennivånitankarnastabiliseras; välju 0 såattvifårenstationär vattennivåvidca10cm.observeraatt dettarrelativt långtid förvattennivåernaatt stabiliserasig. Mät vattennivånitankarna,h 0i,icm (användlinjalerna på tankarna). Mät även spänningen över givarna, y 0i (volt). Proportionalitetskonstanterna K si ges sedan enligt (2) och (3) av y 0i /h 0i. Notera att detta skall göras för båda tankarna, i = 1,2. Resultat: u 0 =... (8) K s1 = y 01 h 01 =... (9) K s2 = y 02 h 02 =... (10) Estimering av a 1 och a 2 Förberedelseuppgift 3: Ett sätt att bestämma a 1 / fås genom att betrakta följande experiment: mät tiden t 1 som det tar för vattennivån i den övre tanken att sjunka från h 11 till h 12 då u = 0. Då gäller att a 1 / ges av a 1 = 2 ( h 11 h 12 ) g t 1 (11) Härled (11). Ledning:Skrivomekvation(6) (medu = 0)såattvänsterledetblir dh 1 h1.integreravänsterledet från h 11 till h 12 och högerledet från tiden t 1 till t 2. Efter integreringen, ersätt t 2 t 1 med t 1. Låt h 11 = 12cm, h 12 = 8cm och g = 981cm/s 2. Bestäm t 1, enligt experimentbeskrivningen i förberedelseuppgift 3, och a 1 / enligt (11). Glöm ej att stänga av pumpen! 5
7 Resultat: t 1 =... (12) a 1 =... (13) För att bestämma a 2 / upprepas experimentet ovan för den nedre tanken. Låt h 21 = 12cm, h 22 = 8cm och g = 981cm/s 2. Bestäm t 2, tiden det tar för vattennivån i den nedre tanken att sjunka från h 21 till h 22, och beräkna a 2 / enligt nedan. Notera att utflödet från den övre tanken skall vara noll (sätt ett finger för utflödeshålet). Resultat: t 2 =... (14) a 2 2 = ( h 21 h 22 ) =... (15) g t Estimering av Kp Förberedelseuppgift 4: Ett sätt att bestämma K p / fås genom att betrakta följande experiment: mät tiden t som det tar för vattennivån i den övre tanken att stiga från h 11 till h 12 med konstant inflöde, u = u 0 och inget utflöde, q 1out = 0. Det gäller då att K p / ges av K p = h 12 h 11 u 0 t (16) Härled (16), förslagsvis genom att manipulera ekvation (4), under givna experimentantaganden. Låt h 11 = 8cm, h 12 = 12cm och u = u 0 (välj exempelvis u 0 från (8)). Bestäm t, enligt experimentbeskrivningen i förberedelseuppgift 4, och Kp/ enligt (16). Glöm inte att strypa utflödet från den övre tanken (sätt ett finger för utflödeshålet)! 6
8 Resultat: t =... (17) K p =... (18) Vi har nu bestämt alla parametrar, och modellen (6)-(7) är därmed bestämd. 3 Modellvalidering Följande stycke kommer att belysa en mycket viktig aspekt av modelldesignen, nämligen validering. Målet med detta steg är att säkerställa att antaganden och parameteruppskattningar som har gjorts i modelleringssteget kan betraktas som godtagbara. Om så inte är fallet, vilket är mycket vanligt, får man på ett eller annat sätt modifiera sin modell tills ett acceptabelt resultat uppnås. En av de enklaste former av validering man kan tänka sig är att jämföra beteendet hos det verkliga systemet med en simulering av den erhållna modellen. Det första vi skall göra är att definiera vår modell så att vi kan simulera den i MTLB. Detta görs genom att i MTLB evaluera funktionen def sys( a1,a2,kp,k s1,k s2 ), där ni anger de numeriska värdena av a 1, a 2, Kp, K s1 och K s2 som ni bestämde i föregående stycke. Notera att K s1 och K s2 inte direkt ingår i modellen (6)-(7). De behövs dock för att kunna relatera spänningarna från nivågivarna, y i, till vattenhöjden i tankarna, h i, enligt (2) och (3). För att simulera ett stegsvar för er modell används funktionen sim tank(u0,tend). Funktionen plottar, för 0 t Tend, responsen (förändringav vattennivåerna h i ) från en förändring av insignalen vid t = 5 från u = u0 till u = u0+1. Uppgift: Simulera er modell för olika värden av u 0 (och Tend). Hur lång tid tar det för systemet att uppnå jämvikt? Har u 0 någon inverkan? Är det någon skillnad mellan de två tankarna? Kommentera! 7
9 Härnäst skall vi jämföra det verkliga systemet (tankprocessen) med er modell för att kontrollera att den framtagna modellen är acceptabel. MTLB kommandot validering kan användas för att jämföra responsen på ett stegsvar (amplitud 0.5) för den verkliga processen och er modell. Uppgift: Körkommandotvalideringmedu 0 enligt(8).noteraattniskallanvändaproc da(0,u 0 ) för att stabilisera systemet runt jämnviktsnivån svarande mot u 0 innan ni kör kommandot validering. Stämmer verklighet och simulering överens? Om inte vad kan det bero på? Vad kan man göra åt det? vslutande kommentar: I kursen reglerteknik kommer ni att lära er hur man använder dynamiska modeller för att designa regulatorer, tex för att automatiskt styra pumpen så att nivån i en av tankarna hålls nära en önskad nivå. För att kunna göra detta behövs välkalibrerade dynamiska modeller! 8
Modellering av en Tankprocess
UPPSALA UNIVERSITET SYSTEMTEKNIK EKL och PSA 2002, AR 2004, BC2009 Modellering av dynamiska system Modellering av en Tankprocess Sammanfattning En tankprocess modelleras utifrån kända fysikaliska relationer.
Innehνall 1 Introduktion Processbeskrivning Inloggning och uppstart
UPPSALA UNIVERSITET SYSTEMTEKNIK EKL och PSA, 2002 Dynamiska System (STS) Modellering av en DC-motor Sammanfattning Dynamiken för en dc-motor bestäms utifrνan en s k icke-parametrisk modellering, i detta
MODELLERING AV DYNAMISKA SYSTEM OCH INLUPP 2
UPPSALA UNIVERSITET AVDELNINGEN FÖR SYSTEMTEKNIK EKL och PSA, 2002, rev BC 2009, 2013 MODELLERING AV DYNAMISKA SYSTEM DATORSTÖDD RÄKNEÖVNING OCH INLUPP 2 1. Överföringsfunktioner 2. Tillståndsmetodik Förberedelseuppgifter:
REGLERTEKNIK Laboration 3
Lunds Tekniska Högskola Avdelningen för Industriell Elektroteknik och Automation LTH Ingenjörshögskolan vid Campus Helsingborg REGLERTEKNIK Laboration 3 Modellbygge och beräkning av PID-regulator Inledning
MODELLERING AV DYNAMISKA SYSTEM OCH INLUPP 2
UPPSALA UNIVERSITET AVDELNINGEN FÖR SYSTEMTEKNIK EKL och PSA, 2002 BC, 2009 MODELLERING AV DYNAMISKA SYSTEM DATORSTÖDD RÄKNEÖVNING OCH INLUPP 2 1. Överföringsfunktioner 2. Tillståndsmetodik Förberedelseuppgifter:
] så att utflödet v( t) Vattennivån i tanken betecknas h(t) [m]. Nivån h är tankprocessens utsignal. u h Figur: Vattentank
Tenta-uppgifter på reglerteknikdel, Reglerdel-ovn- 4 (3p) En tankprocess beskrivs av följande - se även figuren nedan: En cylindrisk vattentank har bottenarean 30 m 2. Vattenflödet in till tanken betecknas
Experimentella metoder, FK3001. Datorövning: Finn ett samband
Experimentella metoder, FK3001 Datorövning: Finn ett samband 1 Inledning Den här övningen går ut på att belysa hur man kan utnyttja dimensionsanalys tillsammans med mätningar för att bestämma fysikaliska
PID-regulatorer och öppen styrning
Reglerteknik grk Lab 1 PID-regulatorer och öppen styrning Denna version: Oktober 2011 P I D REGLERTEKNIK Namn: Personnr: AUTOMATIC LINKÖPING CONTROL Datum: Godkänd: 1 Inledning Syftet med den här laborationen
Styr- och Reglerteknik för U3/EI2
Högskolan i Halmstad Sektionen för Informationsvetenskap, Dator- och Elektroteknik 071111/ Thomas Munther LABORATION 3 i Styr- och Reglerteknik för U3/EI2 Målsättning: Bekanta sig med olika processer.
REGLERTEKNIK Inledande laboration (obligatorisk)
UPPSALA UNIVERSITET AVDELNINGEN FÖR SYSTEMTEKNIK HN, MW 2008-01-23 Rev. HN, 2015-01-15 REGLERTEKNIK Inledande laboration (obligatorisk) Läsanvisningar: 1. Läs igenom instruktionen innan påbörjad laboration
Institutionen för Tillämpad Fysik och elektronik Umeå Universitet BE. Introduktion till verktyget SIMULINK. Grunderna...2
Institutionen för Tillämpad Fysik och elektronik Umeå Universitet BE Version: 09-0-23 StyrRegM,E Introduktion till verktyget SIMULINK Grunderna.....2 Tidskontinuerliga Reglersystem.... 7 Övningsuppgift...9
AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET. M. Enqvist TTIT62: Föreläsning 2. Här är
Martin Enqvist Återkoppling, PID-reglering, specifikationer Reglerteknik Institutionen för systemteknik Linköpings universitet Repetition: Reglerproblemet 3(21) Exempel: Farthållare i en bil 4(21) Välj
Teori Se din kursbok under avsnitt PID-reglering, Ziegler-Nichols metod och olinjära system (avsnitt 7.7 i Modern Reglerteknik av Bertil Thomas).
03-10-14/TFE CJ, BT, BaE, SG Laboration i kurs Tillämpad reglerteknik Institutionen för tillämpad fysik och elektronik Umeå universitet PID - NIVÅREGLERING AV TANK Målsättning Målet med denna laboration
LAB 4. ORDINÄRA DIFFERENTIALEKVATIONER. 1 Inledning. 2 Eulers metod och Runge-Kuttas metod
TANA21+22/ 30 september 2016 LAB 4. ORDINÄRA DIFFERENTIALEKVATIONER 1 Inledning Vi skall studera begynnelsevärdesproblem, både med avseende på stabilitet och noggrannhetens beroende av steglängden. Vi
Systemteknik/Processreglering F2
Systemteknik/Processreglering F2 Processmodeller Stegsvarsmodeller PID-regulatorn Läsanvisning: Process Control: 1.4, 2.1 2.5 Processmodeller I den här kursen kommer vi att huvudsakligen att jobba med
Simulering och reglerteknik för kemister
Simulering och reglerteknik för kemister Gå till http://techteach.no/kybsim/index_eng.htm och gå igenom några av följande exempel. http://techteach.no/kybsim/index_eng.htm Följ gärna de beskrivningarna
Formalia. Modellbygge & Simulering, TSRT62. Föreläsning 1. Varför modeller? Föreläsning 1: Modeller och modellbygge
Formalia Modellbygge & Simulering, TSRT62 Föreläsning 1 Labanmälan via länk på kurshemsidan Datortenta i datorsal Fem av lektionerna i datorsal Reglerteknik, ISY, Linköpings Universitet Identifieringslabben
Reglerteknik 3. Kapitel 7. Köp bok och övningshäfte på kårbokhandeln. William Sandqvist
eglerteknik 3 Kapitel 7 Köp bok och övningshäfte på kårbokhandeln Lektion 3 kap 7 Modellering Identifiering Teoretisk modellering Man använder grundläggande fysikaliska naturlagar och deras ekvationer
Exempel: reglering av en plattreaktor. Varför systemteknik/processreglering? Blockdiagram. Blockdiagram för en (del)process. Exempel: tankprocess
Systemteknik/reglering Föreläsning Vad är systemteknik oc reglerteknik? Blockdiagram Styrstrategier Öppen styrning, framkoppling Sluten styrning, återkoppling PID-reglering Läsanvisning: Control:..3 Vad
Läran om återkopplade automatiska system och handlar om hur mätningar från givare kan användas för att automatisk göra förändringar i processen.
Reglering Läran om återkopplade automatiska system och handlar om hur mätningar från givare kan användas för att automatisk göra förändringar i processen. Regulator eller reglerenhet används för att optimera
TENTAMEN Modellering av dynamiska system 5hp
TENTAMEN Modellering av dynamiska system 5hp - 0 Tid: måndag 8 Maj 0, kl 4-9 Plats: Polacksbacken Ansvarig lärare: Bengt Carlsson, tel 070-674590. Bengt kommer till tentasalen ca kl 6 och besvarar ev frågor.
TENTAMEN I REGLERTEKNIK TSRT03, TSRT19
TENTAMEN I REGLERTEKNIK TSRT3, TSRT9 TID: 23 april 29, klockan 4-9 KURS: TSRT3, TSRT9 PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 5 ANSVARIG LÄRARE: Johan Löfberg, 7-339 BESÖKER SALEN: 5.3, 7.3 KURSADMINISTRATÖR:
Laplacetransform, poler och nollställen
Innehåll föreläsning 2 2 Reglerteknik, föreläsning 2 Laplacetransform, poler och nollställen Fredrik Lindsten fredrik.lindsten@liu.se Kontor 2A:521, Hus B, Reglerteknik Institutionen för systemteknik (ISY)
17.10 Hydrodynamik: vattenflöden
824 17. MATEMATISK MODELLERING: DIFFERENTIALEKVATIONER 20 15 10 5 0-5 10 20 40 50 60 70 80-10 Innetemperaturen för a =1, 2och3. Om vi har yttertemperatur Y och startinnetemperatur I kan vi med samma kalkyl
Reglerteknik AK. Tentamen 9 maj 2015 kl 08 13
Institutionen för REGLERTEKNIK Reglerteknik AK Tentamen 9 maj 5 kl 8 3 Poängberäkning och betygssättning Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen omfattar totalt 5 poäng.
Tentamen i Systemteknik/Processreglering
Institutionen för REGLERTEKNIK Tentamen i Systemteknik/Processreglering 27 maj 2 kl 4 9 Poängberäkning och betygssättning Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen omfattar
Flervariabel reglering av tanksystem
Flervariabel reglering av tanksystem Datorövningar i Reglerteori, TSRT09 Denna version: oktober 2008 1 Inledning Målet med detta dokument är att ge möjligheter att studera olika aspekter på flervariabla
REPETITION (OCH LITE NYTT) AV REGLERTEKNIKEN
REPETITION (OCH LITE NYTT) AV REGLERTEKNIKEN Automatisk styra processer. Generell metodik Bengt Carlsson Huvudantagande: Processen kan påverkas med en styrsignal (insignal). Normalt behöver man kunna mäta
REGLERTEKNIK Laboration 5
6 SAMPLADE SYSTEM 6. Sampling av signaler När man använder en dator som regulator, kan man endast behandla signaler i diskreta tidpunkter. T.ex. mäts systemets utsignal i tidpunkter med visst mellanrum,
SVÄNGNINGSTIDEN FÖR EN PENDEL
Institutionen för fysik 2012-05-21 Umeå universitet SVÄNGNINGSTIDEN FÖR EN PENDEL SAMMANFATTNING Ändamålet med experimentet är att undersöka den matematiska modellen för en fysikalisk pendel. Vi har mätt
Lunds Tekniska Högskola Avdelningen för industriell elektroteknik och automation
Lunds Universitet LTH Ingenjörshögskolan i Helsingborg Lunds Tekniska Högskola Avdelningen för industriell elektroteknik och automation REGLERTEKNIK Laboration 2 Empirisk undersökning av PID-regulator
TANA17 Matematiska beräkningar med Matlab
TANA17 Matematiska beräkningar med Matlab Laboration 1. Linjär Algebra och Avbildningar Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion I denna övning skall
PC-BERÄKNINGAR. REGLERTEKNIK Laboration 5 och inlämningsuppgift. Inlämningsdatum:... Inlämnad av labgrupp:... Gruppdeltagare:
och inlämningsuppgift PC-BERÄKNINAR Inlämningsdatum:... Inlämnad av labgrupp:... ruppdeltagare:............ ranskad:... Reglab PC-beräkningar del.doc INLEDNIN Denna laboration kommer att visa fördelarna
Reglerteknik I: F1. Introduktion. Dave Zachariah. Inst. Informationsteknologi, Avd. Systemteknik
Reglerteknik I: F1 Introduktion Dave Zachariah Inst. Informationsteknologi, Avd. Systemteknik 1 / 14 Vad är reglerteknik? Läran om dynamiska system och deras styrning. System = Process = Ett objekt vars
Modellering av Dynamiska system. - Uppgifter till övning 1 och 2 17 mars 2010
Modellering av Dynamiska system - Uppgifter till övning 1 och 2 17 mars 21 Innehållsförteckning 1. Repetition av Laplacetransformen... 3 2. Fysikalisk modellering... 4 2.1. Gruppdynamik en sciologisk modell...
Styr- och Reglerteknik för U3/EI2
Högskolan i Halmstad Sektionen för Informationsvetenskap, Dator- och Elektroteknik 071118/ Thomas Munther LABORATION 4 i Styr- och Reglerteknik för U3/EI2 Målsättning: Använda tumregler för att ställa
För att få ett effektiv driftsätt kan det ibland behövas avancerad styrning.
För att få ett effektiv driftsätt kan det ibland behövas avancerad styrning. Används för att reglera en process. T.ex. om man vill ha en bestämd nivå, eller ett speciellt tryck i en rörledning kanske.
ÖVNINGSTENTAMEN Modellering av dynamiska system 5hp
ÖVNINGSTENTAMEN Modellering av dynamiska system 5hp Tid: Denna övn.tenta gås igenom 25 maj (5h skrivtid för den riktiga tentan) Plats: Ansvarig lärare: Bengt Carlsson Tillåtna hjälpmedel: Kurskompendiet
Laboration 2, M0043M, HT14 Python
Laboration 2, M0043M, HT14 Python Laborationsuppgifter skall lämnas in senast 19 december 2014. Förberedelseuppgifter Läs igenom teoridelen. Kör teoridelens exempel. Teoridel 1 Att arbeta med symboliska
G(s) = 5s + 1 s(10s + 1)
Projektuppgift 1: Integratoruppvridning I kursen behandlas ett antal olika typer av olinjäriteter som är mer eller mindre vanligt förekommande i reglersystem. En olinjäritet som dock alltid förekommer
Operatörer och användargränssnitt vid processtyrning Datorövning 1 - Reglerteknik
UPPSALA UNIVERSITET AVDELNINGEN FÖR SYSTEMTEKNIK B Carlsson 9911. Senaste revision 15 februari 2006 Operatörer och användargränssnitt vid processtyrning Datorövning 1 - Reglerteknik Senaste inlämningsdag
Inlämningsuppgift 2. Figur 2.2
Inlämningsuppgift 2 2.1 En rektangulär tank med kvadratisk botten (sidlängd 1.5 m) och vertikala väggar innehåller vatten till en höjd av 0.8 m. Vid tiden t = 0 tas en plugg bort från ett cirkulärt hål
Föreläsning 14-16, Tillståndsmodeller för kontinuerliga system
Föreläsning 14-16, Tillståndsmodeller för kontinuerliga system Reglerteknik, IE1304 1 / 50 Innehåll Kapitel 141 Introduktion till tillståndsmodeller 1 Kapitel 141 Introduktion till tillståndsmodeller 2
vt 04 Teori Se din kursbok under avsnitt PID-reglering, Ziegler-Nichols metod och olinjära system.
vt 04 Laboration i kurs Tillämpad reglerteknik Institutionen för tillämpad fysik och elektronik Umeå universitet PID - NIVÅREGLERING AV TANK Målsättning Målet med denna laboration är att visa hur PID-reglering
Självstudieövning 1: Grundläggande PID-reglering
Självstudieövning 1: Grundläggande PID-reglering Mikael Johansson och Magnus Gäfvert Institutionen för Reglerteknik Lunds Tekniska Högskola Målsättning och förkunskaper Målsättningen med den här övningen
Praktisk beräkning av SPICE-parametrar för halvledare
SPICE-parametrar för halvledare IH1611 Halvledarkomponenter Ammar Elyas Fredrik Lundgren Joel Nilsson elyas at kth.se flundg at kth.se joelni at kth.se Martin Axelsson maxels at kth.se Shaho Moulodi moulodi
Vad är systemteknik och reglerteknik? Föreläsning 1. Systemteknik handlar om dynamiska system
1 Föreläsning 1 Vad är systemteknik oc reglerteknik? Grundläggande begrepp Grafiska representationer Styrstrategier Öppen styrning, framkoppling Sluten styrning, återkoppling Vad är systemteknik oc reglerteknik?
Lösningar till tentamen i styr- och reglerteknik (Med fet stil!)
Lösningar till tentamen i styr- och reglerteknik (Med fet stil!) Uppgift 1 (4p) Figuren nedan visar ett reglersystem för nivån i en tank.utflödet från tanken styrs av en pump och har storleken V (m 3 /s).
LABORATIONSINSTRUKTION DIGITAL REGLERTEKNIK. Lab nr. 3 DIGITAL PI-REGLERING AV FÖRSTA ORDNINGENS PROCESS
LABORATIONSINSTRUKTION DIGITAL REGLERTEKNIK Lab nr. 3 DIGITAL PI-REGLERING AV FÖRSTA ORDNINGENS PROCESS Obs! Alla förberedande uppgifter skall vara gjorda innan laborationstillfället! Namn: Program: Laborationen
Reglerteknik M3. Inlämningsuppgift 3. Lp II, 2006. Namn:... Personnr:... Namn:... Personnr:...
Reglerteknik M3 Inlämningsuppgift 3 Lp II, 006 Namn:... Personnr:... Namn:... Personnr:... Uppskattad tid, per person, för att lösa inlämningsuppgiften:... Godkänd Datum:... Signatur:... Påskriften av
Konduktivitetsmätning
UMEÅ UNIVERSITET Tillämpad fysik och elektronik Johan Pålsson 2002-09-04 Rev 0.7 Konduktivitetsmätning Laboration xx ELEKTRO Personalia: Namn: Kurs: Datum: Återlämnad (ej godkänd): Rättningsdatum Kommentarer
Lösningar till tentamen i Industriell reglerteknik TSRT07 Tentamensdatum: Martin Enqvist
ösningar till tentamen i Industriell reglerteknik TSRT7 Tentamensdatum: 28-3-2 Martin Enqvist a) Z-transformering av sambanden som beskriver den tidsdiskreta regulatorn ger Iz) = KT Sz T i z ) Ez) = Kz
Teori Se din kursbok under avsnitt PID-reglering, Ziegler-Nichols metod och olinjära system.
2008-02-09/TFE CJ, BT, BaE Institutionen för tillämpad fysik och elektronik Umeå universitet PID - NIVÅREGLERING AV TANK Målsättning Målet med denna laboration är att visa hur PID-reglering fungerar i
Försättsblad till skriftlig tentamen vid Linköpings universitet
Försättsblad till skriftlig tentamen vid Linköpings universitet Datum för tentamen 214-1-24 Sal (1) TER1,TER2,TERE (Om tentan går i flera salar ska du bifoga ett försättsblad till varje sal och ringa in
Datorövning 1: Fördelningar
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMS012/MASB03: MATEMATISK STATISTIK, 9 HP, VT-17 Datorövning 1: Fördelningar I denna datorövning ska du utforska begreppen sannolikhet och
/TFE CJ, BT, BaE
05-10-23/TFE CJ, BT, BaE Laboration i kurs Tillämpad reglerteknik Institutionen för tillämpad fysik och elektronik Umeå universitet Målsättning Målet med denna laboration är att visa hur PID-reglering
LABORATIONSHÄFTE NUMERISKA METODER GRUNDKURS 1, 2D1210 LÄSÅRET 03/04. Laboration 3 3. Torsionssvängningar i en drivaxel
Lennart Edsberg Nada, KTH December 2003 LABORATIONSHÄFTE NUMERISKA METODER GRUNDKURS 1, 2D1210 M2 LÄSÅRET 03/04 Laboration 3 3. Torsionssvängningar i en drivaxel 1 Laboration 3. Differentialekvationer
Fysikalisk kemi KEM040. Clausius-Clapeyronekvationen Bestämning av ångtryck och ångbildningsentalpi för en ren vätska (Lab2)
GÖTEBORGS UNIVERSITET INSTITUTIONEN FÖR KEMI Fysikalisk kemi KEM040 Laboration i fysikalisk kemi Clausius-Clapeyronekvationen Bestämning av ångtryck och ångbildningsentalpi för en ren vätska (Lab2) ifylls
Laboration 5: Regressionsanalys. 1 Förberedelseuppgifter. 2 Enkel linjär regression DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK Laboration 5: Regressionsanalys DATORLABORATION 5 MATEMATISK STATISTIK FÖR I, FMS 012, HT-08 Syftet med den här laborationen är att du skall
Hemuppgift 2, SF1861 Optimeringslära för T, VT-10
Hemuppgift 2, SF1861 Optimeringslära för T, VT-1 Kursansvarig: Per Enqvist, tel: 79 6298, penqvist@math.kth.se. Assistenter: Mikael Fallgren, werty@kth.se, Amol Sasane, sasane@math.kth.se. I denna uppgift
Övningar i Reglerteknik. Differentialekvationer kan lösas med de metoder som behandlades i kurserna i matematisk analys. y(0) = 2,
Differentialekvationer Övningar i Reglerteknik Differentialekvationer kan lösas med de metoder som behandlades i kurserna i matematisk analys.. Lös följande begynnelsevärdesproblem dy dt y =, t > 0 y(0)
Reglerteknik för D2/E2/Mek2
Högskolan i Halmstad Sektionen för Informationsvetenskap, Dator- och Elektroteknik 080226/ Thomas Munther LABORATION 2 i Reglerteknik för D2/E2/Mek2 Målsättning: Bekanta sig med olika processer. Identifiera
Följande uttryck används ofta i olika problem som leder till differentialekvationer: Formell beskrivning
Armin Halilovic: EXTRA ÖVNINGAR, SF676 OLIKA TILLÄMPNINGAR AV DIFFERENTIAL EKVATIONER Följande uttrck används ofta i olika problem som leder till differentialekvationer: Text Formell beskrivning A är proportionell
TENTAPLUGG.NU AV STUDENTER FÖR STUDENTER. Kursnamn Fysik 1. Datum LP Laboration Balkböjning. Kursexaminator. Betygsgränser.
TENTAPLUGG.NU AV STUDENTER FÖR STUDENTER Kurskod F0004T Kursnamn Fysik 1 Datum LP2 10-11 Material Laboration Balkböjning Kursexaminator Betygsgränser Tentamenspoäng Övrig kommentar Sammanfattning Denna
Laboratoriet för värmeteknik/mats Nikus och Matias Waller. Tentamen i MATEMATISK MODELLERING den 12 december 2001
Laboratoriet för värmeteknik/mats Nikus och Matias Waller Tentamen i MATEMATISK MODELLERING den december 00 HJÄLPMEDEL: Alla hjälpmedel (utom telekommunikationsutrustng) tillåts KOLLOKIUM: Hålls i processtekniska
A
Lunds Universitet LTH Ingenjorshogskolan i Helsingborg Tentamen i Reglerteknik 2008{05{29. Ett system beskrivs av foljande in-utsignalsamband: dar u(t) ar insignal och y(t) utsignal. d 2 y dt 2 + dy du
TSRT91 Reglerteknik: Föreläsning 1
TSRT91 Reglerteknik: Föreläsning 1 Martin Enqvist Reglerteknik Institutionen för systemteknik Linköpings universitet Diverse 1 / 27 Föreläsare och examinator: Martin Enqvist Lektionsassistent: Angela Fontan
NATIONELLT KURSPROV I MATEMATIK KURS D VÅREN 2001 3. Skolverkets svar, #1 #6 9. Några lösningar till D-kursprov vt 2001 10
JENSENvuutbildning NpMaD vt för Ma4 (4) VERSION UNDER ARBETE. Innehåll Förord NATIONELLT KURSPROV I MATEMATIK KURS D VÅREN Skolverkets svar, # #6 9 Några lösningar till D-kursprov vt Digitala verktg är
Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, FÖR I/PI, FMS 121/2, HT-3 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar
NATIONELLT KURSPROV I MATEMATIK KURS D VÅREN 2002
Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen fram till utgången av juni 00. Anvisningar NATIONELLT
DEL-LINJÄRA DIAGRAM I
Institutionen för Tillämpad fysik och elektronik Ulf Holmgren 95124 DEL-LINJÄRA DIAGRAM I Laboration E15 ELEKTRO Personalia: Namn: Kurs: Datum: Återlämnad (ej godkänd): Rättningsdatum Kommentarer Godkänd:
Fredrik Lindsten Kontor 2A:521, Hus B, Reglerteknik Institutionen för systemteknik (ISY)
Innehåll föreläsning 9 2 Reglerteknik, föreläsning 9 Tillståndsbeskrivning, styr- och observerbarhet Fredrik Lindsten fredrik.lindsten@liu.se Kontor 2A:521, Hus B, Reglerteknik Institutionen för systemteknik
Andra EP-laborationen
Andra EP-laborationen Christian von Schultz Magnus Goffeng 005 11 0 Sammanfattning I denna rapport undersöker vi perioden för en roterande skiva. Vi kommer fram till, både genom en kraftanalys och med
Temperaturreglering. En jämförelse mellan en P- och en PI-regulator. θ (t) Innehåll Målsättning sid 2
2008-02-12 UmU TFE/Bo Tannfors Temperaturreglering En jämförelse mellan en P- och en PI-regulator θ i w θ θ u θ Innehåll Målsättning sid 2 Teori 2 Förberedelseuppgifter 2 Förutsättningar och uppdrag 3
Flervariabel reglering av tanksystem
Flervariabel reglering av tanksystem Datorövningar i Reglerteknik fortsättningskurs M, TSRT06 Denna version: 12 februari 2015 REGLERTEKNIK KOMMUNIKATIONSSYSTEM LINKÖPINGS TEKNISKA HÖGSKOLA 1 Inledning
Övningsuppgifter till Originintroduktion
UMEÅ UNIVERSITET 05-08-01 Institutionen för fysik Ylva Lindgren Övningsuppgifter till Originintroduktion Uppgift 1. I ett experiment vill man bestämma fjäderkonstanten k för en viss fjäder. Med olika kraft
Introduktion till verktyget SIMULINK. Grunderna...2. Tidskontinuerliga Reglersystem Övningsuppgift...13
Institutionen för Tillämpad Fysik och elektronik Umeå Universitet BE Version: 05-02-29 Reglersystem Introduktion till verktyget SIMULINK Grunderna.....2 Tidskontinuerliga Reglersystem... 8 Övningsuppgift...3
TENTAMEN I DYNAMISKA SYSTEM OCH REGLERING
TENTAMEN I DYNAMISKA SYSTEM OCH REGLERING SAL: Ter2 TID:4 mars 207, klockan 8-2 KURS: TSRT2 PROVKOD: TEN INSTITUTION: ISY ANTAL UPPGIFTER: 6 ANSVARIG LÄRARE: Inger Erlander Klein, 0730-9699 BESÖKER SALEN:
Föreläsning 9, Bestämning av tidsdiksreta överföringsfunktioner
Föreläsning 9, Bestämning av tidsdiksreta överföringsfunktioner Reglerteknik, IE1304 1 / 20 Innehåll Kapitel 17.1. Inledning 1 Kapitel 17.1. Inledning 2 3 2 / 20 Innehåll Kapitel 17.1. Inledning 1 Kapitel
Kursprov i matematik, kurs E vt Del I: Uppgifter utan miniräknare 3. Del II: Uppgifter med miniräknare 5
freeleaks NpMaE vt2000 för Ma4 1(6) Innehåll Förord 1 Kursprov i matematik, kurs E vt 2000 2 Del I: Uppgifter utan miniräknare 3 Del II: Uppgifter med miniräknare 5 Förord Kom ihåg Matematik är att vara
TENTAMEN I DYNAMISKA SYSTEM OCH REGLERING
TENTAMEN I DYNAMISKA SYSTEM OCH REGLERING SAL: G32 TID: 8 juni 217, klockan 8-12 KURS: TSRT21 PROVKOD: TEN1 INSTITUTION: ISY ANTAL UPPGIFTER: 6 ANSVARIG LÄRARE: Johan Löfberg, 7-311319 BESÖKER SALEN: 9.3,
Kap 3 - Tidskontinuerliga LTI-system. Användning av Laplacetransformen för att beskriva LTI-system: Samband poler - respons i tidsplanet
Kap 3 - Tidskontinuerliga LTI-system Användning av Laplacetransformen för att beskriva LTI-system: Överföringsfunktion Poler, nollställen, stabilitet Samband poler - respons i tidsplanet Slut- och begynnelsevärdesteoremen
Bose-Einsteinkondensation. Lars Gislén, Malin Sjödahl, Patrik Sahlin
Bose-Einsteinkondensation Lars Gislén, Malin Sjödahl, Patrik Sahlin 3 mars, 009 Inledning Denna laboration går ut på att studera Bose-Einsteinkondensation för bosoner i en tredimensionell harmonisk-oscillatorpotential.
Föreläsning 14: Exempel på randvärdesproblem. LU-faktorisering för att lösa linjära ekvationssystem.
11 april 2005 2D1212 NumProg för T1 VT2005 A Föreläsning 14: Exempel på randvärdesproblem. LU-faktorisering för att lösa linjära ekvationssystem. Kapitel 8 och 5 i Q&S Stationär värmeledning i 1-D Betrakta
TSRT91 Reglerteknik: Föreläsning 2
Föreläsningar / TSRT9 Reglerteknik: Föreläsning 2 Martin Enqvist Reglerteknik Institutionen för systemteknik Linköpings universitet Inledning, grundläggande begrepp. 2 Matematiska modeller. Stabilitet.
Reglerteknik. Kurskod: IE1304. Datum: 12/ Tid: Examinator: Leif Lindbäck ( )
Tentamen i Reglerteknik (IE1304) 12/3-2012 ES, Elektroniksystem Reglerteknik Kurskod: IE1304 Datum: 12/3-2012 Tid: 09.00-13.00 Examinator: Leif Lindbäck (7904425) Hjälpmedel: Formelsamling, dimensioneringsbilaga,
TMA226 datorlaboration
TMA226 Matematisk fördjupning, Kf 2019 Tobias Gebäck Matematiska vetenskaper, Calmers & GU Syfte TMA226 datorlaboration Syftet med denna laboration är att du skall öva formuleringen av en Finita element-metod,
Tentamen i Reglerteknik, för D2/E2/T2
Högskolan i Halmstad Sektionen för Informationsvetenskap, Data- och Elektroteknik (IDE) Tentamen i Reglerteknik, för D2/E2/T2 Tid: Lördagen den 15 Augusti kl.9.-13. 29 Sal: Tillåtna hjälpmedel: Valfri
TSRT21 Dynamiska system och reglering Välkomna till Föreläsning 10
TSRT21 Dynamiska system och reglering Välkomna till Föreläsning 10 Johan Löfberg Avdelningen för Reglerteknik Institutionen för systemteknik johan.lofberg@liu.se Kontor: B-huset, mellan ingång 27 och 29
Jämförelse av ventilsystems dynamiska egenskaper
Jämförelse av ventilsystems dynamiska egenskaper Bo R. ndersson Fluida och Mekatroniska System, Institutionen för ekonomisk och industriell utveckling, Linköping, Sverige E-mail: bo.andersson@liu.se Sammanfattning
Ökad dämpning genom rätt design av utloppsstrypningen
Ökad dämpning genom rätt design av utloppsstrypningen Mikael Axin Fluida och mekatroniska system, Institutionen för ekonomisk och industriell utveckling, Linköpings universitet E-mail: mikael.axin@liu.se
Chalmers Tekniska Högskola och Mars 2003 Göteborgs Universitet Fysik och teknisk fysik Kristian Gustafsson Maj Hanson. Svängningar
Chalmers Tekniska Högskola och Mars 003 Göteborgs Universitet Fysik och teknisk fysik Kristian Gustafsson Maj Hanson Svängningar Introduktion I mekanikkurserna arbetar vi parallellt med flera olika metoder
Reglerteknik M3, 5p. Tentamen 2008-08-27
Reglerteknik M3, 5p Tentamen 2008-08-27 Tid: 08:30 12:30 Lokal: M-huset Kurskod: ERE031/ERE032/ERE033 Lärare: Knut Åkesson, tel 0701-749525 Läraren besöker tentamenssalen vid två tillfällen för att svara
LAB 3. INTERPOLATION. 1 Inledning. 2 Interpolation med polynom. 3 Splineinterpolation. 1.1 Innehåll. 3.1 Problembeskrivning
TANA18/20 mars 2015 LAB 3. INTERPOLATION 1 Inledning Vi ska studera problemet att interpolera givna data med ett polynom och att interpolera med kubiska splinefunktioner, s(x), som är styckvisa polynom.
Tentamen i Miljö och Matematisk Modellering för TM Åk 3, MVE345 MVE maj 2012,
Tentamen i Miljö och Matematisk Modellering för TM Åk 3, MVE345 MVE345 24 maj 2012, 8.30-13.00 1. Ge exempel på en avklingningsfunktion för att beskriva en gas som bryts ner i atmosfären. Presentera också
Reglerteknik AK, FRT010
Institutionen för REGLERTEKNIK Reglerteknik AK, FRT Tentamen januari 27 kl 8 3 Poängberäkning och betygssättning Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen omfattar totalt
Reglerteknik AK. Tentamen 24 oktober 2016 kl 8-13
Institutionen för REGLERTEKNIK Reglerteknik AK Tentamen 24 oktober 26 kl 8-3 Poängberäkning och betygsättning Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen omfattar totalt