Den mer obekanta delen av 1800-talsfysiken: Termodynamik och statistisk fysik

Storlek: px
Starta visningen från sidan:

Download "Den mer obekanta delen av 1800-talsfysiken: Termodynamik och statistisk fysik"

Transkript

1 1

2 Den mer obekanta delen av 1800-talsfysiken: Termodynamik och statistisk fysik Utvecklingen av termodynamiken Carnot, Boltzmann och (samma) Maxwell Maxwells demoner Stökiga rum 2

3 Vi sammanfattar 1800-talsfysiken med en genomgång av det andra stora ämnet. Denna utvecklades väsentligen från ingenting till en fullständig teori, nämligen termodynamiken och den statistiska fysiken. Varför är detta ämne relativt anonymt? Det berör vardagen, så det känns som om det borde vara enkelt. Men det visar sig vara abstrakt, så det uppfattas som frusterande, och lärare och elever blir olyckliga. 3

4 Termodynamik består egentligen av två förenade ämnen: Termodynamiken, som är en axiomatisk och fenomenologisk beskrivning av förhållandena mellan temperatur, arbete och värme. Statistisk mekanik, med vilken man kan härleda termodynamiken med kunskap om hur individuella molekyler beter sig. 4

5 Vad visste man innan 1800? Benjamin Thomson blev Count Rumford i Bavarien. Han funderade på varför en kanon som borrades blev varm. Man trodde att när borren skar in i metallen, frisläppde den kaloric. Han observerade (1798) att även om borren var slö och inte skar, blev ändå kanonen het. 5

6 Milstolpar i termodynamiken 6

7 7

8 8

9 Milstolpar i statistisk mekanik. James Clerk Maxwell och Ludwig Boltzmann skapade ämnet statistisk mekanik mellan 1866 och

10 Termodynamiken är den del av fysiken som omfattar förhållandet mellan temperatur, värme och mekanik. Vi börjar med vad man visste 1820 om detta, nämligen nästan inget alls. Tänk på att James Joule ännu inte hade gjort sina experiment om förhållandet mellan mekaniskt arbete och värme. 10

11 Jo, man visste faktiskt lite grann, nämligen den ideala gaslagen P V = (Nk)T Man visste inte vad N och k var, men man visste att för en given mängd gas, var tryck multiplicerat med volym proportionellt mot ( T + 273) d.v.s. temperatur i grader Kelvin. 11

12 Det var inte svårt att komma fram till denna slutsats. Man gjorde ett diagram genom att mäta förhållandet mellan tryck och volym på en mängd gas (t.ex. luft) P/V T Detta visste man 1787 (Charles och Boyle). Men hur lite man visste kan man förstå när man ser det magra men trots allt grundläggande innehållet i Carnots arbete. 12

13 1820 skrev Sadie Carnot ett arbete med titeln Reflections on the motive power of fire. Detta manuskript kom inte till allmän kännedom förrän 1966(!) trots att hans idéer var välkända. Han undersökte hur effektiv en ångmaskin var i förhållande till temperaturen hos ångan innan den gick in i kolven, och hur sval ångan kunde göras vid utträdet. 13

14 Carnot utnyttjade ett tankeeperiment genom att undersöka en slags idealisk maskin, numera kallad Carnot-cykel. 14

15 Genom att använda sig av det idealiska förhållandet mellan gasens tryck och volym, kunde Lord Thomson, 1848, få fram att denna idealiserade maskin kunde utnyttja en andel 1 T kallt /T varmt av den tillförda värmen. Temperaturen mäts i grader Kelvin, d.v.s. Celsius+ 273 Exempel:T effektiviteten varmt = 300 och T =100 blir kallt 1 ( )/( )

16 De termodynamiska lagarna Energi kan varken skapas eller förintas Energi flödar alltid från högre till lägre temperatur. (Clausius, 1850) Ett system kan inte existera vid noll grader Kelvin (Obs. 90 nano Kelvin 2001! dvs mycket nära noll!) 16

17 1865 tar Clausius ett jättesteg. Han introducerar entropi i undersökningen av värme och energi. Entropi, i motsats till energi och värme, är ett mycket abstrakt begrepp. Svårigheten med värme och energiförhållanden är att ta itu med förhållandet till arbete. 17

18 Låt oss anta att man utför arbete med ett system och dessutom att man tillför värme. dw du = dw + dq dq Nu inser Clausius att man kan definiera det vi nu kallar för entropi med: dq = T ds 18

19 Med detta steg har Clausius grundat termodynamiken. Redan 10 år senare, 1875, skriver Ludwig Boltzmann ner en anmärkningsvärd och djup koppling till sannolikhetsteori som visar ett samband mellan ett matematiskt preciserat mått av oordning till entropibegreppet S = k log(ω) där Ω är lika med antalet tillstånd systemet kan befinna sig i för en given energi. 19

20 Med hjälp av sannolikhetsteorin skriver Maxwell och Boltzmann genast ner sannolikhetsfördelningen för molekylerna i en idealgas. De skapar därigenom en koppling mellan mekaniken och de mikroskopiska egenskaperna hos molekylerna i ett termodynamiskt system. Dessa insikter återger alla termodymamiska egenskaper hos en idealisk gas: Vi har dock inte möjligheten att gå igenom dessa i större detalj. 20

21 Det dock värt att notera att förhållandet mellan rörelse, molekyler och värme numera är välbekant. Atomer, molekyler och varmt betyder snabbare rörelse är en schablon som nästan alltid klargör vissa förhållanden Varför en varm gas upptar större volym Varför material smälter Varför värme transporteras från varmt till kallt Varför något ska bli varmt innan det antänds 21

22 Några exempel på entropi, arbete och energi Ett stökigt rum som analogi till entropi och arbete Blandingsentropi och arbete Maxwelldemonen Evighetsmaskiner 22

23 Vi kan analysera begreppet entropi i termer av ett stökigt rum. Det finns ett oändligt antal sätt att stöka till rummet, och det sker mer eller mindre av sig själv. Det fordrar däremot en hel del arbete att städa rummet. Detta är inte bara lek med ord, men anknyter även till de matematiskt korrekta begreppen om entropi och arbete, även om en detaljerad anknytning till termodynamiken fallerar. 23

24 Blandningsentropi och arbete Vi illustrerar förhållandet mellan entropi och arbete med följande exempel. Genom att utnyttja försiktigt en tillstökning kan man utnyttja detta för att utföra arbete! 24

25 Vi börjar med ett städat rum. Ett par väggar skiljer de gröna från de lila gasmolekylerna. Gröna molekyler går inte genom den gröna väggen, och vice versa. 25

26 Om man släpper väggarna trycks de isär av kulorna. Gasen har blandats och man har uträttat arbete på omgivningen (genom att sträcka fjädern) Rummet är nu stökigt. 26

27 Man kan nu återföra kulorna till startläget genom att trycka ihop väggarna. Genom att utföra arbete har man iordingställt systemet och reducerat entropin i rummet. 27

28 Detta exempel, som kan analyseras i detalj med statistisk termodynamik, visar på förhållandet mellan arbete, energi och entropi. Om man hade öppnat ett hål mellan väggarna hade entropin ökat utan att man hade utfört något arbetet, och man hade slösat denna möjlighet att utföra arbete. 28

29 Det finns inte några exempel på något som inte följer de termodynamiska lagarna, trots att motsatsen ibland hävdas. Men termodynamiken är inte enkel eller intuitiv och det är lätt att begå misstag. Det är inte sällan evighetsmaskiner eller maskiner som skapar energi patenteras. 29

30 Denna uppfinning har patenterats många gånger British patent No Peter Armand le Comte de Fontainemoreau of London, Agent. Hydraulic motor. Jan 27, David Diamond. US patent 3,934,964. Gravity-Actuated Fluid Displacement Power Generator Smeretchanski Mikhail. French Patent No. 2,830,

31 En ratchet (backspärr) som enerikälla. Vid ändlig temperatur tar sig kulan uppför backen, eller?... detta har diskuterats i hundra år. 31

32 Andra sätt att bryta mot de termodynamiska lagarna har diskuterats. Ett av de mest omdiskuterade är Maxwells demon. Man har en dörr i väggen mellan två rum. När en gasmolekyl med hög hastighet kommer till från vänster sida öppnas dörren, och när en molekyl som rör sig långsamt närmar sig dörren från höger släpps den till vänster sida. Efter ett tag är det varmt på höger sida och kallt på vänster. Därefter kan man utföra arbete. 32

33 Maxwelldemonen har föreslagits som ett sätt att kringgå termodynamikens andra lag. 33

34 Kan Maxwelldemonen utnyttjas att skapa arbete? Detta har också diskuterats sedan Maxwells tid och en noggrann analys visar att om man analyserar energin som krävs att analysera gasmolekylerna och att öppna dörren vid lämpligt tillfälle, blir det ingen energivinst med Maxwells demon. 34

35 Boltzmanns H-teorem. Genom att skriva ner sin fördelningsfunktion, visar Boltzmann att enkla antaganden samt den klassiska mekaniken är tillräcklig för att visa att entropin alltid ökar i ett system. Detta var enormt kontroversiellt, då alla visste att rörelselagarna var reversibla. Dessutom tvivlade man på atomer. Den påföljande hätska debatten föranledde ev. Boltzmanns självmord

36 Trots denna något tråkiga avslutning på1800-talet inom statistisk fysik, präglades seklet av den ena triumfen efter den andra. Mekaniken och atrofsik (Newton... ) Kontiuum mekaniken (Euler, LaPlace.. ) Elektromagnetism (Maxwell) Termodynamiken (Maxwell, Boltzmann, Gibbs) I detta segerrus uttalar sig Michelson något oförsiktigt: 36

37 Quotation from Michelson's address at the dedication ceremony for the Ryerson Physical Laboratory at the University of Chicago in 1894: The more important fundamental laws and facts of physical science have all been discovered, and these are now so firmly established that the possibility of their ever being supplanted in consequence of new discoveries is exceedingly remote... Our future discoveries must be looked for in the sixth place of decimals." 37

38 Lord Kelvin är dock lite mer nyanserad och diskuterar två moln på den vetenskapliga himmelen The beauty and clearness of the dynamical theory, which asserts heat and light to be modes of motion, is at present obscured by two clouds. I. The first involves the question, How could the earth move through an elastic solid, such as essentially is the luminiferous ether? II. The second is the Maxwell-Boltzmann doctrine regarding the partition of energy. William Thomson, Lord Kelvin,

39 Nästa föreläsning ägnar vi åt att diskutera det första av Lord Kelvins moln, nämligen att ljusets mätbara och konstanta hastighet är omöjlig att förena med den rådande klassiska världsbilden. 39

40 Relativitet Mätning av ljushastighen: Galileo, Römer, Bradley, Focault och Fizeau, Michelson Morley Einsteins postulat och tidsdilationen 40

41 Man har alltid varit nyfiken på hur snabbt ljuset rör sig. Inte minst Galileo gav sig på denna fråga. 41

42 Till slut lyckas Ole Rømer, 1675 mäta ljusets ändliga hastighet via ett snillrikt resonemang 42

43 Han observerade med god precision Jupiter och dess månar 43

44 Ole Römer mätte perioden av Io runt Jupiter. Ios kretsande runt Jupiter fungerar alltså som en klocka. Efter att ha observerat denna under en lång tid, visade han 1676 att klockan drog sig eller gick för fort med totalt 4 minuter beroende på om Jupiter rörde sig närmare eller längre från oss under en period. ±4 min Io Io jorden solen jorden Jupiter Han drog den korrekta slutsatsen att ljushastighetn var ändlig. 44

45 Nu uppstår ett problem med Ole Römers mätningar som visade på en ändlig ljushastighet (utfördes 1676). Hur kan hastigheten vara ändlig och fortfarande bevara Galileoprincipen. * *(En väg ur är sk. emitter-teori, där ljus består av partiklar som rör sig med stor hastighet... själv tror jag att det var därför Newton trodde på ljus som partiklar trots att han hade bevis för att ljuset var vågor). 45

46 Med ändlig ljushastighet blir det förmodligen ett absolut rum, där ljuset rör sig i etern. Man måste då kunna se hur man rör sig i etern genom att observera ljusvågorna i denna eter. 46

47 Man märker av om källan eller observatören rör sig i förhållande till ljuset i etern. Precis som i en båt. Så det blev aktuellt att precisera ljusets hastighet. 47

48 Nästa mätning av ljusets hastighet var James Bradley 1729 som resonerade enligt följande diagram Sett från land Sett från båten r! v Båten rör sig framåt Regnet faller rakt ner Ankan är stilla v Båten rör sig inte Regnet faller med en vinkel Ankan rör sig bakåt Om det regnar faller regnet rakt ner, men om man rör sig ser det ut som om det faller i en vinkel. Genom vinkeln och den egna hastigheten får man regnets hastighet 48

49 Genom att mäta förändringar mellan årstiderna i vinkeln hos en bestämd stjärna, mätte James Bradley ljusets hastighet (1729) med en noggrannhet av 1%! Det dröjde mer än 100 år innan denna mätning överträffades.. 49

50 v = jordens hastighet runt solen c θ θ = 2v/c ±v 50

51 Foucault och Fizeau, mätte till slut (1850) ljushastigheten till en noggrannhet av 0.1 % dvs 50 km/s. Spegel! Ljuskälla Roterande spegel Detta var jämförbart med jordens hastighet runt solen, som är c:a 30 km/s 51

Han observerade med god precision Jupiter och dess månar. ±4 min. Han drog den korrekta slutsatsen att ljushastighetn var ändlig.

Han observerade med god precision Jupiter och dess månar. ±4 min. Han drog den korrekta slutsatsen att ljushastighetn var ändlig. Relativitet Newtons hink Mätning av ljushastighen: Galileo, Römer, Bradley, Focault och Fizeau, Michelson Morley Einsteins postulat och tidsdilationen Newtons tankeexperiment: Klättra in i en jättestor

Läs mer

7. Inre energi, termodynamikens huvudsatser

7. Inre energi, termodynamikens huvudsatser 7. Inre energi, termodynamikens huvudsatser Sedan 1800 talet har man forskat i hur energi kan överföras och omvandlas så effektivt som möjligt. Denna forskning har resulterat i ett antal begrepp som bör

Läs mer

Fysik TFYA68. Föreläsning 11/14

Fysik TFYA68. Föreläsning 11/14 Fysik TFYA68 Föreläsning 11/14 1 Kvantmekanik och Materialuppbyggnad University Physics: Kapitel 38-39* (*) 38.1, 38.4, 39.1-3, 6 koncept enklare uppgifter Översikt och breddningskurs! 2 Introduktion Kvantmekanik

Läs mer

Kapitel III. Klassisk Termodynamik in action

Kapitel III. Klassisk Termodynamik in action Kapitel III Klassisk Termodynamik in action Termodynamikens andra grundlag Observation: värme flödar alltid från en varm kropp till en kall, och den motsatta processen sker aldrig spontant (kräver arbete!)

Läs mer

If you think you understand quantum theory, you don t understand quantum theory. Quantum mechanics makes absolutely no sense.

If you think you understand quantum theory, you don t understand quantum theory. Quantum mechanics makes absolutely no sense. If you think you understand quantum theory, you don t understand quantum theory. Richard Feynman Quantum mechanics makes absolutely no sense. Roger Penrose It is often stated that of all theories proposed

Läs mer

Relativitet. Mätning av ljushastighen: Galileo, Römer, Bradley, Focault och Fizeau, Michelson Morley Einsteins postulat och tidsdilatationen

Relativitet. Mätning av ljushastighen: Galileo, Römer, Bradley, Focault och Fizeau, Michelson Morley Einsteins postulat och tidsdilatationen Relativitet Mätning av ljushastighen: Galileo, Römer, Bradley, Focault och Fizeau, Michelson Morley Einsteins postulat och tidsdilatationen 1 Man har alltid varit nyfiken på hur snabbt ljuset rör sig.

Läs mer

Fysik TFYA86. Föreläsning 10/11

Fysik TFYA86. Föreläsning 10/11 Fysik TFYA86 Föreläsning 10/11 1 Kvantmekanik och Materialuppbyggnad University Physics: Kapitel 38-41* (*) 38.1, 38.4, 39.1-3, 6 40.1-4 (översikt) koncept enklare uppgifter Översikt och breddningskurs!

Läs mer

Termodynamik Av grekiska θηρµǫ = värme och δυναµiς = kraft

Termodynamik Av grekiska θηρµǫ = värme och δυναµiς = kraft Termodynamik Av grekiska θηρµǫ = värme och δυναµiς = kraft Termodynamik = läran om värmets natur och dess omvandling till andra energiformer (Nationalencyklopedin, band 18, Bra Böcker, Höganäs, 1995) 1

Läs mer

Entropi. Det är omöjligt att överföra värme från ett "kallare" till ett "varmare" system utan att samtidigt utföra arbete.

Entropi. Det är omöjligt att överföra värme från ett kallare till ett varmare system utan att samtidigt utföra arbete. Entropi Vi har tidigare sett hur man kunde definiera entropi som en funktion (en konstant gånger naturliga logaritmen) av antalet sätt att tilldela ett system en viss mängd energi. Att ifrån detta förstå

Läs mer

Dopplereffekt och lite historia

Dopplereffekt och lite historia Dopplereffekt och lite historia Outline 1 Lite om relativitetsteorins historia 2 Dopplereffekt och satelliter 3 Dopplereffekt och tidsdilatation L. H. Kristinsdóttir (LU/LTH) Dopplereffekt och lite historia

Läs mer

Studieanvisningar i statistisk fysik (SI1161) för F3

Studieanvisningar i statistisk fysik (SI1161) för F3 Studieanvisningar i statistisk fysik (SI1161) för F3 Olle Edholm September 15, 2010 1 Introduktion Denna studieanvisning är avsedd att användas tillsammans med boken och exempelsamlingen. Den är avsedd

Läs mer

Två system, bägge enskilt i termisk jämvikt med en tredje, är i jämvikt sinsemellan

Två system, bägge enskilt i termisk jämvikt med en tredje, är i jämvikt sinsemellan Termodynamikens grundlagar Nollte grundlagen Termodynamikens 0:e grundlag Två system, bägge enskilt i termisk jämvikt med en tredje, är i jämvikt sinsemellan Temperatur Temperatur är ett mått på benägenheten

Läs mer

Tid, rum och ljushastigheten

Tid, rum och ljushastigheten Tid, rum och ljushastigheten Med Newtons Principia fick nu begreppen tid och rum en central ställning. Newton sade klart och tydligt att han trodde på att det fanns en absolut tid och ett absolut rum;

Läs mer

TERMODYNAMIK? materialteknik, bioteknik, biologi, meteorologi, astronomi,... Ch. 1-2 Termodynamik C. Norberg, LTH

TERMODYNAMIK? materialteknik, bioteknik, biologi, meteorologi, astronomi,... Ch. 1-2 Termodynamik C. Norberg, LTH TERMODYNAMIK? Termodynamik är den vetenskap som behandlar värme och arbete samt de tillståndsförändringar som är förknippade med dessa energiutbyten. Centrala tillståndsstorheter är temperatur, inre energi,

Läs mer

Termodynamik och inledande statistisk fysik

Termodynamik och inledande statistisk fysik Några grundbegrepp i kursen Termodynamik och inledande statistisk fysik I. INLEDNING Termodynamiken beskriver på en makroskopisk nivå processer där värme och/eller arbete tillförs eller extraheras från

Läs mer

OMÖJLIGA PROCESSER. 1:a HS: Q = W Q = Q out < 0 W = W net,out > 0

OMÖJLIGA PROCESSER. 1:a HS: Q = W Q = Q out < 0 W = W net,out > 0 OMÖJLIGA PROCESSER 1:a HS: Q = W Q = Q out < 0 W = W net,out > 0 Q W; GÅR INTE! PMM1 bryter mot 1:a HS 1:a HS: Q in = W net,out ; OK 2:a HS: η th = W net,out /Q in < 1 η th = 1; GÅR INTE! PMM2 bryter mot

Läs mer

Kap 7 entropi. Ett medium som värms får ökande entropi Ett medium som kyls förlorar entropi

Kap 7 entropi. Ett medium som värms får ökande entropi Ett medium som kyls förlorar entropi Entropi Är inte så enkelt Vi kan se på det på olika sätt (mikroskopiskt, makroskopiskt, utifrån teknisk design). Det intressanta är förändringen i entropi ΔS. Men det finns en nollpunkt för entropi termodynamikens

Läs mer

Välkomna till Kvantfysikens principer!

Välkomna till Kvantfysikens principer! Välkomna till Kvantfysikens principer! If you think you understand quantum theory, you don t understand quantum theory. Richard Feynman Quantum mechanics makes absolutely no sense. Roger Penrose If quantum

Läs mer

Allmän kemi. Läromålen. Viktigt i kap 17. Kap 17 Termodynamik. Studenten skall efter att ha genomfört delkurs 1 kunna:

Allmän kemi. Läromålen. Viktigt i kap 17. Kap 17 Termodynamik. Studenten skall efter att ha genomfört delkurs 1 kunna: Allmän kemi Kap 17 Termodynamik Läromålen Studenten skall efter att ha genomfört delkurs 1 kunna: n - använda de termodynamiska begreppen entalpi, entropi och Gibbs fria energi samt redogöra för energiomvandlingar

Läs mer

Vad är egentligen tid?

Vad är egentligen tid? Vad är egentligen tid? Omvälvningen - från klassisk till modern fysik... eller vad visste man egentligen i slutet av 1800-talet? 1600-talet: Newtons rörelselagar, mekanik! Kroppars rörelse under påverkan

Läs mer

Termodynamik FL6 TERMISKA RESERVOARER TERMODYNAMIKENS 2:A HUVUDSATS INTRODUCTION. Processer sker i en viss riktning, och inte i motsatt riktning.

Termodynamik FL6 TERMISKA RESERVOARER TERMODYNAMIKENS 2:A HUVUDSATS INTRODUCTION. Processer sker i en viss riktning, och inte i motsatt riktning. Termodynamik FL6 TERMODYNAMIKENS 2:A HUVUDSATS INTRODUCTION Värme överförd till en tråd genererar ingen elektricitet. En kopp varmt kaffe blir inte varmare i ett kallt rum. Dessa processer kan inte ske,

Läs mer

Repetition. Termodynamik handlar om energiomvandlingar

Repetition. Termodynamik handlar om energiomvandlingar Repetition Termodynamik handlar om energiomvandlingar Termodynamikens första huvudsats: (Energiprincipen) Energi kan inte skapas och inte förstöras bara omvandlas från en form till en annan!! Termodynamikens

Läs mer

Termodynamik Föreläsning 4

Termodynamik Föreläsning 4 Termodynamik Föreläsning 4 Ideala Gaser & Värmekapacitet Jens Fjelstad 2010 09 08 1 / 14 Innehåll Ideala gaser och värmekapacitet TFS 2:a upplagan (Çengel & Turner) 3.6 3.11 TFS 3:e upplagan (Çengel, Turner

Läs mer

Vetenskapshistoria. Vi behandlar naturvetenskap. Vi gör en uppdelning efter olika ämnen. Uppdelningen är delvis kronologisk

Vetenskapshistoria. Vi behandlar naturvetenskap. Vi gör en uppdelning efter olika ämnen. Uppdelningen är delvis kronologisk Vetenskapshistoria Vetenskapshistoria Vi behandlar naturvetenskap Vi gör en uppdelning efter olika ämnen Uppdelningen är delvis kronologisk De olika delarna Antiken Renässansen Den heliocentriska världsbilden

Läs mer

10. Kinetisk gasteori

10. Kinetisk gasteori 10. Kinetisk gasteori Alla gaser beter sig på liknande sätt. I slutet av 1800 talet utvecklades matematiska sätt att beskriva gaserna, den så kallade kinetiska gasteorin. Den grundar sig på en modell för

Läs mer

Entropi, energikvalitet och termodynamikens huvudsatser

Entropi, energikvalitet och termodynamikens huvudsatser Entropi, energikvalitet och termodynamikens huvudsatser Christian Karlsson Uppdaterad: 150330 Har jag använt någon bild som jag inte får använda så låt mig veta så tar jag bort den. christian.karlsson@ckfysik.se

Läs mer

Gaser: ett av tre aggregationstillstånd hos ämnen. Flytande fas Gasfas

Gaser: ett av tre aggregationstillstånd hos ämnen. Flytande fas Gasfas Kapitel 5 Gaser Kapitel 5 Innehåll 5.1 Tryck 5.2 Gaslagarna från Boyle, Charles och Avogadro 5.3 Den ideala gaslagen 5.4 Stökiometri för gasfasreaktioner 5.5 Daltons lag för partialtryck 5.6 Den kinetiska

Läs mer

Information om kursen

Information om kursen Information om kursen Föreläsningar: Magnus Axelsson och Emma Wikberg Räkneövningar: Thomas Kvorning Kurshemsida: www.fysik.su.se/~emma/kvantprinciperna Kontaktinformation Schema Skannade föreläsningsanteckningar

Läs mer

Kapitel 5. Gaser. är kompressibel, är helt löslig i andra gaser, upptar jämt fördelat volymen av en behållare, och utövar tryck på sin omgivning.

Kapitel 5. Gaser. är kompressibel, är helt löslig i andra gaser, upptar jämt fördelat volymen av en behållare, och utövar tryck på sin omgivning. Kapitel 5 Gaser Kapitel 5 Innehåll 5.1 5. 5.3 Den ideala gaslagen 5.4 5.5 Daltons lag för partialtryck 5.6 5.7 Effusion och Diffusion 5.8 5.9 Egenskaper hos några verkliga gaser 5.10 Atmosfärens kemi Copyright

Läs mer

Tentamen i FTF140 Termodynamik och statistisk fysik för F3

Tentamen i FTF140 Termodynamik och statistisk fysik för F3 Chalmers Institutionen för Teknisk Fysik Göran Wahnström Tentamen i FTF4 Termodynamik och statistisk fysik för F3 Tid och plats: Tisdag aug, kl 8.3-.3 i Väg och vatten -salar. Hjälpmedel: Physics Handbook,

Läs mer

Gaser: ett av tre aggregationstillstånd hos ämnen. Fast fas Flytande fas Gasfas

Gaser: ett av tre aggregationstillstånd hos ämnen. Fast fas Flytande fas Gasfas Kapitel 5 Gaser Kapitel 5 Innehåll 5.1 Tryck 5.2 Gaslagarna från Boyle, Charles och Avogadro 5.3 Den ideala gaslagen 5.4 Stökiometri för gasfasreaktioner 5.5 Daltons lag för partialtryck 5.6 Den kinetiska

Läs mer

Alla bilder finns på kursens hemsida http://www.physto.se/~lbe/poeter.html

Alla bilder finns på kursens hemsida http://www.physto.se/~lbe/poeter.html Alla bilder finns på kursens hemsida http://www.physto.se/~lbe/poeter.html Fysik för poeter 2010 Professor Lars Bergström Fysikum, Stockholms universitet Vi ska börja med lite klassisk fysik. Galileo Galilei

Läs mer

4 rörelsemängd. en modell för gaser. Innehåll

4 rörelsemängd. en modell för gaser. Innehåll 4 rörelsemängd. en modell för gaser. Innehåll 8 Allmänna gaslagen 4: 9 Trycket i en ideal gas 4:3 10 Gaskinetisk tolkning av temperaturen 4:6 Svar till kontrolluppgift 4:7 rörelsemängd 4:1 8 Allmänna gaslagen

Läs mer

1 Den Speciella Relativitetsteorin

1 Den Speciella Relativitetsteorin 1 Den Speciella Relativitetsteorin Den speciella relativitetsteorin är en fysikalisk teori om lades fram av Albert Einstein år 1905. Denna teori beskriver framför allt hur utfallen (dvs resultaten) från

Läs mer

Idealgasens begränsningar märks bäst vid högt tryck då molekyler växelverkar mera eller går över i vätskeform.

Idealgasens begränsningar märks bäst vid högt tryck då molekyler växelverkar mera eller går över i vätskeform. Van der Waals gas Introduktion Idealgaslagen är praktisk i teorin men i praktiken är inga gaser idealgaser Den lättaste och vanligaste modellen för en reell gas är Van der Waals gas Van der Waals modell

Läs mer

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140)

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140) Chalmers Tekniska Högskola Institutionen för Teknisk Fysik Mats Granath Tentamen i Termodynamik och Statistisk fysik för F3(FTF40) Tid och plats: Tisdag 8/8 009, kl. 4.00-6.00 i V-huset. Examinator: Mats

Läs mer

BFL122/BFL111 Fysik för Tekniskt/ Naturvetenskapligt Basår/ Bastermin Föreläsning 10 Relativitetsteori den 26 april 2012.

BFL122/BFL111 Fysik för Tekniskt/ Naturvetenskapligt Basår/ Bastermin Föreläsning 10 Relativitetsteori den 26 april 2012. Föreläsning 10 Relativa mätningar Allting är relativt är ett välbekant begrepp. I synnerhet gäller detta när vi gör mätningar av olika slag. Många mätningar består ju i att man jämför med någonting. Temperatur

Läs mer

Kap 3 egenskaper hos rena ämnen

Kap 3 egenskaper hos rena ämnen Rena ämnen/substanser Kap 3 egenskaper hos rena ämnen Har fix kemisk sammansättning! Exempel: N 2, luft Även en fasblandning av ett rent ämne är ett rent ämne! Blandningar av flera substanser (t.ex. olja

Läs mer

Föreläsning 14: Termodynamiska processer, värmemaskiner: motor, kylskåp och värmepump; verkningsgrad, Carnot-cykeln.

Föreläsning 14: Termodynamiska processer, värmemaskiner: motor, kylskåp och värmepump; verkningsgrad, Carnot-cykeln. Föreläsning 14: Termodynamiska processer, värmemaskiner: motor, kylskåp och värmepump; verkningsgrad, Carnot-cykeln. Maj 7, 2013, KoK kap. 6 sid 171-176) och kap. 8 Centrala ekvationer i statistisk mekanik

Läs mer

Lite Kommentarer om Gränsvärden

Lite Kommentarer om Gränsvärden Lite Kommentarer om Gränsvärden På föreläsningen (Föreläsning 2 för att vara eakt) så introducerade vi denitionen Denition. Vi säger att f() går mot a då går mot oändligheten, uttryckt i symboler som f()

Läs mer

Kapitel IV. Partikeltalet som termodynamisk variabel & faser

Kapitel IV. Partikeltalet som termodynamisk variabel & faser Kapitel IV Partikeltalet som termodynamisk variabel & faser Kemiska potentialen Kemiska potentialen I många system kan inte partikelantalet antas vara konstant så som vi hittills antagit Ett exempel är

Läs mer

Innehållsförteckning. I. Introduktion och första grundlagen I.1. Överblick och motivation

Innehållsförteckning. I. Introduktion och första grundlagen I.1. Överblick och motivation Innehållsförteckning Notera: denna förteckning uppdateras under kursens lopp, men stora förändringar är inte att vänta. I. Introduktion och första grundlagen I.1. Överblick och motivation I.1.1. Vad behandlar

Läs mer

Kinetisk Gasteori. Daniel Johansson January 17, 2016

Kinetisk Gasteori. Daniel Johansson January 17, 2016 Kinetisk Gasteori Daniel Johansson January 17, 2016 I kursen har vi under två lektioner diskuterat kinetisk gasteori. I princip allt som sades på dessa lektioner sammanfattas i texten nedan. 1 Lektion

Läs mer

Evighetsmaskiner eller drömmen om fri energi

Evighetsmaskiner eller drömmen om fri energi Evighetsmaskiner eller drömmen om fri energi Hanno Essén KTH Mekanik Ett modernt förslag till Perpetuum Mobile eller Evighetsmaskin Perpetuum mobile betyder evig rörelse men det är inte evig rörelse i

Läs mer

KINETISK TEORI och Boltzmannekvationen

KINETISK TEORI och Boltzmannekvationen ) KINETISK TEORI och Boltzmannekvationen En gas består av myriader av molekyler... En gas består av molekyler, och det som skiljer en gas från en vätska eller från en fast kropp, är att molekylerna för

Läs mer

Linnéuniversitetet Institutionen för fysik och elektroteknik

Linnéuniversitetet Institutionen för fysik och elektroteknik Linnéuniversitetet Institutionen för fysik och elektroteknik Ht2015 Program: Naturvetenskapligt basår Kurs: Fysik Bas 1 delkurs 1 Laborationsinstruktion 1 Densitet Namn:... Lärare sign. :. Syfte: Träna

Läs mer

Kapitel I. Introduktion och första grundlagen

Kapitel I. Introduktion och första grundlagen Kapitel I Introduktion och första grundlagen Introduktion Vad är Termofysik? Termofysiken handlar om att studera system bestående av ett stort antal partiklar (atomer, molekyler,...) i vilka temperaturen

Läs mer

Repetition F8. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00

Repetition F8. Lunds universitet / Naturvetenskapliga fakulteten / Kemiska institutionen / KEMA00 Repetition F8 System (isolerat, slutet, öppet) Första huvudsatsen U = 0 i isolerat system U = q + w i slutet system Tryck-volymarbete w = -P ex V vid konstant yttre tryck w = 0 vid expansion mot vakuum

Läs mer

Relativitetsteori, introduktion

Relativitetsteori, introduktion Relativitetsteori, introduktion En av bristerna med den klassiska fysiken är att alla observatörer antas ha samma tidsuppfattning, oavsett sin egen rörelse. Einstein kunde visa att så inte kunde vara fallet.

Läs mer

F2: Kvantmekanikens ursprung

F2: Kvantmekanikens ursprung F2: Kvantmekanikens ursprung Koncept som behandlas: Energins kvantisering Svartkroppsstrålning Värmekapacitet Spektroskopi Partikel-våg dualiteten Elektromagnetisk strålning som partiklar Elektroner som

Läs mer

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140)

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140) Chalmers Tekniska Högskola Institutionen för Teknisk Fysik Mats Granath Tentamen i Termodynamik och Statistisk fysik för F3(FTF40) Tid och plats: Måndag den 4 januari 008, kl. 8.30-.30 i M-huset. Examinator:

Läs mer

1 Den Speciella Relativitetsteorin

1 Den Speciella Relativitetsteorin 1 Den Speciella Relativitetsteorin På tidigare lektioner har vi studerat rotationer i två dimensioner samt hur vi kan beskriva föremål som roterar rent fysikaliskt. Att från detta gå över till den speciella

Läs mer

Kapitel 33 The nature and propagation of light. Elektromagnetiska vågor Begreppen vågfront och stråle Reflektion och brytning (refraktion)

Kapitel 33 The nature and propagation of light. Elektromagnetiska vågor Begreppen vågfront och stråle Reflektion och brytning (refraktion) Kapitel 33 The nature and propagation of light Elektromagnetiska vågor Begreppen vågfront och stråle Reflektion och brytning (refraktion) Brytningslagen (Snells lag) Totalreflektion Polarisation Huygens

Läs mer

Kap 4 energianalys av slutna system

Kap 4 energianalys av slutna system Slutet system: energi men ej massa kan röra sig över systemgränsen. Exempel: kolvmotor med stängda ventiler 1 Volymändringsarbete (boundary work) Exempel: arbete med kolv W b = Fds = PAds = PdV 2 W b =

Läs mer

Termodynamik (repetition mm)

Termodynamik (repetition mm) 0:e HS, 1:a HS, 2:a HS Termodynamik (repetition mm) Definition av processer, tillstånd, tillståndsstorheter mm Innehåll och överföring av energi 1: HS öppet system 1: HS slutet system Fö 11 (TMMI44) Fö

Läs mer

Fysikaliska modeller

Fysikaliska modeller Fysikaliska modeller Olika syften med fysiken Grundforskarens syn Finna förklaringar på skeenden i naturen Ställa upp lagar för fysikaliska skeenden Kritiskt granska uppställda lagar Kontrollera uppställda

Läs mer

David Wessman, Lund, 29 oktober 2014 Statistisk Termodynamik - Kapitel 3. Sammanfattning av Gunnar Ohléns bok Statistisk Termodynamik.

David Wessman, Lund, 29 oktober 2014 Statistisk Termodynamik - Kapitel 3. Sammanfattning av Gunnar Ohléns bok Statistisk Termodynamik. Sammanfattning av Gunnar Ohléns bok Statistisk Termodynamik. 1 Entropi 1.1 Inledning Entropi införs med relationen: S = k ln(ω (1 Entropi har enheten J/K, samma som k som är Boltzmanns konstant. Ω är antalet

Läs mer

Kapitel I. Introduktion och första grundlagen. Kursmaterialet: Jens Pomoell 2011, Mikael Ehn 2013-2014

Kapitel I. Introduktion och första grundlagen. Kursmaterialet: Jens Pomoell 2011, Mikael Ehn 2013-2014 Kapitel I Introduktion och första grundlagen Kursmaterialet: Jens Pomoell 2011, Mikael Ehn 2013-2014 Introduktion Vad är Termofysik? Termofysiken handlar om att studera system bestående av ett stort antal

Läs mer

Termodynamik FL1. Energi SYSTEM. Grundläggande begrepp. Energi. Energi kan lagras. Energi kan omvandlas från en form till en annan.

Termodynamik FL1. Energi SYSTEM. Grundläggande begrepp. Energi. Energi kan lagras. Energi kan omvandlas från en form till en annan. Termodynamik FL1 Grundläggande begrepp Energi Energi Energi kan lagras Energi kan omvandlas från en form till en annan. Energiprincipen (1:a huvudsatsen). Enheter för energi: J, ev, kwh 1 J = 1 N m 1 cal

Läs mer

SG1216. Termodynamik för T2

SG1216. Termodynamik för T2 SG1216 Termodynamik för T2 Klassisk termodynamik med kompressibel strömning. rörelseenergi och arbete inom mekanik rörströmning inom strömningslära integralkalkyl inom envariabelsanalys differentialkalkyl

Läs mer

Kemi och energi. Exoterma och endoterma reaktioner

Kemi och energi. Exoterma och endoterma reaktioner Kemi och energi Exoterma och endoterma reaktioner Energiprincipen Energi kan inte skapas eller förstöras bara omvandlas mellan olika energiformer (energiprincipen) Ex på energiformer: strålningsenergi

Läs mer

Planering Fysik för n och BME, ht-15, lp 1 Kurslitteratur: Göran Jönsson: Fysik i vätskor och gaser, Teach Support 2010 (eller senare). Obs!

Planering Fysik för n och BME, ht-15, lp 1 Kurslitteratur: Göran Jönsson: Fysik i vätskor och gaser, Teach Support 2010 (eller senare). Obs! Planering Fysik för n och BME, ht-15, lp 1 Kurslitteratur: Göran Jönsson: Fysik i vätskor och gaser, Teach Support 2010 (eller senare). Obs! Säljs vid första föreläsningen. markerar mycket viktigt avsnitt,

Läs mer

Nikolai Tesla och övergången till växelström

Nikolai Tesla och övergången till växelström Nikolai Tesla och övergången till växelström Jag påminner lite om förra föreläsningen: växelström har enorma fördelar, då transformatorer gör det enkelt att växla mellan högspänning, som gör det möjligt

Läs mer

Tentamen Relativitetsteori , 27/7 2019

Tentamen Relativitetsteori , 27/7 2019 KOD: Tentamen Relativitetsteori 9.00 14.00, 27/7 2019 Hjälpmedel: Miniräknare, linjal och bifogad formelsamling. Observera: Samtliga svar ska lämnas på dessa frågepapper. Det framgår ur respektive uppgift

Läs mer

Tentamen i KFK080 Termodynamik kl 08-13

Tentamen i KFK080 Termodynamik kl 08-13 Tentamen i KFK080 Termodynamik 091020 kl 08-13 Tillåtna hjälpmedel: Miniräknare (med tillhörande handbok), utdelat formelblad med tabellsamling. Slutsatser skall motiveras och beräkningar redovisas. För

Läs mer

Föreläsning 1: Introduktion, Mikro och makrotillstånd, Multiplicitet, Entropi

Föreläsning 1: Introduktion, Mikro och makrotillstånd, Multiplicitet, Entropi Version: 16 maj 201. TFYA12, Rickard Armiento, Föreläsning 1 Föreläsning 1: Introduktion, Mikro och makrotillstånd, Multiplicitet, Entropi April 2, 201, KoK kap. 1-2 Formalia Föreläsare och kursansvarig:

Läs mer

Innehåll. Förord...11. Del 1 Inledning och Bakgrund. Del 2 Teorin om Allt en Ny modell: GET. GrundEnergiTeorin

Innehåll. Förord...11. Del 1 Inledning och Bakgrund. Del 2 Teorin om Allt en Ny modell: GET. GrundEnergiTeorin Innehåll Förord...11 Del 1 Inledning och Bakgrund 1.01 Vem var Martinus?... 17 1.02 Martinus och naturvetenskapen...18 1.03 Martinus världsbild skulle inte kunna förstås utan naturvetenskapen och tvärtom.......................

Läs mer

Kapitel 17. Spontanitet, Entropi, och Fri Energi. Spontanitet Entropi Fri energi Jämvikt

Kapitel 17. Spontanitet, Entropi, och Fri Energi. Spontanitet Entropi Fri energi Jämvikt Spontanitet, Entropi, och Fri Energi 17.1 17.2 Entropi och termodynamiskens andra lag 17.3 Temperaturens inverkan på spontaniteten 17.4 17.5 17.6 och kemiska reaktioner 17.7 och inverkan av tryck 17.8

Läs mer

Einstein's svårbegripliga teori. Einstein's första relativitetsteori, den Speciella, förklaras så att ALLA kan förstå den

Einstein's svårbegripliga teori. Einstein's första relativitetsteori, den Speciella, förklaras så att ALLA kan förstå den Einstein's svårbegripliga teori Einstein's första relativitetsteori, den Speciella, förklaras så att ALLA kan förstå den Speciella relativitetsteorin, Allmänt Einsten presenterade teorin 1905 Teorin gäller

Läs mer

Kap 3 egenskaper hos rena ämnen

Kap 3 egenskaper hos rena ämnen Rena ämnen/substanser (pure substances) Har fix kemisk sammansättning! Exempel: N 2, luft Även en fasblandning av ett rent ämne är ett rent ämne! Blandningar av flera substanser (t.ex. olja blandat med

Läs mer

Tentamen i FTF140 Termodynamik och statistisk mekanik för F3

Tentamen i FTF140 Termodynamik och statistisk mekanik för F3 Chalmers Institutionen för Teknisk Fysik Göran Wahnström Tentamen i FTF14 Termodynamik och statistisk mekanik för F3 Tid och plats: Onsdag 15 jan 14, kl 8.3-13.3 i Maskin -salar. Hjälpmedel: Physics Handbook,

Läs mer

X. Repetitia mater studiorum

X. Repetitia mater studiorum X. Repetitia mater studiorum Termofysik, Kai Nordlund 2012 1 X.1. Termofysikens roll Den statistiska fysikens eller mekanikens uppgift är att härleda de fysikaliska egenskaperna hos makroskopiska system

Läs mer

X. Repetitia mater studiorum. Termofysik, Kai Nordlund

X. Repetitia mater studiorum. Termofysik, Kai Nordlund X. Repetitia mater studiorum Termofysik, Kai Nordlund 2006 1 X.1. Termofysikens roll Den statistiska fysikens eller mekanikens uppgift är att härleda de fysikaliska egenskaperna hos makroskopiska system

Läs mer

Kapitel 17. Spontanitet, Entropi, och Fri Energi

Kapitel 17. Spontanitet, Entropi, och Fri Energi Kapitel 17 Spontanitet, Entropi, och Fri Energi Kapitel 17 Innehåll 17.1 Spontana processer och entropi 17.2 Entropi och termodynamiskens andra lag 17.3 Temperaturens inverkan på spontaniteten 17.4 Fri

Läs mer

U = W + Q (1) Formeln (1) kan även uttryckas differentiells, d v s om man betraktar mycket liten tillförsel av energi: du = dq + dw (2)

U = W + Q (1) Formeln (1) kan även uttryckas differentiells, d v s om man betraktar mycket liten tillförsel av energi: du = dq + dw (2) Inre energi Begreppet energi är sannerligen ingen enkel sak att utreda. Den går helt enkelt inte att definiera med några få ord då den förekommer i så många olika former. Man talar om elenergi, rörelseenergi,

Läs mer

Strömning och varmetransport/ varmeoverføring

Strömning och varmetransport/ varmeoverføring Lektion 8: Värmetransport TKP4100/TMT4206 Strömning och varmetransport/ varmeoverføring Den gul-orange färgen i den smidda detaljen på bilden visar den synliga delen av den termiska strålningen. Värme

Läs mer

Tentamen Relativitetsteori

Tentamen Relativitetsteori KOD: Tentamen Relativitetsteori 9.00 14.00, 16/7 2011 Hjälpmedel: Miniräknare, linjal och bifogad formelsamling. Observera samtliga svar ska lämnas på dessa frågepapper. Det framgår ur respektive uppgift

Läs mer

Speciell relativitetsteori

Speciell relativitetsteori Kapitel 1 Speciell relativitetsteori Därute låg denna väldiga värld, som existerar oberoende av oss mänskliga varelser och som framstår för oss som en stor, evig gåta, åtminstone delvis tillgänglig för

Läs mer

Vad vi ska prata om idag:

Vad vi ska prata om idag: Vad vi ska prata om idag: Om det omöjliga i att färdas snabbare än ljuset...... och om gravitation enligt Newton och enligt Einstein. Äpplen, hissar, rökelse, krökta rum......och stjärnor som används som

Läs mer

Applicera 1:a H.S. på det kombinerade systemet:

Applicera 1:a H.S. på det kombinerade systemet: (Çengel, 998) Applicera :a H.S. på det kombinerade systemet: E in E out E c på differentialform: δw δw + δw δ Q R δwc dec där C rev sys Kretsprocessen är (totalt) reversibel och då ger ekv. (5-8): R R

Läs mer

18. Fasjämvikt Tvåfasjämvikt T 1 = T 2, P 1 = P 2. (1)

18. Fasjämvikt Tvåfasjämvikt T 1 = T 2, P 1 = P 2. (1) 18. Fasjämvikt Om ett makroskopiskt system består av flere homogena skilda komponenter, som är i termisk jämvikt med varandra, så kallas dessa komponenter faser. 18.0.1. Tvåfasjämvikt Jämvikt mellan två

Läs mer

ARBETE VAD ÄR DET? - Mätningar och mätinstrument och hur de kan kombineras för att mäta storheter, till exempel fart, tryck och effekt.

ARBETE VAD ÄR DET? - Mätningar och mätinstrument och hur de kan kombineras för att mäta storheter, till exempel fart, tryck och effekt. Inledning ARBETE VAD ÄR DET? När vi till vardags pratar om arbete är det en helt annan sak än begreppet arbete i fysikens värld. Ett lönearbete är t ex att arbeta som vaktpost utanför Buckingham Palace.

Läs mer

Produktion. i samarbete med. MAO Design 2013 Jonas Waxlax, Per-Oskar Joenpelto

Produktion. i samarbete med. MAO Design 2013 Jonas Waxlax, Per-Oskar Joenpelto Prototyp Produktion i samarbete med MAO Design 2013 Jonas Waxlax, Per-Oskar Joenpelto FYSIK SNACKS Kraft och motkraft............... 4 Raketmotorn................... 5 Ett fall för Galileo Galilei............

Läs mer

Kommer sig osäkerheten av att vår beskrivning av naturen är ofullständig, eller av att den fysiska verkligheten är genuint obestämd?

Kommer sig osäkerheten av att vår beskrivning av naturen är ofullständig, eller av att den fysiska verkligheten är genuint obestämd? Inte mycket verkar säkert här...? Våg-partikeldualitet Ett system kan ha både vågoch partikelegenskaper i samma experiment. Vågfunktionen har en sannolikhetstolkning. Heisenbergs osäkerhetsrelation begränsar

Läs mer

Tentamen Relativitetsteori , 29/7 2017

Tentamen Relativitetsteori , 29/7 2017 KOD: Tentamen Relativitetsteori 9.00 14.00, 29/7 2017 Hjälpmedel: Miniräknare, linjal och bifogad formelsamling. Observera: Samtliga svar ska lämnas på dessa frågepapper. Det framgår ur respektive uppgift

Läs mer

Introduktion till kursen. Fysik 3. Dag Hanstorp

Introduktion till kursen. Fysik 3. Dag Hanstorp Introduktion till kursen Fysik 3 Dag Hanstorp Vi har fem sinnen: Syn Hörsel Smak Lukt Känsel Hur stor är räckvidden på de olika sinnena? Hur skulle vår världsbild påverkas om vi människor hade saknat

Läs mer

The nature and propagation of light

The nature and propagation of light Ljus Emma Björk The nature and propagation of light Elektromagnetiska vågor Begreppen vågfront och stråle Reflektion och brytning (refraktion) Brytningslagen (Snells lag) Totalreflektion Polarisation Huygens

Läs mer

Fysikaliska modeller. Skapa modeller av en fysikalisk verklighet med hjälp av experiment. Peter Andersson IFM fysik, adjunkt

Fysikaliska modeller. Skapa modeller av en fysikalisk verklighet med hjälp av experiment. Peter Andersson IFM fysik, adjunkt Fysikaliska modeller Skapa modeller av en fysikalisk verklighet med hjälp av experiment Peter Andersson IFM fysik, adjunkt På denna föreläsning Vad är en fysikalisk modell? Linjärisering med hjälp av logaritmer

Läs mer

Termodynamik FL 2 ENERGIÖVERFÖRING VÄRME. Värme Arbete Massa (endast öppna system)

Termodynamik FL 2 ENERGIÖVERFÖRING VÄRME. Värme Arbete Massa (endast öppna system) Termodynamik FL 2 ENERGIÖVERFÖRING, VÄRME, ARBETE, TERMODYNAMIKENS 1:A HUVUDSATS ENERGIBALANS FÖR SLUTNA SYSTEM ENERGIÖVERFÖRING Värme Arbete Massa (endast öppna system) Energiöverföring i ett slutet system

Läs mer

Mekanik I Newtonsk mekanik beskrivs rörelsen för en partikel under inverkan av en kraft av

Mekanik I Newtonsk mekanik beskrivs rörelsen för en partikel under inverkan av en kraft av Mekanik 2 Live-L A TEX:ad av Anton Mårtensson 2012-05-08 I Newtonsk mekanik beskrivs rörelsen för en partikel under inverkan av en kraft av ṗ = m r = F Detta är ett postulat och grundläggande för all Newtonsk

Läs mer

10. Relativitetsteori Tid och Längd

10. Relativitetsteori Tid och Längd Relativa mätningar Allting är relativt är ett välbekant begrepp. I synnerhet gäller detta när vi gör mätningar av olika slag. Många mätningar består ju i att man jämför med någonting. Temperatur är en

Läs mer

9. Termodynamiska potentialer

9. Termodynamiska potentialer 9. Termodynamiska potentialer Enligt den andra grundlagen i differentialform gäller för reversibla processer Energin är en funktion av S och V de = T ds P dv (1) de = 0 för isochoriska processer (dv =

Läs mer

Skulle det här fungera så vore det en evighetsmaskin. Vore intresant att höra era åsikter. Det vore fantastiskt med en evighetsmaskin.

Skulle det här fungera så vore det en evighetsmaskin. Vore intresant att höra era åsikter. Det vore fantastiskt med en evighetsmaskin. Magnetmotor Postad av Stefan Ericson - 15 dec 2014 16:22 Hej på er! Jag har titta på yoytube och en pakistanier påstår att han får 3 kw ur en magnet motor. Det verkar vara mycket som inte stämmer, men

Läs mer

Moln II var baserat på följande oro

Moln II var baserat på följande oro L 12 1 Lord Kelvins moln II. The beauty and clearness of the dynamical theory, which asserts heat and light to be modes of motion, is at present obscured by two clouds. I. The first involves the question,

Läs mer

Temperatur. Värme är rörelse

Temperatur. Värme är rörelse Temperatur NÄR DU HAR LÄST AVSNITTET TEMPERATUR SKA DU veta vad som menas med värme veta hur värme påverkar olika material känna till celsius-, fahrenheit- och kelvinskalan känna till begreppet värmeenergi

Läs mer

Speciell relativitetsteori inlämningsuppgift 2

Speciell relativitetsteori inlämningsuppgift 2 Speciell relativitetsteori inlämningsuppgift 2 Christian von Schultz 2006 11 29 1 Tre satser Vi definierar en rumslik vektor A som en vektor som har A 2 < 0; en tidslik vektor har A 2 > 0 och en ljuslik

Läs mer

@

@ Kinetisk gasteori F = area tryck Newtons 2:a lag på impulsformen: dp/dt = F, där p=mv Impulsöverföringen till kolven när en molekyl reflekteras i kolvytan A är p=2mv x. De molekyler som når fram till ytan

Läs mer

Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1. SI-enheter (MKSA)

Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1. SI-enheter (MKSA) Sammanfattning av räkneövning 1 i Ingenjörsmetodik för ME1 och IT1 Torsdagen den 4/9 2008 SI-enheter (MKSA) 7 grundenheter Längd: meter (m), dimensionssymbol L. Massa: kilogram (kg), dimensionssymbol M.

Läs mer

X. Repetitia mater studiorum

X. Repetitia mater studiorum X. Repetitia mater studiorum X.2. Olika processer En reversibel process är en makroskopisk process som sker så långsamt i jämförelse med systemets interna relaxationstider τ att systemet i varje skede

Läs mer

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140)

Tentamen i Termodynamik och Statistisk fysik för F3(FTF140) Chalmers Tekniska Högskola Institutionen för Teknisk Fysik Mats Granath Tentamen i Termodynamik och Statistisk fysik för F(FTF40) Tid och plats: Torsdag /8 008, kl. 4.00-8.00 i V-huset. Examinator: Mats

Läs mer