hämtad från ls.idpp.gu.se
|
|
- Bengt Sundström
- för 6 år sedan
- Visningar:
Transkript
1 Två av subtraktionens aspekter - Jämföra och ta bort Skola Bålbro skola, Rimbo Årskurs Årskurs 1 Antal elever i studien Antalet elever i vår studie var 17 stycken. Studien avslutades våren Kontaktperson anita.tanner@norrtalje.se camilla.modenius@norrtalje.se susanna.prestor@norrtalje.se Innehåll och lärandeobjekt Lärandeobjekt: Kunna använda lämplig strategi vid olika typer av subtraktioner. Vi utgick från uppgifter liknande 8-2 och 8-6. Vi valde detta lärandeobjekt då vår erfarenhet var att eleverna endast använde sig av en strategi vid subtraktion och det var ta bort. Vi ville få eleverna att förstå att det är lämpligt att använda olika strategier beroende på om termernas differens är stor, respektive liten att se när talen i uppgiften är nära respektive långt ifrån varandra i talraden. Uppgifterna som eleverna fick kan tyckas enkla, men det var strategin som var det viktiga. Vi ville att eleverna så småningom skulle kunna generalisera till uppgifter som eller Elevtankar Vi började med ett förtest som bestod av två delar för att se vilka förkunskaper eleverna hade och vilken strategi de använde vid de olika uppgifterna. Förtestet (bil. 1) bestod av både subtraktions- och additionsuppgifter. Den andra delen bestod av enskilda intervjuer där vi frågade hur eleverna tänkte när de löste uppgifterna. Vi frågade om eleverna kunde ramsräkna framåt och bakåt för att se deras förkunskaper om talraden och talens inbördes ordning. Under vår studie gjordes ett liknande förtest i årskurs 3. Vi tog reda på hur eleverna tänkte då de beräknade uppgifter som till exempel och Det visade sig även här att de flesta använde sig av strategin ta bort oavsett typ av subtraktionsuppgift. Detta stärkte vårt val av lärandeobjekt. Att inte enbart använda strategin ta bort vid subtraktion är en kritisk aspekt. De flesta elever tänker att subtraktion är att ta bort och räknar bakåt som enda strategi. Det är en svårhanterlig strategi vid uppgifter som till exempel och som ofta resulterar i felaktigt resultat kan vara lika med ett, två eller tre beroende på hur eleven uppfattar frågan och talraden = 1 är resultatet om frågan är; Hur många tal är det mellan 51 och 49? Endast talet 50 är mellan dessa två tal = 3 är resultatet om eleven räknar alla talenheter 51, 50, 49 eller 49, 50, = 2 är resultatet om eleven tar sig från 49 till 51 eller från 51 till 49 på ett korrekt sätt: 50, 51 eller 50, 49. Kritiska aspekter Att kunna skilja på olika innebörd av subtraktion, tex ta bort och skillnad (differens) Att förstå begreppet skillnad, att skilja mellan tal emellan och antal som skiljer, tex att förstå att skillnaden mellan 11 och 9 inte är 1 (talet 10) eller 3 (talen 11, 10, 9). Att kunna urskilja när skillnaden är liten eller stor (om talen ligger nära eller långt ifrån varandra i talraden) och koppla detta till lämplig beräkningsstrategi. Andra aspekter Något som kunnat vara en kritisk aspekt är om vi under förtestet upptäckt att eleverna haft bristande kunskaper om ramsräkning, talraden och talområdet Då hade vi varit tvungna att ändra vårt valda lärandeobjekt. Variationsmönster Vi kan konstatera att vi använt oss alldeles för lite av variationsmönster i de lektioner vi haft och inte lyckades skapa de
2 nödvändiga kontrasterna. I lektion ett tog vi upp talen ligger nära varandra respektive långt ifrån varandra, men eleverna verkade istället fokusera på hur långt ifrån noll det första talet låg (tex tolkades som långt ifrån varandra för att 13 ligger många steg från noll). I lektion 2 beräknade vi aldrig subtraktionerna utan försökte titta på hur de två talen låg i förhållande till varandra. Vi tror inte eleverna erfor någon kontrast eftersom vi aldrig jämförde tal långt ifrån och tal nära varandra. Förbättringar i elevernas prestationer Andel elever med bra strategi Förtest Eftertest 1 Eftertest = 11-2= 8-6= 8-2= Uppgifter I diagrammet handlar det inte om att ha rätt eller fel lösningar utan om eleverna använt en lämplig strategi. En analys av resultatet visar att även strategin ta bort har ett bättre resultat efter de båda lektionerna. Samtliga elever i grupp 2 löser ta bortuppgifter på ett lämpligt sätt efter lektion 2. Förbättringar vi skulle vilja ha gjort I vår Learning study-cykel hade vi endast två lektioner. Av resultatet kan vi se att vi hade behövt ytterligare lektioner för att nå ett bättre resultat. Vi hade kunnat välja att undervisa subtraktion för att visa aspekten differens/skillnad med hjälp av plockisar genom att först lägga upp 11 plockisar och 9 plockisar under för att se differensen/skillnaden. Se bild nedan. Övrigt Vi hade för många nya moment och tog med för få begrepp som t ex jämföra, ta bort och differens/skillnad. Det kunde ha varit bra att dela upp begreppen under flera lektioner. Begrepp som vår studie tog upp var tallinje, skillnad, nära/långt ifrån, kolumn/spalt, strategi och kortens (bil.2) olika värde. Ifall vi haft ett mer smalt undervisningsområde skulle kunna gjort att det blir mer fokus på kunskapen. Det fanns möjlighet att använda plockisar eftersom vi trodde att de skulle kunna vara en hjälp vid beräkning av olika subtraktionsuppgifter. Det var inget vi förespråkade. Under förtestet hämtade en elev plockisar varvid de elever som inte brukade använda plockisar också gjorde det. Vid vår analys av intervjuerna från förtestet insåg vi att om en elev använder plockisar vid en subtraktionsuppgift som till exempel 11-9 räknar eleven först upp från och med 1 till och med 11. Därefter räknar eleven från och med 1 till och med 9 när den ska ta bort 9 från de 11 plockisarna. Om en elev inte ser (subitizing) att det är två kvar räknar de även upp dessa två. För oss blev det en stark insikt att eleven aldrig ges möjligheten att upptäcka strategin att jämföra två tal. Vår insikt är att laborativt materiel inte alltid är till hjälp i alla matematiska situationer. Det är av stor vikt hur de används. Detta har vi fler exempel på i vår studie. När vi lärare planerar ett ämnesområde börjar vi ofta tänka på lämpligt materiel och hur vi ska organisera. I en Learning study börjar man tänka utifrån ämnesinnehållet och vad eleverna ska kunna för att lära sig det vi vill.
3 Vi har ökat vår insikt om hur viktigt det är att använda det matematiska språket och att använda korrekta begrepp. Att benämna och tydliggöra begreppen ordentligt är viktigt. I undervisningen är det viktigt att ta reda på elevernas olika förförståelse. Det är utgångspunkten för vår undervisning. Vi har insett hur viktigt det är med pedagogiska samtal och hur det utvecklar oss som pedagoger. Under tiden vi arbetat med vår Learning study märkte vi att eleverna började använda ett bättre matematiskt språk än tidigare. De till och med reagerar när det står fel språk i läroböcker. Till exempel om det står Vi räknar minus istället för Vi räknar subtraktion i läroböckerna. Att eleverna nu uppmärksammar detta tänker vi beror på att vi pedagoger samtalat så mycket under arbetet om hur vi ska använda språket på ett bra och korrekt sätt då vi undervisar. Referenslista: Bentley C. & P-O. (2011) Det beror på hur man räknar. Stockholm: Liber AB. Marton F. (2005). Praxisnära forskning varför, vad och hur? I I. Carlgren, I. Josefson, & C. Liberg, (Red.). Forskning av denna världen II om teorins roll i praxisnära forskning. Stockholm: Vetenskapsrådet. (s ). Holmqvist, M (Red.) (2006). Lärande i skolan. Learning Study som skolutvecklingsmodell. Lund: Studentlitteratur. Johansson B. (2011) Varför är subtraktion så svårt? Uppsala: Kunskapsföretaget AB. Lgr 11. (2011). Läroplan för grundskolan, förskoleklassen och fritidshemmet. Stockholm: Skolverket. Löwing, M. (2008). Grundläggande aritmetik. Matematikdidaktik för lärare. Lund: Studentlitteratur. Erixson L., Frostfedt-G K., Kerekes K. & Lundberg B. (2011) Byt focus. Ribbaskolans utbildningsenhet. Bilagor: Bilaga 1: Förtest Bilaga 2: Underlag till lektionerna
4 Bilaga 1. Förtest till LS - Två av subtraktionens olika ansikten - jämföra och ta bort 11-9= 11-2= 9+2= 2+9= 8-6= 8-2= 6+2= 2+6= Hur långt kan du räkna? Räkna från 7 och fortsätt. Räkna från 17 till 0?
5 Detta är en kortfattad beskrivning av en genomförd studie. Den lyfter fram några centrala delar i studien, vilka kan utgöra underlag Bilaga 2 Uppgifter: Uppgift där talen är nära varandra på tallinjen Uppgift där talen är långt ifrån varandra på tallinjen 5 Antal steg på talraden/tallinjen
hämtad från ls.idpp.gu.se
Negativa tal Skola Långsjöskolan, Rimbo & Rådmansö skola, Rådmansö Årskurs Åk 7 Antal elever i studien 22 stycken. Studien avslutades våren 2013. Deltagande pedagoger/kontaktperson Kai Gerdelius kai.gerdelius@norrtalje.se
hämtad från ls.idpp.gu.se
Att introducera multiplikation i årskurs två Skola Parkskolan i Norrtälje Årskurs 2 Antal elever i studien 38 elever deltog i studien. Studien avslutades våren 2013. Handledare Charlotta Andersson, charlotta.andersson@norrtalje.se
Algebra utan symboler Learning study
Algebra utan symboler - - - - - Learning study Johan Häggström, NCM Göteborgs universitet 1 Är algebra verkligen något för grundskolans första år? Om eleverna förstår aritmetiken så bra att de kan förklara
Vad är det som gör skillnad?
Vad är det som gör skillnad? Pedagogisk Inspiration Maria Dellrup Elisabeth Pettersson Nafi Zanjani Team Munkhättan Lotta Appelros Morin Iwona Charukiewicz Gudrun Einarsdottir Dammfriskolan Emma Backström
Att undervisa multiplikation och division med 10, 100 och 1000
Att undervisa multiplikation och division med 10, 100 och 1000 Learning Study i praktiken Tina Edner & Tinna Lidgren Bakgrund Grundskolan Nya Elementar i Stockholm Analys av nationella prov och lärarnas
Learning study elevers lärande i fokus
Learning study elevers lärande i fokus McKinsey & Co. How the world s best-performing school systems come out on top. Högpresterande länder tar in kompetensutvecklingen till klassrummet och gör den till
När en Learning study planeras väljs ett område som upplevs som problematiskt
K. Drageryd, M. Erdtman, U. Persson & C. Kilhamn Tallinjen en bro mellan konkreta modeller och abstrakt matematik Fem matematiklärare från Transtenskolan i Hallsberg har under handledning av Cecilia Kilhamn
Öjersjö Storegård, Partille Kommun, vt-07
Öjersjö Storegård, Partille Kommun, vt-07 Lärandeobjekt: Förmågan att urskilja och tillämpa pronomen i direkt objektsform. Eleverna skulle klara av att översätta från svenska till spanska och tvärtom.
Syftet med vår studie
Uppgifter som redskap för mediering av kritiska aspekter i matematikundervisningen Jenny Fred & Johanna Stjernlöf Syftet med vår studie Övergripande syfte: Att bidra med ny och fördjupad ämnesdidaktisk
På Nya Elementar, en grundskola i Stockholm, har vi matematiklärare
Tina Edner Multiplikation och division med 10, 100 och 1000 en Learning study i praktiken Denna artikel är en förkortad version av ett utvecklingsarbete som finns att läsa i sin helhet på Pedagog Stockholm.
LEARNING STUDY. Matematik Karl Johans skola i Örebro. Anders Sahlin / Viktoria Bjurström 1
LEARNING STUDY Matematik Karl Johans skola i Örebro 1 www.karljohansskola.se Anders Sahlin speciallärare Viktoria Bjurström Ma/No lärare 2 Bakgrund Behov av ett utvecklingsarbete. *Hur går det till när
Learning Study som skolutvecklingsmodell
Learning Study som skolutvecklingsmodell Anna Vikström Luleå tekniska universitet Skollagen Skolans undervisning ska vila på vetenskaplig grund och beprövad erfarenhet. Vetenskaplig grund? Varifrån kommer
ATT UNDERVISA MULTIPLIKATION OCH DIVISION MED 10, 100 OCH 1000
EN UTVECKLINGSARTIKEL PUBLICERAD FÖR PEDAGOG STOCKHOLM ATT UNDERVISA MULTIPLIKATION OCH DIVISION MED 10, 100 OCH LEARNING STUDY I PRAKTIKEN Författare: Tina Edner E-post: tina.edner@stockholm.se Skola:
Learning Study. Skollagen. Skolans undervisning ska vila på vetenskaplig grund och beprövad erfarenhet. Vetenskaplig grund?
Learning Study som skolutvecklingsmodell Anna Vikström Luleå tekniska universitet Skollagen Skolans undervisning ska vila på vetenskaplig grund och beprövad erfarenhet. Vetenskaplig grund? Varifrån kommer
Att sätta lärares och elevers lärande i fokus
Höjman, Larsson, Persson, J-Nilsson, Cajander Att sätta lärares och elevers lärande i fokus I denna artikel beskrivs ett sätt att arbeta med learning study. En lärargrupp har arbetat med ett moment inom
Learning Study. År 1 VT 2015
Learning Study År 1 VT 2015 Lärande objekt Val mellan: - kunskapskrav år 3 - vad kännetecknar en text? - vad kännetecknar en mening? Vilket blev det: Lärandeobjekt - att eleverna får utveckla förståelsen
De nationella proven i matematik i årskurs 3 utgår främst från kunskapskravet
Erica Aldenius, Yvonne Franzon & Jonas Johansson Elevers skriftliga räknemetoder i addition och subtraktion I de insamlingar av elevlösningar och resultat på nationella prov som PRIMgruppen regelbundet
Learning study elevernas lärande blir samtalsämne lärare emellan
Learning study elevernas lärande blir samtalsämne lärare emellan Angelika Kullberg Undervisning gör skillnad 2003 G VG MVG A Öjersjö 52 26 9 13 Riket 53 29 10 8 Källa: Skolverket, 2003/2007, Öjersjö interna
Definiera delen och det hela vid beräkningar i jämförande situationer. Svaret ska anges i procent.
Rapport Learning Study vt 2012 Jämförandesituationer. Lektionerna genomfördes i tre olika grupper i åk 7. Malin Axelsson, Josefina Brehmer, Michael Bäckelin, Åsa Vestermark Lärandeobjekt (LO) Definiera
Vad påverkar resultaten i svensk grundskola?
Vad påverkar resultaten i svensk grundskola? Individualisering Lärartäthet Homogena grupper Ämneskunskaper Ordning Vad påverkar resultaten i svensk grundskola? Kunskapsöversikt om betydelsen av olika faktorer
Schack i skolan en väg till matematiken
Schack som pedagogiskt verktyg 7,5hp Schack i skolan en väg till matematiken Författare: Mikael Trybom Examinatorer: Jesper Hall Lars Holmstrand Torbjörn Wågstrand Sammanfattning Syftet med den här rapporten
Learning study på vilket sätt bidrar det till lärares lärande? Angelika Kullberg
Learning study på vilket sätt bidrar det till lärares lärande? Angelika Kullberg Lesson studies Kompetensutveckling för lärare Förbättra elevernas lärande Bidra till lärares professionella kunskap Pragmatisk
Att se det som inte syns om talföljder i årskurs 3 och 4
64 forskning om undervisning och lärande nr 10 Att se det som inte syns om talföljder i årskurs 3 och 4 L Erixson, K Frostfeldt Gustavsson, K Kerekes & B Lundberg Internationell forskning och undersökningar
Talradsmetoden- en bortglömd metod?
Beteckning: Akademin för teknik och miljö Talradsmetoden- en bortglömd metod? Lisa Tärnström Ht-2013 15hp grundläggande nivå Lärarprogrammet 210 hp Examinator: Iiris Attorps Handledare: Bo Johansson &
Stora Plus. Uppgifter i addition där summan är högst 20 kallar vi i skolan för Stora plus. (term + term = summa).
Allmänt Stora Plus Uppgifter i addition där summan är högst 20 kallar vi i skolan för Stora plus. (term + term = summa). I steg 1 är en av termerna högre än 10 t ex 11+3. Dessa tal bör vara enkla för barnen
Byt fokus! En learning study om undervisningens betydelse för lärande
Lärande 61-90 hp. Vårteminen 2011:10 s. 107-125. Högskolan för lärande och kommunikation i Jönköping Byt fokus! En learning study om undervisningens betydelse för lärande Lea Erixson, Karin Frostfeldt-G,
Lilla Plus. Uppgifter i addition där summan är högst 10 kallar vi i skolan för Lilla plus. (term + term = summa)
Allmänt Lilla Plus Uppgifter i addition där summan är högst 10 kallar vi i skolan för Lilla plus. (term + term = summa) Här nedan har vi delat in additionsuppgifterna i olika svårighetsgrader. I början
Åk 1-3, Mellanhedsskolan & Dammfriskolan, Malmö Stad, Ht-13
Åk 1-3, Mellanhedsskolan & Dammfriskolan, Malmö Stad, Ht-13 Lärandeobjekt Kunna sätta punkt och stor bokstav när man skriver en löpande text Avgränsning av Lärandeobjektet Lärandeobjektet har avgränsat
Lässvårigheter och räknesvårigheter pedagogiska förslag och idéer
Lässvårigheter och räknesvårigheter pedagogiska förslag och idéer Görel Sterner Artikel ur Svenska Dyslexiföreningens och Svenska Dyslexistiftelsens tidskrift Dyslexi aktuellt om läs- och skrivsvårigheter
Plan för screening i svenska och matematik, kommundel Floda
Plan för screening i svenska och matematik, kommundel Floda Syfte med screening Resultaten av screeningarna skall ses som avstämningar som ger god information om vilka kunskaper som utgör styrkor och vilka
Presentation av en Learning study inom ämnet matematik genomförd våren 2009
Presentation av en Learning study inom ämnet matematik genomförd våren 2009 Vi som genomfört denna Learning study är: Kristina Eldelid, lärare i årskurs 2. Anna Ljungmark Wilson, specialpedagog årskurs
Hur kan learning study utveckla lärarens undervisning?
Hur kan learning study utveckla lärarens undervisning? En studie om hur några lärare arbetar med learning study i sin undervisning. Rebecca Hallin Institutionen för matematikämnets och naturvetenskapsämnenas
Matematik är en kreativ, reflekterande och problemlösande aktivitet (Lgr 11). Det är utgångspunkten för Uppdrag Matte.
Problemlösning i fokus Matematik är en kreativ, reflekterande och problemlösande aktivitet (Lgr 11). Det är utgångspunkten för Uppdrag Matte. Matematik ska vara spännande och roligt! Undervisningen i matematik
Att utveckla din matematikundervisning Stöd på regional nivå
Att utveckla din matematikundervisning Stöd på regional nivå Nätverk/kompetensutveckling Elevers lärande i matematik Samarbetsprojekt mellan: Salem, Huddinge, Botkyrka, Södertälje, Nykvarn, Tyresö, Nynäshamn
LEARNING STUDY I FÖRSKOLAN. Narinder Dhindsa Anne-Catrine Kindlund Camilla Mäkinen Bente Tuff
LEARNING STUDY I FÖRSKOLAN Narinder Dhindsa Anne-Catrine Kindlund Camilla Mäkinen Bente Tuff LÄROPLANEN FÖR FÖRSKOLAN, Lpfö 98 Förskolans verksamhet ska ta till vara och stärka barnets intresse för att
Tänka, resonera och räkna i förskoleklassen
Tänka, resonera och räkna i förskoleklassen Görel Sterner Nationellt centrum för matematikutbildning, NCM Göteborgs universitet gorel.sterner@ncm.gu.se Motiv för intervention i matematik Förskolebarns
Constanta Olteanu, Linnéuniversitetet och Anna-Lena Ekdahl, Högskolan i Jönköping
Modul: Algebra Del 3: Bedömning för utveckling av undervisningen i algebra Intervju Constanta Olteanu, Linnéuniversitetet och Anna-Lena Ekdahl, Högskolan i Jönköping I en undervisning kan olika former
Hur uppfattar lärare fenomenet differens/skillnad?
Hur uppfattar lärare fenomenet differens/skillnad? Hur några lärare som undervisar grundskolans årskurser 1-3 uppfattar fenomenet differens/skillnad Jane Tuominen Institutionen för pedagogik och didaktik
PP i matematik år 2. Taluppfattning och tals användning.
PP i matematik år 2. Taluppfattning och tals användning. Ord och begrepp siffra, tal tallinje, talrad, talsorter- ental, 10-tal, 100-tal, 1000-tal, addition, addera, term, summa, subtraktion, subtrahera,
Syfte. Positivt om negativa tal. Hur möjliggör du för eleverna att förstå. Innehåll. Fler begrepp. Begrepp 3 5 = 3 (-5) = -3 (-3) -
Positivt om negativa tal RUC Uppsala 0 mars 20 Dokumentation: pedagogdirekt.se Syfte Tillgängliggöra forskning och beprövad erfarenhet Pröva och ompröva egna och andras metoder och modeller Innehåll Historik
Många elever upplever subtraktion som betydligt svårare än addition.
Susanne Frisk Subtraktion i läromedel för årskurs 2 Elever kan uppleva subtraktion som svårt när de möter det i skolan. Här kategoriseras olika situationer eller problem som leder till en subtraktion oc
Learning study och Variationsteori i praktiken
Learning study och Variationsteori i praktiken Joakim Magnusson Göteborgs Universitet Institutionen för didaktik och pedagogisk profession joakim.magnusson@gu.se 6 mars 2018 Varför Learning study i utbildningen?
i n n e b ö r d e r av e t t l ä r a n d e o b j e k t i s l ö j d
ATT KUNNA SÅGA RAKT i n n e b ö r d e r av e t t l ä r a n d e o b j e k t i s l ö j d Jenny Frohagen, lärare i slöjd och licentiand i utbildningsvetenskap med inriktning mot praktiska kunskapstraditioner
Det finns flera aspekter av subtraktion som lärare bör ha kunskap om, en
Kerstin Larsson Subtraktion Vad är egentligen subtraktion? Vad behöver en lärare veta om subtraktion och subtraktionsundervisning? Om elevers förståelse av subtraktion och om elevers vanliga missuppfattningar?
DIAMANT. NaTionella DIAgnoser i Matematik. Ett diagnosmaterial i matematik för skolåren årskurs F- 9. Anpassat till Lgr 11. Löwing januari 2013
DIAMANT NaTionella DIAgnoser i Matematik Ett diagnosmaterial i matematik för skolåren årskurs F- 9 Anpassat till Lgr 11 Diamantmaterialets uppbyggnad 6 Områden 22 Delområden 127 Diagnoser Till varje Område
Delutvärdering Matte i Πteå Moa Nilsson Juli 2014
Delutvärdering Matte i Πteå Moa Nilsson Juli 2014 Projektet Matte i Πteå Syfte Syftet med det treåriga projektet Matte i Πteå är att utveckla och förbättra undervisningen i matematik för att öka alla elevers
Kursbeskrivning Kreativ matematik. Höstterminen Kurskod: LPGG06
Kursbeskrivning Kreativ matematik Höstterminen 018 Kurskod: LPGG06 1 Välkommen till kursen Kreativ matematik (0 högskolepoäng) Kursens administratör och lärare Kursadministratör Stina Röjder Berglund stina.rojderberglund@kau.se
a) 1 b) 4 a) b) c) c) 6 a) = 4 b) = 6 c) = 6 1. Hur många? Ringa in talet. 2. Vilket tal kommer efter? 4. Beräkna. 3. Hur många?
1. Hur många? Ringa in talet. 2. Vilket tal kommer efter? Exempel a) 1 2 b) 4 5 a) b) c) c) 6 7 3. Hur många? 4. Beräkna. Exempel 1 + 2 = 3 a) 3 + 1 = 4 a) 4 b) 5 b) 4 + 2 = 6 c) 3 + 3 = 6 c) 3 d) 2 GILLA
Det brukar vara så här långt!
forskning om undervisning och lärande nr 13 67 Det brukar vara så här långt! En jämförande studie om kritiska drag för elevers uppfattning av tallinjen M Björk & G Pettersson Berggren Hur elever i år 2
DIAMANT. NaTionella DIAgnoser i MAtematik. En diagnosbank i matematik för skolåren före årskurs 6.
DIAMANT NaTionella DIAgnoser i MAtematik En diagnosbank i matematik för skolåren före årskurs 6 Matematikdelegationens betänkande Det är vår övertygelse att alla barn och ungdomar som kan klara en normal
Att använda Bedömningsstöd i taluppfattning i årskurs 1 3 i specialskolan
Att använda Bedömningsstöd i taluppfattning i årskurs 1 3 i specialskolan Utgångspunkter För döva elever och elever med hörselnedsättning sker begreppsutveckling inom matematik på liknande sätt som för
Pedagogik GR (A), Läs- och skrivinlärning, 15 hp
1 (5) Kursplan för: Pedagogik GR (A), Läs- och skrivinlärning, 15 hp Education Ba (A), Learning reading and writing Allmänna data om kursen Kurskod Ämne/huvudområde Nivå Progression Inriktning (namn) Högskolepoäng
En Learning Study i ämnet svenska
En Learning Study i ämnet svenska Återberättande Lärandeobjekt Direkt: Återberättande Indirekt: Förmåga att kunna urskilja och återge de mest centrala händelserna i en text och att kunna återberätta i
Subtraktionsberäkningar
Kerstin Larsson Subtraktionsberäkningar I förra numret av Nämnaren beskrev författaren olika situationer inom subtraktion och addition. Här fortsätter hon att behandla beräkningsstrategier för subtraktion
En läromedelsanalys i matematik i årskurs 1 - Med fokus på tiotalsövergång inom subtraktion, talområdet 0 20
Examensarbete En läromedelsanalys i matematik i årskurs 1 - Med fokus på tiotalsövergång inom subtraktion, talområdet 0 20 Författare: Marielle Karlsson och Jenny Olsson Handledare: Helen Sterner Examinator:
Åk 8, Fenestra Centrum, Göteborg
Åk 8, Fenestra Centrum, Göteborg Lärandeobjektet behandlades över två lektioner, lektionspar i respektive försök att få eleverna att urskilja det (Lektion 1a & b, Lektion 2a & b, Lektion 3a & b) Lärandeobjekt:
Räkneflyt. Addition och Subtraktion. Färdighetsträning i matte. Talområde 11-20
Räkneflyt Addition och Subtraktion område 11-20 Färdighetsträning i matte Gunnel Wendick Inga-Lis Klackenmo Innehållsförteckning Introduktion 2-3 Räkneflyt är kopplat till Lgr11 och Diamant 7 Förståelse
Norrtälje kommun Dnr :3531. Beslut
fin Skolinspektionen ElesItC Norrtälje kommun Niclas Gustafsson niclas.gustafsson@norrtalje.se Beslut efter kvalitetsgranskning av studiehandledning på modersmålet vid Långsjöskolan i Norrtälje kommun
Addition och subtraktion generalisering
Modul: Algebra Del 8: Avslutande reflektion och utvärdering Addition och subtraktion generalisering Håkan Lennerstad, Blekinge Tekniska Högskola & Cecilia Kilhamn, Göteborgs Universitet Detta lärandeobjekt
Kunskap om samband mellan lässvårigheter
görel sterner Lässvårigheter och räknesvårigheter Här presenteras några exempel på hur specialundervisning i matematik kan läggas upp med tanke på svårigheter kopplade till fonologi, arbetsminne, automatiseringsprocesser
Uppsala Universitet Instutionen för pedagogik, didaktik och utbildningsstudier Matematik 2, Ht 2014 Tilde Henriksson, Hannah Kling, Linn Kristell
Del 1: Pedagogisk planering a) Vi har gjort två lektionsplaneringar med fokus på tvådimensionella geometriska figurer för årskurs 1-3. Utifrån det centrala innehållet i Lgr11 för årskurs 1-3 ska eleverna
Undervisning i förskoleklass En kvalitetsgranskning
Undervisning i förskoleklass En kvalitetsgranskning 1 Utgångspunkt Egen skolform sedan 1998 Ettårig frivillig skolform (ca 95% av alla sexåringar deltar) Förskoleklassen omfattas av de två första delarna
Mona Røsseland Författare till Pixel. Vad innebär den nya läroplanen? Hur möter ni den nya utmaningen med Pixel
Temat för föreläsningen Ny läroplan, nya utmaningar! Vad innebär den nya läroplanen? Hur möter ni den nya utmaningen med Pixel Mona Røsseland Författare till Pixel Hur lyfter PIXEL matematiken? Läraren
Taluppfattning Systematisk genomgång tal för tal
Taluppfattning 6-10 Systematisk genomgång tal för tal Gunnel Wendick Inga-Lis Klackenmo Wendick-modellens material Wendick-modellen består av en serie strukturerade kartläggnings- och träningsmaterial
Utvidgad aritmetik. AU
Utvidgad aritmetik. AU Delområdet omfattar följande tio diagnoser som är grupperade i tre delar, negativa tal, potenser och närmevärden: AUn1 Negativa tal, taluppfattning AUn Negativa tal, addition och
Bedömningsstöd i taluppfattning
Bedömningsstöd i taluppfattning Elisabeth Pettersson Pedagogisk Inspiration Malmö elisabeth.pettersson@malmo.se Christina Svensson Pedagogisk Inspiration Malmö christina.svensson@malmo.se Årskurs 1 och
Lärarhandledning matematik
Kartläggningsmaterial för nyanlända elever Lärarhandledning matematik 1 2 Steg 3 Det här materialet är det tredje steget i kartläggningen av nyanlända elevers kunskaper. Det syftar till att ge läraren
Learning study ett utvecklingsprojekt
Learning study ett utvecklingsprojekt Bengt Drath Högskolan i Skövde samt Stöpenskolan i Skövde kommun Min resa som lärare Ett samspel av praktik och teori Stöpenskolan i Skövde kommun och Högskolan i
En Learning Study om area
En Learning Study om area Ingress Har ett fotavtryck en area? Hur tar du i så fall reda på den? Svaret på de här frågorna kan bli allt ifrån att det går inte att ta reda på arean, för det finns ingen till
Gilla Matematik. Bedömningsstöd för uppföljning av elevens kunskaper i matematik grundsärskolan årskurs augusti 2017
Gilla Matematik Bedömningsstöd för uppföljning av elevens kunskaper i matematik grundsärskolan årskurs 1-6 10 augusti 2017 Erica Aldenius och Yvonne Franzon PRIM-gruppen Uppdragets syfte Främja en kontinuerlig
Matematikutveckling med stöd av alternativa verktyg
Matematikutveckling med stöd av alternativa verktyg Vad ska man ha matematik till? Vardagslivet Yrkeslivet Skönheten och konsten Underbart att veta att det finns räcker inte det+ LGR11 Undervisningen ska
Pedagogik GR (A), Läs- och skrivinlärning, 15 hp
1 (5) Kursplan för: Pedagogik GR (A), Läs- och skrivinlärning, 15 hp Education Ba (A), Learning reading and writing Allmänna data om kursen Kurskod Ämne/huvudområde Nivå Progression Inriktning (namn) Högskolepoäng
Fritidshemmens rikskonferens Språket på fritids Petra Magnusson
Fritidshemmens rikskonferens 2017 Språket på fritids Petra Magnusson Rektor med ambitioner, fritidspersonal med lust och nyfikenhet Kommunens lektor: kunskaper om/i språkutv och kollegialt lärande Skolenhet
Vill du spela bingo med mig?
AKADEMIN FÖR TEKNIK OCH MILJÖ Avdelningen för elektroteknik, matematik och naturvetenskap Vill du spela bingo med mig? En studie med laborativt material för att utveckla elevers kunskaper om positionssystemet
Noll komma trettio måste vara större än noll komma fem, eller?
Noll komma trettio måste vara större än noll komma fem, eller? En variationsteoretisk klassrumsstudie om decimaltal i årskurs 4 Sandra Jarl Gabriel Johansson Examensarbete 15 hp Inom Lärande Handledare
Uppgifter som redskap för mediering av kritiska aspekter i matematikundervisning
forskning om undervisning och lärande nr 12 21 Uppgifter som redskap för mediering av kritiska aspekter i matematikundervisning J Fred & J Stjernlöf Artikeln beskriver resultaten från ett forsknings- och
Såväl lodräta algoritmer som talsortsvisa beräkningar har visat sig vara ineffektiva
Kerstin Larsson Mer om beräkningar i subtraktion och addition I artikeln Subtraktionsberäkningar i Nämnaren nr 1, 2012 beskrivs fem övergripande kategorier av beräkningsstrategier för subtraktion. I denna
Tankar om elevtankar. HÖJMA-projektet
Tankar om elevtankar HÖJMA-projektet JAN UNENGE I serien Tankar om elevtankar fortsätter här Jan Unenge sin redogörelse från forsknings- och utvecklingsarbetet vid Lärarhögskolan i Jönköping. Denna gång
Modulkonstruktion. Ola H. NCM
Modulkonstruktion Ola H. NCM Grundskolan Algebra Statistik och sannolikhet Geometri Samband och förändring Problemlösning Taluppfattning och tals användning Särskolan Förskola och förskoleklass Gymnasieskolan
Lärarguiden Tänka, resonera och räkna i förskoleklass
Görel Sterner Tänka, resonera och räkna Tänka, resonera och räkna i förskoleklass Här beskriver artikelförfattaren ett utvecklingsarbete som har resulterat i en guide för lärare som undervisar matematik
Stödmaterial för samverkan kring studiehandledning på modersmålet i grund- och gymnasieskolan
Utbildningsförvaltningen stödmaterial Sida 1 (6) 2018-12-04 Stödmaterial för samverkan kring studiehandledning på modersmålet i grund- och gymnasieskolan Elev i behov av studiehandledning på modersmålet
Centralt innehåll. Problemlösning. Taluppfattning och tals användning. Tid och pengar. Sannolikhet och statistik. Geometri.
MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk
Lektionsplanering. Matematik II och Erika Hörling (grupp 7) Uppsala universitet
Lektionsplanering Område: Symmetri Del 1. Vårt område är symmetri. Symmetri finns överallt omkring oss och är någonting som alla elever stött på innan de börjar första klass, även om de inte är medvetna
Tänka, resonera och räkna i förskoleklass presentation av en pedagogisk modell
Tänka, resonera och räkna i förskoleklass presentation av en pedagogisk modell Görel Sterner Nationellt centrum för matematikutbildning, NCM Göteborgs universitet gorel.sterner@ncm.gu.se Motiv för intervention
Lesson study och learning study i matematikundervisningen
Lesson study och learning study i matematikundervisningen Fil. dr. Constanta Olteanu Linnéuniversitetet 1 Kan vi inte göra som dom gör i Japan för det blir ju så bra! 2 Disposition Bakgrund Syftet Urval
Learning & Lesson Study att systematiskt förbättra lektioner och lärande i slöjd
Learning & Lesson Study att systematiskt förbättra lektioner och lärande i slöjd Jenny Frohagen Mariaskolan, Stockholms Stad & Stockholms Universitet Att förbättra sin yrkesskicklighet kollegialt = LLS
Lokal pedagogisk planering
Lokal pedagogisk planering RO/Skola: Rebbelberga skola Arbetsområde: Taluppfattning Ämne: Matematik Termin/År: ht 2013 Årskurs: 1 Ämnets syfte enligt grundskolans kursplan: Genom undervisningen i ämnet
Taluppfattning 0-100
Taluppfattning 0-100 Med tiotalsövergångar Systematisk genomgång av talområden Gunnel Wendick Inga-Lis Klackenmo Om Wendick-modellens material Wendick-modellen består av en serie med strukturerade kartläggnings-
Strukturerad intensivundervisning
Susanne Lantz & Helena Roos Strukturerad intensivundervisning i aritmetik I en undervisning som är inkluderande betraktas olikheter som tillgångar och alla elever ges möjligheter att vara aktiva. Här beskriver
Mer tillgänglig undervisning genom variation
Specialpedagogik Grundskola åk 1-9 Modul: Inkludering och skolans praktik Del 8: Variation i undervisning och lärande Mer tillgänglig undervisning genom variation Jari Linikko, Stockholms universitet I
Vad händer med barn i olika undervisnings situationer?
Malmö högskola Lärarutbildningen Kultur Språk Medier Självständigt arbete på grundnivå del I 15 högskolepoäng Vad händer med barn i olika undervisnings situationer? Jessica Ekdahl Lärarexamen 210hp Kultur,
Taluppfattning Utan tiotalsövergångar. Systematisk genomgång av talområden
Taluppfattning 0-100 Utan tiotalsövergångar Systematisk genomgång av talområden Gunnel Wendick Inga-Lis Klackenmo Wendick-modellens material Wendick-modellen består av en serie strukturerade kartläggnings-
Finns det mode i skriftliga räknemetoder? Tillämpningar av skriftliga räknemetoder inom subtraktion i årskurs 3.
Självständigt arbete II, 15 hp Finns det mode i skriftliga räknemetoder? Tillämpningar av skriftliga räknemetoder inom subtraktion i årskurs 3. Författare: Ida Johansson Handledare: Peter Markkanen Examinator:
Hur kan vi göra lärande möjligt? Ulla Runesson Göteborgs universitet Högskolan i Skövde
Hur kan vi göra lärande möjligt? Ulla Runesson Göteborgs universitet Högskolan i Skövde 20090910 Fokus i diskussionen Elevernas motivation, intresse, aktivitet, ansvar Organisation Metoder Medier Studieplaner
Pedagogisk planering aritmetik (räkning)
Pedagogisk planering aritmetik (räkning) Vi kommer att arbeta med de fyra räknesätten i matematik. Syfte (ur Skolverkets kursplan) Under det här arbetsområdet kommer vi att arbeta med att utveckla följande
MATEMATIKRESULTAT DIAMANT NORRTÄLJE KOMMUN 2012
MATEMATIKRESULTAT DIAMANT NORRTÄLJE KOMMUN 2012 En sammanfattning i ord och diagram av resultaten från Diamant vårterminen 2012. Läsaren måste vara medveten om att antalet elever i en undervisningsgrupp
Flerspråkiga elever som strategiska läsare
Flerspråkiga elever som strategiska läsare En learning study om strategier för läsförståelse hos flerspråkiga elever Laila Guvå (Tunaskolan åk 7-9) Pernilla Lundenmark (Brunnaskolan 7-9) Åse Wewel (Fittjaskolan
Laborationen ett måste
Laborationen ett måste WIVI GUSTAFSSON Vi laborerar inte för laborationens egen skull. Laborationen skapar en gemensam upplevelsebakgrund till det språk som används på matematiklektionerna. Med några exempel
Orientering Hitta lätt, så blir det rätt!
Orientering Hitta lätt, så blir det rätt! Kerstin Nilsson och Marie Aldener Presentation av pass Under passet får du veta hur eleverna kan orientera sig med hjälp av en karta, vad som kan vara kritiskt
Taluppfattning 0-5. Systematisk genomgång tal för tal Wendick-modellen Taluppfattning 0-5 version 1.5 PROVSIDA
Taluppfattning 0-5 Systematisk genomgång tal för tal Gunnel Wendick Inga-Lis Klackenmo 2016 Wendick-modellen Taluppfattning 0-5 version 1.5 Wendick-modellens material Wendick-modellen består av en serie