hämtad från ls.idpp.gu.se
|
|
- Lena Isaksson
- för 6 år sedan
- Visningar:
Transkript
1 Att introducera multiplikation i årskurs två Skola Parkskolan i Norrtälje Årskurs 2 Antal elever i studien 38 elever deltog i studien. Studien avslutades våren Handledare Charlotta Andersson, charlotta.andersson@norrtalje.se Jane Tuominen, jane.tuominen@norrtalje.se Kontaktpersoner Eva Brunnberg, eva.brunnberg@norrtalje.se Malin Rundqvist, malin.rundqvist@norrtalje.se Eva-Lena Blomqvist, evalena.blomqvist@norrtalje.se Innehåll och lärandeobjekt Vi ville att eleverna skulle förstå och kunna använda begreppet multiplikation. Att kunna förstå och verkligen inse när multiplikation ska användas, det vill säga att det används när samma tal adderas flera gånger. Målet för lektionen är att eleverna ska förstå och att kunna använda räknesättet multiplikation, samt veta varför de använder det Elevtankar I förtestet visade de allra flesta elever att de använde sig av addition de dubblerade när de kunde och summerade sedan, exempelvis beräknade eleverna som 8+8. Eleverna visade också att de inte kunde olika begrepp som exempelvis uttryck, matematikspråk och räknehändelse vilka vi använde oss av i förtestet. Det framkom även att de var osäkra på vad talen i en multiplikation stod för. Efter den första lektionen var det i stort sätt ingen skillnad på elevernas uppfattning av addition och multiplikation. Eleverna löste uppgifterna med addition. Efter andra och tredje lektionen använde sig eleverna av multiplikation när de skulle lösa uppgifterna. Kritiska aspekter Innebörden av multiplikator och multiplikand Få syn på multiplikationen i uppgiften Att välja multiplikation före addition Eleverna var hela tiden inriktade på produkten, de svarade direkt med svaret. Vi tror att det är viktigt att låta produkten komma i andra hand och i stället rikta uppmärksamheten på hur man tecknar/skriver talen som ett uttryck och vad de olika talen kan stå för i en multiplikation. När vi frågade efter hur de kommit fram till lösningen svarade många att de hade löst uppgiften med addition. De matematiska begreppen faktor och produkt presenterades för att både elever och pedagoger skulle lägga samma innebörd i de, under lektionen, använda begreppen Andra reflektioner De fick göra en räknesaga och ritandet tog uppmärksamheten från matematiken. För en av pojkarna som verkligen skrev en saga var ordet räknesaga förvirrande. Vi bytte begreppet räknesaga till 1
2 räknehändelse i kommande lektioner. Det kan ha varit för många nya matematiska begrepp på en gång för att eleverna skulle kunna ta in det på en enda lektion. Detta kan ha tagit fokus och energi från multiplikation som företeelse. En del förstod inte poängen med att visa multiplikationen med counters (ett laborativt materiel). Tallinjen var inte till hjälp, speciellt inte för uttrycken med tal med högre värden i multiplikation. Eleverna ramsräknade då istället. Tallinjen behandlades under den första lektionen, men vi valde att inte använda tallinjen i den andra eller tredje lektionen. Den valda sammanfattningen i slutet av lektion ett ökade inte elevernas förmåga att klara eftertestet. Variationsmönster Vi varierade antalet godispåsar, men höll priset konstant. För att se sambandet och variationen mellan pris och antal visade vi uttrycken med tvådimensionella figurer i form av rutnät. Exempelvis: två påsar med kostnaden sex kronor kunde i en elevuppgift se ut som bilden nedan visar (6x2 eller 2x6): Vi använde flera olika räknehändelser för att eleverna skulle förstå multiplikation. Under den tredje lektionen var genomgången densamma för de olika uttrycken, men fanns kvar på tavlan under hela lektionen. Förbättringar i elevernas prestationer Under den första lektionen utgick vi från att multiplikation är upprepad addition. Det verkar inte hjälpt eleverna i någon större utsträckning. Efter den andra lektionen såg vi en klar förbättring jämfört med lektion ett. Det vi ändrade inför lektion två var att vi inte pratade om något samband mellan addition och multiplikation. Vi utgick från att presentera ett nytt räknesätt. Vi hade även en längre och tydligare genomgång genom att på tavlan samtidigt hantera och relatera godispåsar, pris och rutmönster (som på bilden ovan, fast större). Gruppuppgiften för eleverna blev att lägga counters till givna uttryck. Under den tredje lektionen förtydligades begreppen ytterligare och vi poängterade ännu mer vad talen i uttrycken står för. Vi hade en tydligare tavelstruktur och vi byggde varje uttryck med rutnät. På så sätt visade vi multiplikationen tvådimensionellt. Vi avslutade lektionen med en längre sammanfattning och vi återvände till de matematiska begreppen för att avsluta med att knyta ihop lektionen. Det här upplägget upplever vi, gav det bästa resultatet, vilket även visade sig på eftertestet. Övrigt Det är mycket utvecklande att i samarbete med kollegor och handledare bra med någon utifrån som kan ställa frågor av annan karaktär än man själv kommer på kunna nagelfara ett mycket smalt didaktiskt fenomen. Det generar egna frågor inom andra ämnesområden också. Som deltagare i en Learning Study får man ett större öra för vad eleverna uppfattar, formulerar eller inte klarar av. Våra läraröron har fått flera kanaler. Vi fann att en genomtänkt tavelstruktur underlättar för att synliggöra det som hanteras under lektionen. Eleverna ges en chans att upptäcka mönster och sammanhang. Det var också tydligt att våra frågor, uppgifter 2
3 och bilder inte alltid tolkades som vi hade tänkt oss. Vi var inte så tydliga som vi trodde (se uppgift 2, bilaga 1). Vi upptäckte att vi använde ett svenskt, dialektalt uttryck ivar som vi inte var medvetna om tidigare, när vi menar per person. Till exempel: 4 barn har 3 kolor ivar jämfört med 4 barn har 3 kolor var (vardera). Roslagsmål och i så fall ett dialektalt fenomen? Avslutningsvis tycker vi att vi blivit mer medvetna om vikten av att knyta ihop lektionen och hitta effektiva och enkla former av utvärderingar som snabbt visar på vad eleverna har tillägnat sig respektive inte fått kläm på. 3
4 Bilaga 1 För- och eftertest, åk 2, Parkskolan Namn: UPPGIFT 1 Rita en bild till uttrycket 3 4 UPPGIFT 2 Hur kan du beräkna antalet blommor på bilden? Skriv med matematikspråk på de olika sätt du kan. UPPGIFT 3 Fyra barn har tre kolor var. Hur många kolor har barnen totalt? Skriv uppgiften med matematikspråk och på de olika sätt du kan. UPPGIFT 4 Hur kan du visa 3 4 på tallinjen? Rita i figuren!
5 UPPGIFT 5 Hur kan du med hjälp av matematikspråk skriva så att du visar totalt antal rutor? UPPGIFT 6 Det står tre skålar på ett bord. I varje skål ligger det fyra karameller. Vilken eller vilka av uttrycken visar hur många karameller det finns i skålarna på bordet totalt? Rita en ring runt den eller de uttryck som du tycker passar till texten. a) d) g) b) e) 3 4 h) c) f) i) j) UPPGIFT 7 Skriv en räknehändelse till uttrycket
6 Bilaga 2 Resultat i stapeldiagram Förtest Lektion 1 50 Lektion 2 40 Lektion
hämtad från ls.idpp.gu.se
Negativa tal Skola Långsjöskolan, Rimbo & Rådmansö skola, Rådmansö Årskurs Åk 7 Antal elever i studien 22 stycken. Studien avslutades våren 2013. Deltagande pedagoger/kontaktperson Kai Gerdelius kai.gerdelius@norrtalje.se
hämtad från ls.idpp.gu.se
Två av subtraktionens aspekter - Jämföra och ta bort Skola Bålbro skola, Rimbo Årskurs Årskurs 1 Antal elever i studien Antalet elever i vår studie var 17 stycken. Studien avslutades våren 2012. Kontaktperson
Vad är det som gör skillnad?
Vad är det som gör skillnad? Pedagogisk Inspiration Maria Dellrup Elisabeth Pettersson Nafi Zanjani Team Munkhättan Lotta Appelros Morin Iwona Charukiewicz Gudrun Einarsdottir Dammfriskolan Emma Backström
Definiera delen och det hela vid beräkningar i jämförande situationer. Svaret ska anges i procent.
Rapport Learning Study vt 2012 Jämförandesituationer. Lektionerna genomfördes i tre olika grupper i åk 7. Malin Axelsson, Josefina Brehmer, Michael Bäckelin, Åsa Vestermark Lärandeobjekt (LO) Definiera
Vid Göteborgs universitet pågår sedan hösten 2013 ett projekt under
Christina Skodras Muffles truffles Undervisning i multiplikation med systematiskt varierade exempel I Nämnaren 2015:4 beskrivs ROMB-projektet övergripande i Unga matematiker i arbete. Här redovisas och
Presentation av en Learning study inom ämnet matematik genomförd våren 2009
Presentation av en Learning study inom ämnet matematik genomförd våren 2009 Vi som genomfört denna Learning study är: Kristina Eldelid, lärare i årskurs 2. Anna Ljungmark Wilson, specialpedagog årskurs
jämföra/storleksordna talen jämföra/storleksordna talen Jag kan jämföra/storleksordna talen
Utveckling A Taluppfattning 0-100 Jag kan ramsräkna 0-100. Jag kan jämföra/storleksordna talen 0-100. Jag kan markera ut tal 0-100 på en tallinje. Jag förstår tiotal och ental för talen 0-100. B Taluppfattning
På Nya Elementar, en grundskola i Stockholm, har vi matematiklärare
Tina Edner Multiplikation och division med 10, 100 och 1000 en Learning study i praktiken Denna artikel är en förkortad version av ett utvecklingsarbete som finns att läsa i sin helhet på Pedagog Stockholm.
Bråkräkning uppfattas av många elever som svårt, särskilt vid beräkningar
Britt Holmberg & Cecilia Kilhamn Addition med bråk på tallinjen I sin tredje artikel om tallinjen beskriver författarna hur den används för att utveckla elevers förståelse för addition med oliknämniga
Här är två korta exempel på situationer då vi tillämpar den distributiva lagen:
Modul: Algebra Del 8: Avslutande reflektion och utvärdering Distributiva lagen Cecilia Kilhamn, Göteborgs Universitet Distributiva lagen a (b + c) = a b + a c Den distributiva lagen kallas den räknelag
LEARNING STUDY. Matematik Karl Johans skola i Örebro. Anders Sahlin / Viktoria Bjurström 1
LEARNING STUDY Matematik Karl Johans skola i Örebro 1 www.karljohansskola.se Anders Sahlin speciallärare Viktoria Bjurström Ma/No lärare 2 Bakgrund Behov av ett utvecklingsarbete. *Hur går det till när
Algebra utan symboler Learning study
Algebra utan symboler - - - - - Learning study Johan Häggström, NCM Göteborgs universitet 1 Är algebra verkligen något för grundskolans första år? Om eleverna förstår aritmetiken så bra att de kan förklara
ATT UNDERVISA MULTIPLIKATION OCH DIVISION MED 10, 100 OCH 1000
EN UTVECKLINGSARTIKEL PUBLICERAD FÖR PEDAGOG STOCKHOLM ATT UNDERVISA MULTIPLIKATION OCH DIVISION MED 10, 100 OCH LEARNING STUDY I PRAKTIKEN Författare: Tina Edner E-post: tina.edner@stockholm.se Skola:
Enhet / skola: Lindens skola i Lanna Åk: 3
Skolområde Väster Lokal Pedagogisk Planering Enhet / skola: Lindens skola i Lanna Åk: 3 Avsnitt / arbetsområde: Undersöka med Hedvig Ämnen som ingår: Svenska/svenska som andraspråk, matematik, bild, So,
Gemensam presentation av matematiskt område: Ekvationer Åldersgrupp: år 5
Gemensam presentation av matematiskt område: Ekvationer Åldersgrupp: år 5 Mål för lektionen: Eleven skall laborativt kunna lösa en algebraisk ekvation med en obekant. Koppling till strävansmål: - Att eleven
Learning study elevers lärande i fokus
Learning study elevers lärande i fokus McKinsey & Co. How the world s best-performing school systems come out on top. Högpresterande länder tar in kompetensutvecklingen till klassrummet och gör den till
Skolmatematiktenta 1 LPGG06 Kreativ Matematik Delkurs 1
Skolmatematiktenta 1 LPGG06 Kreativ Matematik Delkurs 1 22 augusti 2016 kl. 8.15-13.15 Ansvarig lärare: Maria Lindström 054-7002146, 070-5699283 På omslagsbladet står att ni måste använda ett blad per
Learning Study. År 1 VT 2015
Learning Study År 1 VT 2015 Lärande objekt Val mellan: - kunskapskrav år 3 - vad kännetecknar en text? - vad kännetecknar en mening? Vilket blev det: Lärandeobjekt - att eleverna får utveckla förståelsen
Bo skola 1 Matematikmål år F-3 Skriftligt omdöme/kunskapsinformation
Bo skola Matematikmål år - Namn: Strävansmål: Vi strävar efter att varje elev ska Utveckla goda baskunskaper i de fyra räknesätten Utvecklar en god förståelse för matematik och matematiska begrepp att
Öjersjö Storegård, Partille Kommun, vt-07
Öjersjö Storegård, Partille Kommun, vt-07 Lärandeobjekt: Förmågan att urskilja och tillämpa pronomen i direkt objektsform. Eleverna skulle klara av att översätta från svenska till spanska och tvärtom.
När en Learning study planeras väljs ett område som upplevs som problematiskt
K. Drageryd, M. Erdtman, U. Persson & C. Kilhamn Tallinjen en bro mellan konkreta modeller och abstrakt matematik Fem matematiklärare från Transtenskolan i Hallsberg har under handledning av Cecilia Kilhamn
Målkriterier Beskrivning Exempel Eleven kan tolka elevnära information med matematiskt innehåll.
ÖREBRO MATEMATIK, ÅR 3 1(5) Eleven kan tolka elevnära information med matematiskt innehåll Eleven kan uttrycka sig muntligt, skriftligt och i handling på ett begripligt sätt med hjälp av vardagligt språk,
Syfte. Positivt om negativa tal. Hur möjliggör du för eleverna att förstå. Innehåll. Fler begrepp. Begrepp 3 5 = 3 (-5) = -3 (-3) -
Positivt om negativa tal RUC Uppsala 0 mars 20 Dokumentation: pedagogdirekt.se Syfte Tillgängliggöra forskning och beprövad erfarenhet Pröva och ompröva egna och andras metoder och modeller Innehåll Historik
Addition, subtraktion, summa, differens, algebra, omgruppering, ental, tiotal, multiplikation, division, rimlighet, uppskatta
LPP Matematik räknesätten År 2 Beskrivning av arbetet Addition och subtraktion 0 200 - med utelämnat tal - algebra - med omgruppering och tiotalsövergång Addition och subtraktion med hela 100-tal Se likheter
Matematikutveckling i förskoleklassen
Glittmark, Magnusson, Olsson & Terner Matematikutveckling i förskoleklassen Som en konsekvens av att elever som får intensivundervisning i åk 9 visar stora brister i taluppfattning satsar Varbergs kommun
Att sätta lärares och elevers lärande i fokus
Höjman, Larsson, Persson, J-Nilsson, Cajander Att sätta lärares och elevers lärande i fokus I denna artikel beskrivs ett sätt att arbeta med learning study. En lärargrupp har arbetat med ett moment inom
ARBETSPLAN MATEMATIK
ARBETSPLAN MATEMATIK Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt värdera
Matematiklektionen i fokus. Några klassrum öppnar dörren
Matematiklektionen i fokus Några klassrum öppnar dörren Brister i matematikundervisningen Lusten att lära med fokus på matematik (Skolverkets rapport nr 221) Den dominerande undervisningen är genomgång
Under läsåret arbetade jag med. Konkretion av decimaltal. En nödvändig ingrediens för förståelse. maria hilling-drath
maria hilling-drath Konkretion av decimaltal En nödvändig ingrediens för förståelse Här presenteras ett sätt att förstärka begrepp kring decimaltal. Med hjälp av tiobasmaterial får eleverna bygga tal för
Åk 8, Fenestra Centrum, Göteborg
Åk 8, Fenestra Centrum, Göteborg Lärandeobjektet behandlades över två lektioner, lektionspar i respektive försök att få eleverna att urskilja det (Lektion 1a & b, Lektion 2a & b, Lektion 3a & b) Lärandeobjekt:
Utvecklingsprojekt gp i matematik Ht 2010
SIDAN 1 Utvecklingsprojekt gp i matematik Ht 2010 - med genrepedagogik och Reading to Learn som grund Deltagarna i projektet har arbetat i fem arbetsgrupper utifrån de årskurser de undervisat i. Varje
Olika proportionella samband, däribland dubbelt och hälften.
Karin Landtblom & Anette De Ron Gruppera mera! Dubbelt och hälften är vanliga inslag i den tidiga matematikundervisningen. Elever ska ringa in hälften av något eller rita så att det blir dubbelt så många.
Bagarmossens skolas kravnivåer beträffande tal och talens beteckningar som eleven ska ha uppnått efter:
Matematik 1-5 Skolan skall i sin undervisning i matematik sträva efter att eleven utvecklar intresse för matematik samt tilltro till det egna tänkandet och den egna förmågan att lära sig matematik och
Begrepps- och taluppfattning Du förstår sambandet mellan tal och antal, t.ex. genom att hämta rätt antal föremål till muntligt givna tal.
MATEMATIK ÅR1 MÅL Begrepps- och taluppfattning Kunna talbildsuppfattning, 0-10 EXEMPEL Du förstår sambandet mellan tal och antal, t.ex. genom att hämta rätt antal föremål till muntligt givna tal. Kunna
Att undervisa multiplikation och division med 10, 100 och 1000
Att undervisa multiplikation och division med 10, 100 och 1000 Learning Study i praktiken Tina Edner & Tinna Lidgren Bakgrund Grundskolan Nya Elementar i Stockholm Analys av nationella prov och lärarnas
Att synliggöra matematikens språkliga och sociala karaktär
Att synliggöra matematikens språkliga och sociala karaktär Ann Ahlberg Varför ändras nybörjares nyfikenhet och lust att lära matematik till ointresse och bristande tillit till sin egen förmåga efter några
Skolmatematiktenta 1 LPGG06 Kreativ Matematik Delkurs 1 4 december 2015 kl
Skolmatematiktenta 1 LPGG06 Kreativ Matematik Delkurs 1 4 december 2015 kl. 8.15-13.15 Ansvarig lärare: Maria Lindström 054-7002146, Kristina Wallin 054-7002316 På omslagsbladet står att ni måste använda
Taluppfattning och allsidiga räknefärdigheter
Taluppfattning och allsidiga räknefärdigheter Handbok med förslag och råd till lärare för att kartlägga, analysera och åtgärda elevers svårigheter och begreppsliga missuppfattningar inom området tal och
Åk 1-3, Mellanhedsskolan & Dammfriskolan, Malmö Stad, Ht-13
Åk 1-3, Mellanhedsskolan & Dammfriskolan, Malmö Stad, Ht-13 Lärandeobjekt Kunna sätta punkt och stor bokstav när man skriver en löpande text Avgränsning av Lärandeobjektet Lärandeobjektet har avgränsat
BEDÖMNINGSSTÖD. till TUMMEN UPP! matte inför betygssättningen i årskurs 6
BEDÖMNINGSSTÖD till TUMMEN UPP! matte inför betygssättningen i årskurs 6 Det här är ett BEDÖMNINGSSTÖD som hjälper dig att göra en säkrare bedömning av elevernas kunskaper inför betygssättningen i årskurs
En Learning Study i ämnet svenska
En Learning Study i ämnet svenska Återberättande Lärandeobjekt Direkt: Återberättande Indirekt: Förmåga att kunna urskilja och återge de mest centrala händelserna i en text och att kunna återberätta i
a) 1 b) 4 a) b) c) c) 6 a) = 4 b) = 6 c) = 6 1. Hur många? Ringa in talet. 2. Vilket tal kommer efter? 4. Beräkna. 3. Hur många?
1. Hur många? Ringa in talet. 2. Vilket tal kommer efter? Exempel a) 1 2 b) 4 5 a) b) c) c) 6 7 3. Hur många? 4. Beräkna. Exempel 1 + 2 = 3 a) 3 + 1 = 4 a) 4 b) 5 b) 4 + 2 = 6 c) 3 + 3 = 6 c) 3 d) 2 GILLA
Arbeta vidare med aritmetik 2018
Arbeta vidare med aritmetik 2018 I det här materialet har vi samlat problem inom aritmetik från flera olika tävlingsklasser, från Ecolier till Student. Årtal Varje år förekommer det problem som utgår från
Den skolan som jag arbetar vid framhåller inkludering som ledord.
Helena Eriksson Taluppfattning i heterogena elevgrupper I denna artikel presenteras en uppgiftsdesign som syftar till att utveckla elevers uppfattning av naturliga och rationella tal. Uppgifterna har använts
Likhetstecknets innebörd
Likhetstecknets innebörd Följande av Görel Sterner översatta och bearbetade text bygger på boken: arithmetic & algebra in elementary school. Portsmouth: Heinemann Elever i åk 1 6 fick följande uppgift:
När vi tänker på någon situation eller händelse där multiplikation
Maria Flodström & Lina Johnsson Framställningen av multiplikation påverkar taluppfattningen Multiplikation i läromedel för årskurs 1 3 Här ger 2011 års Göran Emanuelssonstipendiater sin analys av hur multiplikation
Steg-Vis. Innehållsförteckning
Innehållsförteckning SIDAN Förord 6 Inledning 7 Målgrupp och arbetssätt 8 Dåligt minne? 9 Nyckelfakta 10 Råd till pedagog 11 Tre matematiska lagar 12 10-komplement 14 Från subtraktion till addition 15
Upprepade mönster (fortsättning från del 1)
Modul: Algebra Del 2: Resonemangsförmåga Upprepade mönster (fortsättning från del 1) Anna-Lena Ekdahl och Robert Gunnarsson, Högskolan i Jönköping Ett viktigt syfte med att arbeta med upprepade mönster
Samband mellan räknesätt. Lena Andersson Natur, miljö och samhälle Lärarutbildningen Malmö högskola
Samband mellan räknesätt Lena Andersson Natur, miljö och samhälle Lärarutbildningen Malmö högskola Matematikundervisningens uppgift, Lgr 11 För att frångå att eleven uppfattar varje matematiskt moment
ALLMÄN BESKRIVNING AV LÄROÄMNET MATEMATIK I ÅRSKURS 1-2
ALLMÄN BESKRIVNING AV LÄROÄMNET MATEMATIK I ÅRSKURS 1-2 Läroämnets uppdrag Uppdraget i undervisningen i matematik är att utveckla ett logiskt, exakt och kreativt matematisk tänkande hos eleverna. Undervisningen
KURSBESKRIVNING - MATEMATIK
KURSBESKRIVNING - MATEMATIK ARBETSOMRÅDE TAL OCH DECIMALTAL ÅK 6 (HT 2016) Jeff Linder, Daniel Spångberg, Emil Ohlander Varför finns det tal? Finns det olika sorters tal? Och har det någon betydelse var
Madeleine Zerne, rektor på Hagbyskolan
Madeleine Zerne, rektor på Hagbyskolan F-6 skola med 340 elever Rektorer på matematikkonferens Tre rektorer från Linköpings kommun, Gunilla Norden, Anna Samuelsson och Madeleine Zerne Rektorskonferens
Pedagogisk planering aritmetik (räkning)
Pedagogisk planering aritmetik (räkning) Vi kommer att arbeta med de fyra räknesätten i matematik. Syfte (ur Skolverkets kursplan) Under det här arbetsområdet kommer vi att arbeta med att utveckla följande
Matematik. Mål att sträva mot. Mål att uppnå. År 1 Mål Kriterier Eleven ska kunna. Taluppfattning koppla ihop antal och siffra kan lägga rätt antal
Matematik Mål att sträva mot Vi strävar mot att varje elev ska utveckla intresse för matematik samt tilltro till det egna tänkandet och den egna förmågan att lära sig matematik utveckla sin förmåga att
Lokal kursplan i matematik för Stehags rektorsområde
Lokal kursplan i matematik för Stehags rektorsområde MÅL Att eleverna ska få möjligheter att tillgodogöra sig de matematiska kunskaper som krävs för att uppnå kursplanens mål. Att eleverna ges en varierande
1 Aylas bil har gått 14 999 kilometer. Hur långt har den (2) gått när hon har kört en kilometer till? 15 000
Instruktion Instruktioner och kommentarer är desamma som i testet i den ursprungliga versionen. Här är ingående tal förändrade och i något fall är uppgiften omformulerad. Betona ordet ungefär i uppgift
Att förstå bråk och decimaltal
Att förstå bråk och decimaltal Flera undersökningar som är gjorda visar att elever har svårt att förstå bråk. I undervisningen är det också vanligt att eleverna lär sig olika regler för bråk, men få förstår
Veckomatte åk 3 med 10 moment
Veckomatte åk 3 med 10 moment av Ulf Eskilsson Innehållsförteckning Inledning 2 Utdrag ur kursplanen om matematik Lgr11 3 Grundläggande struktur i Veckomatte Åk 3 4 Strategier för Veckomatte Åk 3 5 Veckomatte
Pedagogisk planering i matematik
Pedagogisk planering i matematik Myrstacken Äldre årskurs 6, Hällby skola L= mest för läraren E= viktigt för eleven Gäller för första delen av HT15 Förankring i kursplanen - L Syfte L Eleven ska genom
Mona Røsseland Författare till Pixel. Vad innebär den nya läroplanen? Hur möter ni den nya utmaningen med Pixel
Temat för föreläsningen Ny läroplan, nya utmaningar! Vad innebär den nya läroplanen? Hur möter ni den nya utmaningen med Pixel Mona Røsseland Författare till Pixel Hur lyfter PIXEL matematiken? Läraren
Röda tråden. Skyttorps skola, Vattholmaskolan, Pluggparadiset, Storvretaskolan och Ärentunaskolan Reviderad:
Matematik Åk 1 Åk 2 Åk 3 Taluppfattning och tals användning. Naturliga tal och deras egenskaper samt hur talen kan delas upp och hur det kan användas för att ange antal och ordning. Kunna läsa och skriva
Addition och subtraktion generalisering
Modul: Algebra Del 8: Avslutande reflektion och utvärdering Addition och subtraktion generalisering Håkan Lennerstad, Blekinge Tekniska Högskola & Cecilia Kilhamn, Göteborgs Universitet Detta lärandeobjekt
Matematik Steg: Bas. Mål att sträva mot Mål Målkriterier Omdöme Åtgärder/Kommentarer
Matematik Steg: Bas ha en grundläggande taluppfattning som omfattar naturliga tal och enkla tal i talområdet 0-10 bråk- och decimalform ordningstal upp till 5 ha en grundläggande rumsuppfattning och kunna
MÄSTERKATTEN 2B FACIT Kapitel 1
MÄSTERKATTEN B FACIT Kapitel EN lilla RÖA ÖNAN 0 en som är lat får ingen mat. Problemlösning Arbeta två oc två. En av de sex kycklingarna tycker inte om bullar. e andra äter en el bulle alla dagar. Gör
Kommunövergripande Mål i matematik, åk 1-9
Kommunövergripande Mål i matematik, åk 1-9 Många skolor har lagt ner mycket tid på att omforma de mål som anges på nationell nivå till undervisningsmål på den egna skolan. Tanken är att vi nu ska kunna
Jag tror att alla lärare introducerar bråk
RONNY AHLSTRÖM Variabler och mönster Det är viktigt att eleverna får förståelse för grundläggande matematiska begrepp. Ett sätt att närma sig variabelbegreppet är via mönster som beskrivs med formler.
Strukturerad intensivundervisning
Susanne Lantz & Helena Roos Strukturerad intensivundervisning i aritmetik I en undervisning som är inkluderande betraktas olikheter som tillgångar och alla elever ges möjligheter att vara aktiva. Här beskriver
Lokal studieplan Matematik 3 8 = 24. Centrum för tvåspråkighet Förberedelseklass
Lokal studieplan Matematik 3 8 = 24 Centrum för tvåspråkighet Förberedelseklass 1 Mål att sträva mot Skolan skall i sin undervisning i matematik sträva efter att eleven S11 utvecklar intresse för matematik
Constanta Olteanu, Linnéuniversitetet och Anna-Lena Ekdahl, Högskolan i Jönköping
Modul: Algebra Del 3: Bedömning för utveckling av undervisningen i algebra Intervju Constanta Olteanu, Linnéuniversitetet och Anna-Lena Ekdahl, Högskolan i Jönköping I en undervisning kan olika former
Learning Study som skolutvecklingsmodell
Learning Study som skolutvecklingsmodell Anna Vikström Luleå tekniska universitet Skollagen Skolans undervisning ska vila på vetenskaplig grund och beprövad erfarenhet. Vetenskaplig grund? Varifrån kommer
Sedan Söderbaumska skolan i Falun startade som en fristående grundskola
R Breili, J Chrisander, A Jonsson & S Lundberg Estetiska lärprocesser i matematikundervisningen Fyra kollegor beskriver hur ett arbetssätt med estetiska lärprocesser utvecklar matematikundervisningen.
Lektionsplanering för matematik årskurs 9C Funktioner och Algebra
Lektionsplanering för matematik årskurs 9C Funktioner och Algebra Datum Genomgång Elevaktivitet Vecka 41 10/10 Introduktion kapitel 2 Funktioner och Algebra 11/10 Funktioner Arbetar med sidorna 44 45 Filmklipp
När vi läste Skolverkets rapport Svenska elevers matematikkunskaper
Florenda Gallos Cronberg & Truls Cronberg Två perspektiv på att utveckla algebraiska uttryck Svenska elever påstås ha svårt med mönstertänkande. Eller är det så att de inte får lärarledd undervisning i
LEARNING STUDY I FÖRSKOLAN. Narinder Dhindsa Anne-Catrine Kindlund Camilla Mäkinen Bente Tuff
LEARNING STUDY I FÖRSKOLAN Narinder Dhindsa Anne-Catrine Kindlund Camilla Mäkinen Bente Tuff LÄROPLANEN FÖR FÖRSKOLAN, Lpfö 98 Förskolans verksamhet ska ta till vara och stärka barnets intresse för att
Ämnesprovet i årskurs 3 ska fylla flera syften. Det ska dels vara ett stöd
Astrid Pettersson & Anette Skytt Hur gick det? Ämnesprov i matematik för årskurs 3, 2009 Under våren 2009 genomfördes för första gången nationella ämnesprov i matematik och svenska för årskurs 3. Eftersom
Enhet / skola: Lindens skola i Lanna Åk: 1
Skolområde Väster Lokal Pedagogisk Planering Enhet / skola: Lindens skola i Lanna Åk: 1 Avsnitt / arbetsområde: Ämnen som ingår: Tema: Undersöka med Hedvig Svenska/svenska som andraspråk, matematik, bild,
Centralt innehåll. Problemlösning. Taluppfattning och tals användning. Tid och pengar. Sannolikhet och statistik. Geometri.
MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust att utforska matematiken som sådan. Matematisk
Färdighet med förståelse
Färdighet med förståelse DAGMAR NEUMAN Är det möjligt att lära "räkneomogna" nybörjare den logik som är basen för matematisk förståelse? "Mognad" anses av många vara omöjlig att påverka genom undervisning
Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.
Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt
Jörgen Lagnebo PLANERING OCH BEDÖMNING MATEMATIK ÅK 8
PLANERING OCH BEDÖMNING MATEMATIK ÅK 8 TERMINSPLAN HÖSTTERMINEN ÅK 8: 1 1.1 ANDELEN 2 1.2 HÖJNING OCH SÄNKNING 3 FORTS. 1.2 HÖJNING OCH SÄNKNING 4 1.3 HUR STOR ÄR DELEN 1 5 AKTIVITET + 1.4 HUR STOR ÄR
Lektion isoperimetrisk optimering
Lektion isoperimetrisk optimering Lektionens namn: Isoperimetrisk optimering Kurs: Ma2a, Ma2b, Ma2c Längd: 85 min Inledning Lektionen behandlar ett klassiskt maximeringsproblem (Euklides och Zenodorus):
Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.
Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt
TALSYSTEMET. Syfte Lgr 11
TALSYSTEMET Syfte Lgr 11 Meningen med att läsa matematik i skolan är att du ska utveckla din förmåga att formulera och lo sa problem med hja lp av matematik samt va rdera valda strategier och metoder,
Ma7-Åsa: Procent och bråk
Ma7-Åsa: Procent och bråk Det fjärde arbetsområdet handlar om procent och bråk. Syftet med undervisningen är att du ska utveckla din förmåga att: - formulera och lösa problem med hjälp av matematik samt
30-40 år år år. > 60 år år år. > 15 år
1 av 14 2010-11-02 16:21 Namn: Skola: Epostadress: 1. Kön Kvinna Man 2. Ålder < 30 år 30-40 år 41-50 år 51-60 år > 60 år 3. Har varit verksam som lärare i: < 5 år 6-10 år 11-15 år > 15 år 4. Har du en
Kunskapsprofil Resultat på ämnesprovet
Kunskapsprofil Resultat på ämnesprovet Här fylls i om eleven nått kravnivån på delproven. N = nått kravnivån, EN = ej nått kravnivån. Elevens namn: Förmågor som prövas Kunskapskrav Uppnått kravnivån (N
Learning Study. Skollagen. Skolans undervisning ska vila på vetenskaplig grund och beprövad erfarenhet. Vetenskaplig grund?
Learning Study som skolutvecklingsmodell Anna Vikström Luleå tekniska universitet Skollagen Skolans undervisning ska vila på vetenskaplig grund och beprövad erfarenhet. Vetenskaplig grund? Varifrån kommer
Stavelsen Det talade ordet Läsa via skrivandet Strukturerad inlärning Vi arbetar i studiegrupper, dvs. ettor och tvåor tillsammans i mindre grupper.
Stavelsen Det talade ordet Läsa via skrivandet Strukturerad inlärning Vi arbetar i studiegrupper, dvs. ettor och tvåor tillsammans i mindre grupper. Lokala mål Tala och lyssna: Jag kan lyssna och förstå
Göra lika i båda leden
Modul: Algebra Del 6: Sociomatematiska normer Göra lika i båda leden Cecilia Kilhamn, Göteborgs Universitet och Lucian Olteanu, Linnéuniversitetet Ordet algebra kommer från det arabiska ordet al-djabr
Likhetstecknets innebörd
Modul: Algebra Del 5: Algebra som språk Likhetstecknets innebörd Följande av Görel Sterner (2012) översatta och bearbetade text bygger på boken: Carpenter, T. P., Franke, M. L. & Levi, L. (2003). Thinking
Volym. ARBETSBLAD kopiering tillåten sanoma utbildning Mönster i talföljder. ARBETSBLAD kopiering tillåten sanoma utbildning. Fortsätt talföljden.
Volym Välj olika kärl. Uppskatta hur mycket du tror att varje kärl rymmer. Mät sedan kärlets volym. 1 :1 Mönster i talföljder Fortsätt talföljden. 1 -hopp. : Kärl Jag uppskattar kärlets volym Kärlets volym
Learning study ett utvecklingsprojekt
Learning study ett utvecklingsprojekt Bengt Drath Högskolan i Skövde samt Stöpenskolan i Skövde kommun Min resa som lärare Ett samspel av praktik och teori Stöpenskolan i Skövde kommun och Högskolan i
Lokal pedagogisk planering i matematik för årskurs 9
Lokal pedagogisk planering i matematik för årskurs 9 Arbetsområde 4. Samband och förändring Syfte formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder. reflektera
KRITISKA ASPEKTER
KRITISKA ASPEKTER FERENCE MARTON GÖTEBORGS UNIVERSITET PERNILLA MÅRTENSSON HÖGSKOLAN FÖR LÄRANDE OCH KOMMUNIKATION JÖNKÖPING KRITISKA ASPEKTER FRÅN VAD VAD I RELATION TILL ELEVERNAS FÖRSTÅELSE OCH LÄRANDE
KURSBESKRIVNING - MATEMATIK
KURSBESKRIVNING - MATEMATIK ARBETSOMRÅDE TAL OCH DECIMALTAL ÅK 6 (HT 2016) Daniel Spångberg Varför finns det tal? Finns det olika sorters tal? Och har det någon betydelse var de olika siffrorna i ett tal
matematik Prov, Övningsblad och Aktiviteter SANOM A UT B IL DNI NG
matematik b Prov, Övningsblad och Aktiviteter SANOM A UT B IL DNI NG Övningsblad Potenser Multiplikation och division av potenser samt potens av potens Potenslagar Multiplikation av potenser med samma
Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.
Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt
Lokal pedagogisk planering
Lokal pedagogisk planering RO/Skola: Rebbelberga skola Arbetsområde: Taluppfattning Ämne: Matematik Termin/År: ht 2013 Årskurs: 1 Ämnets syfte enligt grundskolans kursplan: Genom undervisningen i ämnet
Ett forskande partnerskap handlar om att forska tillsammans och på lika
Mona Røsseland Vägen till standardalgoritmer Denna artikel tar sin utgångspunkt i ett samarbetsprojekt mellan en lärare som ville utveckla sin undervisning och en aktionsforskare som ville undersöka om
Exempel på uppgifter från års ämnesprov i matematik för årskurs 3
Exempel på uppgifter från 2010 2013 års ämnesprov i matematik för årskurs 3 2 Innehåll Inledning... 5 Skriftliga räknemetoder... 6 Huvudräkning, multiplikation och division... 8 Huvudräkning, addition