Att undervisa multiplikation och division med 10, 100 och 1000
|
|
- Håkan Lindberg
- för 8 år sedan
- Visningar:
Transkript
1 Att undervisa multiplikation och division med 10, 100 och 1000 Learning Study i praktiken Tina Edner & Tinna Lidgren Bakgrund Grundskolan Nya Elementar i Stockholm Analys av nationella prov och lärarnas kontinuerliga analys av undervisningen Enhetsomvandling Bli säkrare på multiplikation och division med 10, 100 och 1000 Learning study 1
2 Mål Huvudsyfte Enhetsomvandling Undersöka vad eleverna måste kunna och förstå för att bli säkra på multiplikation och division med 10, 100 och 1000 Lärande objekt - Multiplikation och division med 10, 100 och
3 Metod Årskurs 7 Tre olika grupper med 22 elever i varje grupp Tre cykler - alla lektioner filmades Variationsteorin Lärandeobjekt Kritiska aspekter Mönster av variation Variations teorin (Marton & Booth, 2000) 3
4 Troliga kritiska aspekter Förståelse för division och multiplikation med 10, 100 och Förståelsen för positionssystemet, dvs. siffrans värde beroende på position. Prefixens betydelse Analys av förstest Troliga kritiska aspekter Vad decimaltecknet står för, förståelsen för heltal och decimaltal Förståelsen för att en position kan bli full och vad det innebär i positionssystemet. Principerna för positionssystemet gäller på båda sidorna om decimaltecknet Förståelse för hur värdet på ett tal förändras vid multiplikation och division med 10, 100 och 1000 att se mönstret vid dessa multiplikationer och divisioner. 4
5 Lektion 1 Inledning: Heltal jämfördes med decimaltal Decimaltecknets betydelse blev slutdiskussion En position kan bli full och vad det innebär Visade en tabell med postioner Tusental Hundratal Tiotal Ental Tiondel Hundradel Tusendel 5
6 Sammanfattningen av övningen handlade om att konstatera att när vi fyller på uppåt i tabellen, handlar det om en multiplikation med 10 i varje steg och vice versa med division. Lektion 1 avslutades med ett eftertest. Resultat för och eftertest lektion test 1 Test a 7b 8a 8b 8c 8d 9a 9b 9c 9d 10a 10b 11a 11b 6
7 Kommentar till diagram Uppgift 8d: 40, Uppgift 9b: 0, Uppgift 9d: 40,3 10 Analys av lektion 1 KA Vad decimaltecknet står för. Förståelsen av heltal och decimaltal. KA Att förstå att en position kan bli full och vad det innebär i positionssystemet. KA Principerna för positionssystemet gäller på båda sidor om decimaltecknet. KA Förståelse för hur värdet förändras vid en multiplikation eller division med 10, 100, Att se mönstret vid mult och div med 10, 100,
8 Korrigering av kritiska aspekter inför lektion 2 - Förståelse för positionssystemet, decimaltecknets betydelse. - Förstå att siffrans värde i ett tal är beroende av dess position. - Förståelse för hur varje siffras värde förändras vid en multiplikation eller division med 10, 100 och Lektion 2 Inledning: Heltal jämfördes med decimaltal Decimaltecknets betydelse Betonade siffrornas värde och ställde frågor så som Hur kan man veta att 321 är samma tal som 321,0? 8
9 Exempel från lektionen 453,265 4, ,5 Exempel från lektionen 3, Vad händer med talets värde Hur kan man genom beräkning komma från 3,02 till 302 Värdet på talet har blivit 100 ggr större, dvs varje siffras värde har blivit 100 ggr större 9
10 Övning Enskilt. Välj multiplikation eller division / och ett av talen för att lösa följande uppgifter. 32 = 3,2 3,27 = 32,7 1,5 = ,4 = 0,654 3,2 = ,5 = 0,9505 1,5 = 0,15 40,5 = 4050 Resultat för och eftertest lektion test 1 Test a 1b 2a 2b 2c a 6b 7a 7b 8a 8b 8c 8d 9a 9b 9c 9d 10a 10b 11a 11b 10
11 Kommentar till diagram Uppgift 8d: 40, Uppgift 9b: 0, Uppgift 9d: 40,3 10 Analys av lektion 2 KA Förståelse för positionssystemet KA Förstå att siffrans värde i ett tal är beroende på/av dess position. KA Förståelse för hur värdet förändras vid en multiplikation eller division med 10, 100,
12 Ändringar inför Lektion 3 Samma kritiska aspekter som lektion 2. Nollans värde och betydelse Lektion 3 Inledning: Heltal jämfördes med decimaltal Decimaltecknets betydelse 321 Utlästet noggrant tre hundratal, två tiotal, 1 ental 12
13 3210 En nolla lades till - Vad hände med talet? - Vad är det för räkneoperation som ligger bakom värdeförändringen? - Vad har nollan för betydelse i detta tal? - Varför behövs den? 3210, Ett decimaltecken lades till - Vad har vi nu gjort med talet? 32,10 Vi ställde samma frågor om värdeförändringen Diskussion om nollans nya värde, dess funktion och om nollan överhuvudtaget behövs. 13
14 50,4 5, ,504 Hur kan man genom beräkning komma från 50,4 till 5,04? Vilken räkneoperation måste utföras och hur förändrar det talets värde och varje siffras värde? Resultat för och eftertest lektion Förtest 7 2 Eftertest a 1b 2a 2b 2c a 6b 7a 7b 8a 8b 8c 8d 9a 9b 9c 9d 10a 10b 11a 11b 14
15 Kommentar till diagram Uppgift 8d: 40, Uppgift 9b: 0, Uppgift 9d: 40,3 10 Analys av lektion 3 KA Förståelse för positionssystemet KA Förstå att siffrans värde i ett tal är beroende på/av dess position. KA Förståelse för hur värdet förändras vid en multiplikation eller division med 10, 100,
16 Slut diskussion o Vi fann att det är av stor vikt att vi ger eleverna möjligheten att urskilja siffrornas värde i positionssystemet. o Eleverna måste få utmanande frågor som gör att de tvingas se vad det betyder för ett tal och dess siffror när decimaltecknet placeras på olika ställen i talet. Genom att skapa kontraster och generaliseringar i övningar och exempel har eleverna möjlighet urskilja detta. o Siffran noll bör behandlas i undervisningen mer och vi som lärare får inte ta förgivet att eleverna ser på siffran noll på samma sätt som de ser på andra siffror. o Förtestet och eftertest har stor betydelse och man bör lägga ner mycket eftertanke på hur man ställer frågor så att man verkligen kommer åt de aspekter i lärande objektet som är kritiska. 16
På Nya Elementar, en grundskola i Stockholm, har vi matematiklärare
Tina Edner Multiplikation och division med 10, 100 och 1000 en Learning study i praktiken Denna artikel är en förkortad version av ett utvecklingsarbete som finns att läsa i sin helhet på Pedagog Stockholm.
ATT UNDERVISA MULTIPLIKATION OCH DIVISION MED 10, 100 OCH 1000
EN UTVECKLINGSARTIKEL PUBLICERAD FÖR PEDAGOG STOCKHOLM ATT UNDERVISA MULTIPLIKATION OCH DIVISION MED 10, 100 OCH LEARNING STUDY I PRAKTIKEN Författare: Tina Edner E-post: tina.edner@stockholm.se Skola:
LEARNING STUDY. Matematik Karl Johans skola i Örebro. Anders Sahlin / Viktoria Bjurström 1
LEARNING STUDY Matematik Karl Johans skola i Örebro 1 www.karljohansskola.se Anders Sahlin speciallärare Viktoria Bjurström Ma/No lärare 2 Bakgrund Behov av ett utvecklingsarbete. *Hur går det till när
Arbetsblad 1:1. Tiondelar på tallinjen 0,1 0,5 0,9 0,2 0,8 0,3 0,8 1,1 1,5 1,6 2,1 2,4 1,1 1,4 2,6 3,2 3,8
Arbetsblad 1:1 Tiondelar på tallinjen 1 Skriv rätt tal på pilarna. 0,1 0,5 0,9 1,2 0 1 2 0,3 0,8 1,1 1,5 0 1 3 1,1 1,6 2,1 2,4 1 2 4 5 0,2 0,8 1,4 2,6 0 1 2 3 1,4 2,6 3,2 3,8 1 2 3 4 6 Sätt ut pilar som
Arbetsblad 1:1. Tiondelar på tallinjen 0,9 1,1 0,8. 6 Sätt ut pilar som pekar på talen: A = 0,3 B = 0,8 C = 1,4
Arbetsblad 1:1 Tiondelar på tallinjen 1 Skriv rätt tal på pilarna. 0,9 0 1 2 0 1 3 1,1 1 2 4 0,8 0 1 2 3 5 1 2 3 4 6 Sätt ut pilar som pekar på talen: A = 0,3 B = 0,8 C = 1,4 0 1 7 Sätt ut pilar som pekar
Arbetsblad 1:1. Tiondelar på tallinjen. 6 Sätt ut pilar som pekar på talen: A = 0,3 B = 0,8 C = 1,4
Arbetsblad 1:1 Tiondelar på tallinjen 1 Skriv rätt tal på pilarna. 0 1 2 0 1 3 1 2 4 0 1 2 3 5 1 2 3 4 6 Sätt ut pilar som pekar på talen: A = 0,3 B = 0,8 C = 1,4 0 1 7 Sätt ut pilar som pekar på talen:
En siffra har olika värde beroende på vilken plats i talet den har. 48 = 4 tiotal 8 ental 327 = 300 + 20 + 7. Alla tal ligger på en tallinje.
En siffra har olika värde beroende på vilken plats i talet den har. 48 = 4 tiotal 8 ental 7 = + + 7 Siffran 6 betyder 6 tusental = 6 tusental hundratal 4 8 7 6 9 tiotal ental Siffran 9 betyder 9 tiotal
Arbetsblad 1:1. Hela tal på tallinjen. Skriv rätt tal på linjen. 7, Bonnier Utbildning och författarna
Arbetsblad 1:1 Hela tal på tallinjen 1 Skriv rätt tal på linjen. 55 0 50 100 2 0 10 20 3 0 100 200 300 100 200 5 1 000 2 000 6 50 000 60 000 7 100 000 200 000 Arbetsblad 1:2 Positionssystemet 1 Skriv talen
Arbetsblad 1:1. 1 a) b) c) d) 2 a) b) c) d) 3 a) 8 b) 42 c) 189 d) a) b) c) d)
Arbetsblad 1:1 Egyptiska och romerska talsystemet Skriv med vanliga siffror 1 a) b) c) d) 2 a) b) c) d) Skriv med egyptiska talsymboler 3 a) 8 b) 42 c) 189 d) 2 431 4 a) 111 111 b) 43 245 c) 402 000 d)
Facit till Mattespanarna 6B Lärarboken. Facit till Mattespanarna 6B Lärarboken best.nr Får kopieras Författarna och Liber AB 1/9
Facit till Mattespanarna 6B Lärarboken 1/9 KOPIERINGSBLAD 1.1 Övningar med stora tal Skriv följande tal med siffror. 2 000 000 2 400 000 2 490 000 490 000 5 050 000 50 000 1 a) 2 miljoner b) 2,4 miljoner
hämtad från ls.idpp.gu.se
Två av subtraktionens aspekter - Jämföra och ta bort Skola Bålbro skola, Rimbo Årskurs Årskurs 1 Antal elever i studien Antalet elever i vår studie var 17 stycken. Studien avslutades våren 2012. Kontaktperson
Noll komma trettio måste vara större än noll komma fem, eller?
Noll komma trettio måste vara större än noll komma fem, eller? En variationsteoretisk klassrumsstudie om decimaltal i årskurs 4 Sandra Jarl Gabriel Johansson Examensarbete 15 hp Inom Lärande Handledare
a) A = 3 B = 4 C = 9 D = b) A = 250 B = 500 C = a) Tvåhundrasjuttiotre b) Ettusenfemhundranittio
Övningsblad 2.1 A Heltal 1 Skriv det tal som motsvaras av bokstaven på tallinjen. A B C D E F 0 10 0 50 A = B = C = D = E = F = G H I J K L 10 20 50 100 G = H = I = J = K = L = 2 Placera ut talen från
Matematik Formula, kap 3 Tal och enheter
Matematik Formula, kap 3 Tal och enheter Nedan berättar jag i punktform hur du ska arbeta och lite av det vi gör tillsammans. Listan kommer att fyllas på allteftersom vi arbetar. Då och då hittar du blå
Learning study ett utvecklingsprojekt
Learning study ett utvecklingsprojekt Bengt Drath Högskolan i Skövde samt Stöpenskolan i Skövde kommun Min resa som lärare Ett samspel av praktik och teori Stöpenskolan i Skövde kommun och Högskolan i
När en Learning study planeras väljs ett område som upplevs som problematiskt
K. Drageryd, M. Erdtman, U. Persson & C. Kilhamn Tallinjen en bro mellan konkreta modeller och abstrakt matematik Fem matematiklärare från Transtenskolan i Hallsberg har under handledning av Cecilia Kilhamn
Algebra utan symboler Learning study
Algebra utan symboler - - - - - Learning study Johan Häggström, NCM Göteborgs universitet 1 Är algebra verkligen något för grundskolans första år? Om eleverna förstår aritmetiken så bra att de kan förklara
KURSBESKRIVNING - MATEMATIK
KURSBESKRIVNING - MATEMATIK ARBETSOMRÅDE TAL OCH DECIMALTAL ÅK 6 (HT 2016) Jeff Linder, Daniel Spångberg, Emil Ohlander Varför finns det tal? Finns det olika sorters tal? Och har det någon betydelse var
Sammanfattningar Matematikboken X
Sammanfattningar Matematikboken X KAPITEL 1 TAL OCH RÄKNING Naturliga tal Med naturliga tal menas talen 0, 1,,, Jämna tal 0,,, 6, 8 Udda tal 1,,, 7 Tallinje Koordinater En tallinje kan t ex användas för
Learning Study i matematik
SKOLPORTENS NUMRERADE ARTIKELSERIE FÖR UTVECKLINGSARBETE I SKOLAN Learning Study i matematik En modell för utveckling av lärandet i klassrummet i år 6 Författare: Ebba Drakenberg, Marie Boutard Mothander
Matematik Formula, kap 3 Tal och enheter
Matematik Formula, kap 3 Tal och enheter Nedan berättar jag i punktform hur du ska arbeta och lite av det vi gör tillsammans. Listan kommer att fyllas på allteftersom vi arbetar. Då och då hittar du blå
Veckomatte åk 4 med 10 moment
Veckomatte åk 4 med 10 moment av Ulf Eskilsson Innehållsförteckning Inledning 2 Utdrag ur kursplanen i matematik 3 Grundläggande struktur i Veckomatte - Åk 4 4 Veckomatte och det centrala innehållet i
Definiera delen och det hela vid beräkningar i jämförande situationer. Svaret ska anges i procent.
Rapport Learning Study vt 2012 Jämförandesituationer. Lektionerna genomfördes i tre olika grupper i åk 7. Malin Axelsson, Josefina Brehmer, Michael Bäckelin, Åsa Vestermark Lärandeobjekt (LO) Definiera
2-5 Decimaltal Namn: Inledning. Vad är ett decimaltal, och varför skall jag arbeta med dem?
2-5 Decimaltal Namn: Inledning Tidigare har du jobbat en hel del med bråktal, lagt ihop bråk, tagit fram gemensamma nämnare mm. Bråktal var lite krångliga att arbeta med i och med att de hade en nämnare.
KURSBESKRIVNING - MATEMATIK
KURSBESKRIVNING - MATEMATIK ARBETSOMRÅDE TAL OCH DECIMALTAL ÅK 6 (HT 2016) Daniel Spångberg Varför finns det tal? Finns det olika sorters tal? Och har det någon betydelse var de olika siffrorna i ett tal
18 Eldorado 5 A Lärarbok Undervisning att skapa förutsättningar för elevers lärande
Undervisning att skapa förutsättningar för elevers lärande I Kommentarmaterialets inledning står att läsa: Avsikten med materialet är att ge en bredare och djupare förståelse för de urval och ställningstaganden
Pedagogisk planering i matematik
Pedagogisk planering i matematik Myrstacken Äldre årskurs 6, Hällby skola L= mest för läraren E= viktigt för eleven Gäller för första delen av HT15 Förankring i kursplanen - L Syfte L Eleven ska genom
hämtad från ls.idpp.gu.se
Negativa tal Skola Långsjöskolan, Rimbo & Rådmansö skola, Rådmansö Årskurs Åk 7 Antal elever i studien 22 stycken. Studien avslutades våren 2013. Deltagande pedagoger/kontaktperson Kai Gerdelius kai.gerdelius@norrtalje.se
Under läsåret arbetade jag med. Konkretion av decimaltal. En nödvändig ingrediens för förståelse. maria hilling-drath
maria hilling-drath Konkretion av decimaltal En nödvändig ingrediens för förståelse Här presenteras ett sätt att förstärka begrepp kring decimaltal. Med hjälp av tiobasmaterial får eleverna bygga tal för
1Mål för kapitlet. Tal i decimalform. Förmågor. Ur det centrala innehållet 0? 1 15,9 19,58 158,9 15,89. Problemlösning. Metod
Taluppfattning Kapitlets innehåll I kapitel möter eleverna decimaltal för första gången. Det första avsnittet handlar om vårt talsystem och att de hela tal eleverna tidigare jobbat med går att dela in
Dra streck. Vilka är talen? Dra pil till tallinjen. Skriv på vanligt sätt. Sätt ut <, > eller =
n se ta l l ta al u at sen nt al rat l r l d d n iotu se hun tiot a ent a hu t tu + + 7 tiotusental tusental 7 tiotal 7 7 7 7 Ju längre till höger, desto större är talet. 7 > 7 Siffran betyder tiotusental
Lgr 11 matriser i Favorit matematik 4 6
Lgr 11 matriser i Favorit matematik 4 6 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla förmågan att De matematiska förmågor
Matematik klass 4. Vårterminen. Namn: Anneli Weiland Matematik åk 4 VT 1
Matematik klass 4 Vårterminen Namn: Anneli Weiland Matematik åk 4 VT 1 Först 12 sidor repetition från höstterminen. Addition 7+5= 8+8= 7+8= 7+7= 8+3= 7+6= 6+6= 8+5= 6+5= 9+3= 9+5= 6+9= Subtraktion 11-2=
Decimaltal Kapitel 1 Decimaltal Borggården Diagnos Rustkammaren Tornet Sammanfattning Utmaningen Arbetsblad Läxboken 1:1 Läxa 1 1:2 1:3 Läxa 2 1:4
Kapitel 1 6A-boken inleds med ett kapitel om decimaltal. Kapitlet börjar med en repetition av tiondelar och hundradelar. Sedan följer en introduktion av tusendelar med utgångspunkt i hur vikt anges på
Övningsblad2.3Ä. 2 0, 3 j 5. Addition och subtraktion av heltal med algoritm. IQ '-^ff 2 tiotal - 4 tiotal går inte. ' "-Ii? 5 «1.
Övningsblad2.3Ä Addition och subtraktion av heltal med algoritm Så här kan du räkna med algoritmer a) 958+84 L] ' "-Ii? 5 «1 8 H / o y.2 A, 8*4= 12 Skriv l som minnessiffra ovanför 10-talen. 1+5 +8=14
Syftet med vår studie
Uppgifter som redskap för mediering av kritiska aspekter i matematikundervisningen Jenny Fred & Johanna Stjernlöf Syftet med vår studie Övergripande syfte: Att bidra med ny och fördjupad ämnesdidaktisk
Matematik klass 4. Vårterminen FACIT. Namn:
Matematik klass 4 Vårterminen FACIT Namn: Använd ditt facit ofta för att se om du är på rätt väg och förstår. Om det är något som är konstigt, diskutera med din lärare eller en kompis. Du måste förstå
Att sätta lärares och elevers lärande i fokus
Höjman, Larsson, Persson, J-Nilsson, Cajander Att sätta lärares och elevers lärande i fokus I denna artikel beskrivs ett sätt att arbeta med learning study. En lärargrupp har arbetat med ett moment inom
LEARNING STUDY I FÖRSKOLAN. Narinder Dhindsa Anne-Catrine Kindlund Camilla Mäkinen Bente Tuff
LEARNING STUDY I FÖRSKOLAN Narinder Dhindsa Anne-Catrine Kindlund Camilla Mäkinen Bente Tuff LÄROPLANEN FÖR FÖRSKOLAN, Lpfö 98 Förskolans verksamhet ska ta till vara och stärka barnets intresse för att
Remissversion av kursplan i matematik i grundskolan. Matematik. Syfte
Matematik Syfte Matematiken har en mångtusenårig historia med bidrag från många kulturer och har utvecklats ur människans praktiska behov och naturliga nyfikenhet. Matematiken är kreativ och problemlösande
Arbetsblad 1:1. 1 Svara i bråkform hur stor andel av den stora rutan som är. 2 Svara i decimalform hur stor andel av den stora rutan som är.
Arbetsblad 1:1 Tal i bråkform och i decimalform Grundbok: grundkurs s. 8 blåkurs s. 0 1 Svara i bråkform hur stor andel av den stora rutan som är a) grå b) kryssad c) prickad d) vit 2 Svara i decimalform
Learning study elevers lärande i fokus
Learning study elevers lärande i fokus McKinsey & Co. How the world s best-performing school systems come out on top. Högpresterande länder tar in kompetensutvecklingen till klassrummet och gör den till
Torskolan i Torsås Mars 2007. Matematik. Kriterier för betyget godkänd. Metoder: Arbetssätt. Muntligt. Problemlösning
Torskolan i Torsås Mars 2007 Matematik Kriterier för betyget godkänd Metoder: Arbetssätt Ta ansvar för sin egen inlärning. Göra läxor. Utnyttja lektionstiden (lyssna, arbeta). Utnyttja den hjälp/stöd som
Veckomatte åk 5 med 10 moment
Veckomatte åk 5 med 10 moment av Ulf Eskilsson Innehållsförteckning Inledning 2 Utdrag ur kursplanen i matematik 3 Grundläggande struktur i Veckomatte - Åk 5 4 Strategier för Veckomatte - Åk 5 5 Veckomatte
En Learning Study i ämnet svenska
En Learning Study i ämnet svenska Återberättande Lärandeobjekt Direkt: Återberättande Indirekt: Förmåga att kunna urskilja och återge de mest centrala händelserna i en text och att kunna återberätta i
Uppdaterad 2003-10-14 Allmänt Läroplanens mål för matematik finns att ta del av för elever och målsmän på webbadressen: http://www.skolverket.se.
Matematik Uppdaterad 2003-10-14 Allmänt Läroplanens mål för matematik finns att ta del av för elever och målsmän på webbadressen: http://www.skolverket.se. ADDITION, SUBTRAKTION, DIVISION OCH MULTIPLIKATION.
Södervångskolans mål i matematik
Södervångskolans mål i matematik Mål som eleverna lägst ska ha uppnått i slutet av det första skolåret beträffande tal och taluppfattning kunna läsa av en tallinje mellan 0-20 kunna läsa och ramsräka tal
Mål Blå kursen Röd kurs
Tal Mål När eleverna har arbetat med det här kapitlet ska de förstå varför vi använder decimaler kunna storleksordna decimaltal förstå betydelsen av orden deci, centi och milli kunna räkna med decimaltal
Lokala kursplaner i Matematik Fårösunds skolområde reviderad 2005 Lokala mål Arbetssätt Underlag för bedömning
Lokala kursplaner i Matematik Fårösunds skolområde reviderad 2005 Lokala mål Arbetssätt Underlag för bedömning Eleven skall år 1 Begrepp Jämförelse- och storleksord, t.ex. stor, större, störst. Positionssystemet
Decimaltal. Matteord hela tal decimaltal tiondel hundradel. tusendel decimal decimaltecken
Decimaltal Mål När du har arbetat med det här kapitlet ska du kunna > förstå vad som menas med ett decimaltal > storleksordna decimaltal > multiplicera och dividera med 10, 100 och 1 000 > räkna med överslagsräkning
Tal i decimalform. Kapitlet behandlar. Att förstå tal
Tal i decimalform Kapitlet behandlar Test Beteckningar, även pengar och mätetal 4, 5 Talens storlek 4, 5, 6, 7, 8 Talens relativa storlek 5, 6, 7, 8, 9 Decimalernas värde i positionssystemet 7, 8, 9 5
ing Study Maria Hermansson fysik och matematik
LÄRARPROGRAMMETT Attt reproducera en Learni ing Study Blir resultaten lika originalets s? Maria Hermansson Examensarbete 15 hp Höstterminen 2011 Handledare: Constantaa Olteanu Institutionen för datavetenskap,
Historiska talsystem och taluppfattning
Historiska talsystem och taluppfattning En studie om hur det egyptiska talsystemet kan användas till att stärka elevers taluppfattning KURS: Examensarbete för grundlärare 4-6, 15 hp PROGRAM: Grundlärarprogrammet
Om Lgr 11 och Favorit matematik 4 6
Om Lgr och Favorit matematik 6 TYDLIG OCH MEDVETEN MATEMATIKUNDERVISNING En stark koppling mellan läroplan/kunskaps mål, innehåll och bedömning finns för att medvetande göra eleverna om syftet med undervisningen
Taluppfattning och allsidiga räknefärdigheter
Taluppfattning och allsidiga räknefärdigheter Handbok med förslag och råd till lärare för att kartlägga, analysera och åtgärda elevers svårigheter och begreppsliga missuppfattningar inom området tal och
Mattestegens matematik
höst Decimaltal pengar kr 0 öre,0 kr Rita 0,0 kr på olika sätt. räkna,0,0 storleksordna decimaltal Sub för lite av två talsorter 7 00 0 tallinjer heltal 0 0 Add med tiotalsövergångar 0 7 00 0 Sub för lite
Matematik Steg: Bas. Mål att sträva mot Mål Målkriterier Omdöme Åtgärder/Kommentarer
Matematik Steg: Bas ha en grundläggande taluppfattning som omfattar naturliga tal och enkla tal i talområdet 0-10 bråk- och decimalform ordningstal upp till 5 ha en grundläggande rumsuppfattning och kunna
Öjersjö Storegård, Partille Kommun, vt-07
Öjersjö Storegård, Partille Kommun, vt-07 Lärandeobjekt: Förmågan att urskilja och tillämpa pronomen i direkt objektsform. Eleverna skulle klara av att översätta från svenska till spanska och tvärtom.
Learning Study. År 1 VT 2015
Learning Study År 1 VT 2015 Lärande objekt Val mellan: - kunskapskrav år 3 - vad kännetecknar en text? - vad kännetecknar en mening? Vilket blev det: Lärandeobjekt - att eleverna får utveckla förståelsen
Presentation av en Learning study inom ämnet matematik genomförd våren 2009
Presentation av en Learning study inom ämnet matematik genomförd våren 2009 Vi som genomfört denna Learning study är: Kristina Eldelid, lärare i årskurs 2. Anna Ljungmark Wilson, specialpedagog årskurs
Vad påverkar resultaten i svensk grundskola?
Vad påverkar resultaten i svensk grundskola? Individualisering Lärartäthet Homogena grupper Ämneskunskaper Ordning Vad påverkar resultaten i svensk grundskola? Kunskapsöversikt om betydelsen av olika faktorer
Taluppfattning och problemlösning
Taluppfattning och problemlösning. Ett talsystem där siffrans värde beror på vilken position, plats, siffran har.. Olika sätt eller strategier att arbeta med problemlösning.. Problemlösningsmetod där man
Vad är det som gör skillnad?
Vad är det som gör skillnad? Pedagogisk Inspiration Maria Dellrup Elisabeth Pettersson Nafi Zanjani Team Munkhättan Lotta Appelros Morin Iwona Charukiewicz Gudrun Einarsdottir Dammfriskolan Emma Backström
Övningsblad 1.1 A. Tallinjer med positiva tal. 1 Skriv det tal som motsvaras av bokstaven på tallinjen.
Övningsblad 1.1 A Tallinjer med positiva tal 1 Skriv det tal som motsvaras av bokstaven på tallinjen. A B C D E F 0 5 10 0 10 20 A = B = C = D = E = F = G H I J K L 30 40 50 100 G = H = I = J = K = L =
Namn: Hundradelar. 4 tiondelar 0, 4 17 tiondelar 1, tiondelar 298 hundradelar. Hundradelar. 98 hundradelar 875 hundradelar
arbetsblad 1:1 Positionssystemet > > Skriv talen med siffror. Glöm inte decimaltecknet. Ental Tiondelar Hundradelar 1 tiondel 0, 1 52 hundradelar 0, 5 2 tiondelar 0, 17 tiondelar 1, 7 9 tiondelar 0, 9
Lärarhandledning med tips och idéer till POSITIONSPLATTAN
Lärarhandledning med tips och idéer till POSITIONSPLATTAN c jpedagog.se Lägg talen i positionsplattan! Multiplicera eller dividera genom att flytta talen åt rätt håll! Blir det nya talet större eller mindre?
Välkomna till en inspirationsträff
Välkomna till en inspirationsträff Blir man SMARTare i Matematik med SMART board? 2008 03 06 Gunilla Mellhammar gunilla.mellhammar@pub.malmo.se 1 Interaktiv I databehandlingssammanhang kallas program interaktiva
Arbetsblad 1:1. 1 Svara i bråkform hur stor andel av den stora rutan som är. 2 Svara i decimalform hur stor andel av den stora rutan som är.
Arbetsblad 1:1 Tal i bråkform och i decimalform Grundbok: grundkurs s. 8 blåkurs s. 0 1 Svara i bråkform hur stor andel av den stora rutan som är a) grå b) kryssad c) prickad d) vit 2 Svara i decimalform
Kommentarmaterial, Skolverket 1997
Att utveckla förstf rståelse för f r hela tal Kommentarmaterial, Skolverket 1997 Att lära sig matematik handlar om att se sammanhang och att kunna föra logiska resonemang genom att känna igen, granska
Arbetsblad 1:1. Poängkryss. Arbeta tillsammans > <
Arbetsblad : Arbeta tillsammans > < Poängkryss Materiel: Spelplan, 3 4 tärningar och penna. Antal deltagare: 2 4 st Utförande: Spelare nr slår alla tärningarna samtidigt. De tal som tärningarna visar ska
En Learning Study om area
En Learning Study om area Ingress Har ett fotavtryck en area? Hur tar du i så fall reda på den? Svaret på de här frågorna kan bli allt ifrån att det går inte att ta reda på arean, för det finns ingen till
Manual matematiska strategier. Freja. Ettan
Manual matematiska strategier Freja Ordningstalen t.ex första, andra, tredje Ramsräkna framlänges och baklänges till 20 Mattebegrepp addition: svaret i en addition heter summa, subtraktion: svaret i en
Pedagogisk planering i matematik; Tal i bråkform, decimalform och procentform. Ur Lgr 11 Kursplan i matematik.
Pedagogisk planering i matematik; Tal i bråkform, decimalform och procentform. Ur Lgr 11 Kursplan i matematik. Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl
Åk 1-3, Mellanhedsskolan & Dammfriskolan, Malmö Stad, Ht-13
Åk 1-3, Mellanhedsskolan & Dammfriskolan, Malmö Stad, Ht-13 Lärandeobjekt Kunna sätta punkt och stor bokstav när man skriver en löpande text Avgränsning av Lärandeobjektet Lärandeobjektet har avgränsat
Matematik klass 4. Höstterminen. Namn: Anneli Weiland Matematik åk 4 HT 1
Matematik klass 4 Höstterminen Namn: Anneli Weiland Matematik åk 4 HT 1 Minns du addition? 7+5= 8+8= 7+8= 7+7= 8+3= 7+6= 6+6= 8+5= 6+5= 9+3= 9+5= 6+9= 9+2= 8+4= 7+4= 9+4= 6+7= 9+6= 9+7= 7+9= 8+7= 6+8=
Vill du spela bingo med mig?
AKADEMIN FÖR TEKNIK OCH MILJÖ Avdelningen för elektroteknik, matematik och naturvetenskap Vill du spela bingo med mig? En studie med laborativt material för att utveckla elevers kunskaper om positionssystemet
Avrundning till heltal
arbetsblad 9:1 Avrundning till heltal Avrunda till närmaste heltal. > > 6,2 6,6 7,1 6 7 7 6,0 6,5 7,0 7,5 8,0 > > 34,3 34 35,8 36 35,5 36 34,0 34,5 35,0 35,5 36,0 > > Avrunda till närmaste heltal. 8,1
Taluppfattning och allsidiga räknefärdigheter
Taluppfattning och allsidiga räknefärdigheter Handbok för stöd och stimulans Alistair McIntosh NCM NSMO Alistair McIntosh Professor emeritus, University of Tasmania Australien Nya vägar i räkneundervisningen
Arbetsblad 1. Addition och subtraktion i flera steg 1 524 + 162 = 2 374 + 424 = 3 762 + 218 = 4 257 + 431 = 5 287 + 372 = 6 415 + 194 = 7 665 58 =
Arbetsblad NAMN: Addition och subtraktion i flera steg + 3 + 3 + + 3 + 3 + 9 3 3 9 9 9 39 3 3 + 39 3 + 99 0 3 Kopiering tillåten Matematikboken Författarna och Liber AB Arbetsblad Addition och subtraktion
hämtad från ls.idpp.gu.se
Att introducera multiplikation i årskurs två Skola Parkskolan i Norrtälje Årskurs 2 Antal elever i studien 38 elever deltog i studien. Studien avslutades våren 2013. Handledare Charlotta Andersson, charlotta.andersson@norrtalje.se
Exempel på uppgifter från års ämnesprov i matematik för årskurs 3
Exempel på uppgifter från 2010 2013 års ämnesprov i matematik för årskurs 3 2 Innehåll Inledning... 5 Skriftliga räknemetoder... 6 Huvudräkning, multiplikation och division... 8 Huvudräkning, addition
Learning Study som skolutvecklingsmodell
Learning Study som skolutvecklingsmodell Anna Vikström Luleå tekniska universitet Skollagen Skolans undervisning ska vila på vetenskaplig grund och beprövad erfarenhet. Vetenskaplig grund? Varifrån kommer
0,15 är inte större än 0,8 En litteraturstudie kring vanliga missuppfattningar kring decimaltal
Dokumenttyp 0,15 är inte större än 0,8 En litteraturstudie kring vanliga missuppfattningar kring decimaltal Författare: Elin Pettersson Handledare: Annica Andersson Examinator: Jeppe Skott Termin: HT14
Matematik klass 4. Höstterminen. Facit. Namn:
Matematik klass 4 Höstterminen Facit Namn: Använd ditt facit ofta för att se om du är på rätt väg och förstår. Om det är något som är konstigt, diskutera med din lärare eller en kompis. Du måste förstå
Arbetsblad 1:1. Decimaltal på tallinjen 1 0,8 1,1 0,05. Skriv rätt tal på linjen. 0 0,1 0,2 0,3 0,5 0,6 0,9 1 1,9 2. Grundboken sid 8, 22
Arbetsblad 1:1 sid 8, 22 Decimaltal på tallinjen 1 1 Skriv rätt tal på linjen. 0,8 0 1 2 0 1 3 1,1 1 2 4 0,05 0 0,1 5 0,2 0,3 6 0,5 0,6 7 0,9 1 8 1,9 2 Arbetsblad 1:2 sid 8, 22 Decimaltal på tallinjen
MATEMATIK. Åk 1 Åk 2. Naturliga tal Naturliga tal Större än, mindre än, lika med
MATEMATIK Åk 1 Åk 2 Naturliga tal 0-100 Naturliga tal 0-100 Talföljd Talföljd Tiokamrater Större än, mindre än, lika med Större än, mindre än, lika med Positionssystemet Sifferskrivning Talskrivning Add.
i n n e b ö r d e r av e t t l ä r a n d e o b j e k t i s l ö j d
ATT KUNNA SÅGA RAKT i n n e b ö r d e r av e t t l ä r a n d e o b j e k t i s l ö j d Jenny Frohagen, lärare i slöjd och licentiand i utbildningsvetenskap med inriktning mot praktiska kunskapstraditioner
kunna använda ett lämpligt mått, tex. mugg till vätska. Geometri
Studieplan och bedömningsgrunder i Matematik för åk F-1 Stor-liten, framför - bakom, större än osv. kunna visa att du förstår ordens förhållande till varandra, tex. med hjälp av olika saker eller genom
Klara målen i 3:an - undervisa i matematik!
Klara målen i 3:an - undervisa i matematik! Att få chans att lyckas i matematik De flesta elever älskar matte under sitt första skolår. Allas vår önskan är att eleverna ska få en fortsatt intressant och
Learning study och Variationsteori i praktiken
Learning study och Variationsteori i praktiken Joakim Magnusson Göteborgs Universitet Institutionen för didaktik och pedagogisk profession joakim.magnusson@gu.se 6 mars 2018 Varför Learning study i utbildningen?
Learning study på vilket sätt bidrar det till lärares lärande? Angelika Kullberg
Learning study på vilket sätt bidrar det till lärares lärande? Angelika Kullberg Lesson studies Kompetensutveckling för lärare Förbättra elevernas lärande Bidra till lärares professionella kunskap Pragmatisk
Taluppfattning 0-100
Taluppfattning 0-100 Med tiotalsövergångar Systematisk genomgång av talområden Gunnel Wendick Inga-Lis Klackenmo Om Wendick-modellens material Wendick-modellen består av en serie med strukturerade kartläggnings-
Learning Study. Skollagen. Skolans undervisning ska vila på vetenskaplig grund och beprövad erfarenhet. Vetenskaplig grund?
Learning Study som skolutvecklingsmodell Anna Vikström Luleå tekniska universitet Skollagen Skolans undervisning ska vila på vetenskaplig grund och beprövad erfarenhet. Vetenskaplig grund? Varifrån kommer
Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.
Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt
Addition, subtraktion, summa, differens, algebra, omgruppering, ental, tiotal, multiplikation, division, rimlighet, uppskatta
LPP Matematik räknesätten År 2 Beskrivning av arbetet Addition och subtraktion 0 200 - med utelämnat tal - algebra - med omgruppering och tiotalsövergång Addition och subtraktion med hela 100-tal Se likheter
1 Julias bil har har gått kilometer. Hur långt har den gått när den har (3) körts tio kilometer till? km
Test 8, version, lärarversion Instruktion Instruktioner och kommentarer är desamma som i testet i den ursprungliga versionen. Här är ingående tal förändrade och i något fall är uppgiften omformulerad.
Prio 9 matematik Läraranvisning Textview. Verksnummer: 31558
Prio 9 matematik Läraranvisning Textview Verksnummer: 31558 Läraranvisningens innehåll Läraranvisningen är till för att du som undervisande lärare ska få information om hur den pedagogiskt anpassade boken
Hur kan vi göra lärande möjligt? Ulla Runesson Göteborgs universitet Högskolan i Skövde
Hur kan vi göra lärande möjligt? Ulla Runesson Göteborgs universitet Högskolan i Skövde 20090910 Fokus i diskussionen Elevernas motivation, intresse, aktivitet, ansvar Organisation Metoder Medier Studieplaner
Möjligheter att förstå positionssystemet
Möjligheter att förstå positionssystemet - En kvalitativ studie i årskurs 1 KURS: Examensarbete II, F-3, 15 hp FÖRFATTARE: Jacqueline Taylor EXAMINATOR: Martin Hugo TERMIN: VT16 JÖNKÖPING UNIVERSITY School
1Tal. Mål K 1. Tal 11
Tal Mål När eleverna studerat det här kapitlet ska de kunna: förstå hur vårt talsystem är uppbyggt använda de matematiska orden som hör ihop med de fyra räknesätten storleksordna hela tal och tal i decimalform