BOOLESK ALGEBRA OCH BOOLESKA FUNKTIONER. ; samt
|
|
- Lars-Göran Bergström
- för 8 år sedan
- Visningar:
Transkript
1 Institutionen för matematik, KTH 5B8 Diskret matematik BOOLESK ALGEBRA OCH BOOLESKA FUNKTIONER ANDERS BJÖRNER OCH KIMMO ERIKSSON Boolesk algebra skapades vid 8-talets mitt av den engelske matematikern George Boole. Den ger en gemensam ram för mängdlära, satslogik och teori för vissa digitala kretsar. Vi skall här ge en introduktion till boolesk algebra i det ändliga fallet, som är av särskild betdelse i datalogin.. Boolesk algebra Grunden för boolesk räkning är följande två räknetabeller: + ; ; samt { = = = = De fungerar som vanlig addition och multiplikation sånär som på att alla icke-noll-värden representeras av. Värdena och kan tolkas som falskt och sant, varvid + motsvarar eller (OR) och motsvarar och (AND). Komplement,, motsvarar icke (NOT). Ytterligare en tolkning är i mängdtermer: motsvarar en flld mängd X, motsvarar tomma mängden, + motsvarar union, motsvarar snitt, och komplement är komplement med avseende på X, dvs = X. Objektet som vi studerat ovan är den endimensionella booleska algebran B. Den har alltså två element, {, } eller {falskt, sant}, eller {, X}, hur vi nu vill se på den. Det här kan generaliseras till flera dimensioner: B n = {n-dimensionella {, }-vektorer; +,, sker komponentvis} (E.: + = ; = [B 5 ]) = {n-dim. {sant, falskt}-vektorer; OR, AND, NOT sker komponentvis} (E.: SFS AND FSS = FFS; NOT (SFS)=FSF [B 3 ]) = {alla delmängder till en n-mängd X, t.e. {, 2,..., n};, och m.a.p. X} (E.: {3, 5} {, 5} = {, 3, 5}; {3, 5} = {, 2, 4} [B 5 ]) Tecknet = betder isomorfi, dvs sånär som på olika namn på saker och ting så är det eakt samma objekt i de tre eemplen. Isomorfin mellan de första två är trivial: F, S, osv. Isomorfin mellan första och tredje eemplet är nästan lika enkel: {3, 5}, {, 5}, dvs :orna anger vilka element av {,... 5} som är med i delmängden. För varje n finns alltså en unik boolesk algebra B n, med flera tänkbara tolkningar. B n har 2 n element, t för var och en av de n positionerna i vektorn kan vi välja en :a eller en :a. För att renodla egenskaperna hos den booleska algebran kan man lämna de konkreta representationerna ovan och se B n som en abstrakt mängd med 2 n element och med tre
2 operationer:, och, som uppfller samma egenskaper som, och. Vissa av dessa egenskaper, från vilka de övriga kan härledas, väljs ut och kallas aiomen för en boolesk algebra. Till att börja med har man en partialordning som motsvarar för mängder eller komponentvis för {, }-vektorer. Det finns två särskilda element och så att för alla i B n. och motsvarar respektive hela X = {, 2,..., n}. Några eempel på aiom är: ( z) = ( ) ( z) ( z) = ( ) ( z) = = ȳ = ȳ } } distributivitet de Morgans lagar Men, eftersom den booleska algebran är isomorf med tolkningarna ovan så finns det ingen anledning att lära sig dessa aiom utantill emedan de följer av räknereglerna för t.e. mängder eller {, }-vektorer. I fortsättningen betraktar vi B n just som {n-dim. {, }-vektorer} och använder alltså operatorerna +, och. Men i livlig åtanke har vi alltid omtolkningen till räkning med sanningsvärden. 2. Booleska funktioner En boolesk funktion är en funktion f : B n B, dvs en funktion f(, 2,..., n ) = där alla i och är eller. Man representerar enklast f med en sanningstabell, t.e. 2 3 f Men man kan också se f som en logisk krets 3 2 f f(, 2, 3 ) som matar ut ett värde beroende på ingångsvärdena, 2, 3. 2
3 Den funktion f som ges av tabellen ovan kan också uttrckas som ett booleskt polnom, dvs ett uttrck med +, och samt variabler: f(, 2, 3 ) = Hur vet man det? Jo, varje term motsvarar en rad i tabellen där f ska vara. Att t.e. f(,, ) = motsvaras av 2 3, t denna produkt blir omm alla faktorer är, dvs omm =, 2 =, 3 =. På samma sätt är 2 3 = omm (, 2, 3 ) = (,, ). Alltså kommer summan av dessa termer att vara precis när f ska vara. Detta sätt att uttrcka f kallas disjunktiv normalform. Vi kan ur detta dra slutsatsen att varje boolesk funktion kan skrivas som ett booleskt polnom. Men det finns i allmänhet många olika sätt att uttrcka samma booleska funktion. Vi har t.e. { + ȳ = z + z + ȳz + ȳ z = Den disjunktiva normalformen är ofta den dummaste om man är ute efter ett enkelt uttrck. Varför är man ute efter ett enkelt uttrck för f? Jo, om man ska realisera f som logisk krets vill man bgga den så billigt som möjligt, dvs med så få grundkomponenter, s.k. grindar, som möjligt. Tpiska grindar är: & + Till eempel kan ( + ) z bggas: z + & ( + )z På disjunktiv normalform är ( + ) z = z + z + ȳz, och att bgga upp kretsen så är naturligtvis mcket drare. Hur gör man då för att finna enklast möjliga uttrck för f? För stora n är detta problem mcket svårt, man får i praktiken nöja sig med en halvbra lösning, stora datorer till trots. För n 6 kan man dock lösa problemet för hand, med hjälp av så kallade Karnaugh-diagram. Metoden illustreras för n = 2 i följande eempel. 3
4 f (ȳ) = ( ) () () = f(, ) = + ȳ Idén är alltså att översätta sanningstabellen (eller den disjunktiva normalformen) till en 2-dimensionell tabell, och där plocka ihop block av :or till enkla termer. Kolonnen under = motsvarar ju ȳ =, och att den kolonnen bara innehåller :or motsvarar termen ȳ i uttrcket för f. Observera att samma :a gärna får ingå i flera block (eftersom +=). För 3 och 4 variabler gäller det att utforma tabellen på ett listigt sätt, så att grannrutor får klumpas ihop. Enklast ser man på ett eempel: zw ( z) ( ){ (){ (w) ( w) (z) } () (ȳ) = f = ȳ z w + zw + z Man räknar alltså upp värdeparen i ordningen,,,. På det sättet kommer alltid två par i följd att ha en gemensam siffra; det sista paret är också granne med det första. I tabellrutan plockar man ihop block av ettor, där man alltså får utnttja denna wraparound -effekt. T.e., de två ettorna i första kolonnen finns i kolonn z w och i raderna ȳ, så de bidrar med termen ȳ z w. Metoden med Karnaugh-diagram blir mer otmplig för n = 5, 6. För n 7 bör datorer användas för att hitta minimala polnom, eller approimativt minimala polnom, till booleska funktioner. Vi går inte vidare in på detta ämne. I kompleitetsteori studeras hur svåra olika beräkningsproblem är. Svårighetsgrad mäts på olika sätt, t.e. hur många elementära steg som en algoritm för problemet måste ta som funktion av indatas storlek. I det sammanhanget spelar booleska funktioner en stor roll. Man försöker uppskatta storleken på minimala booleska kretsar, ett allmännare begrepp än booleska polnom, för givna funktioner. En viktig roll i teoretisk datalogi spelar också det så kallade satisfierbarhetsproblemet (SAT): Givet ett booleskt polnom f(, 2,..., n ) finns det värden a i {, } så att f(a, a 2,..., a n ) =? Man vet inte om detta problem har en polnomiell lösning, dvs 4
5 om det finns en algoritm som använder högst n d steg, för något fit heltal d. Satisfierbarhetsproblemet för booleska polnom är det kanske viktigaste (och historiskt första, Cook 97) eemplet på ett NP-fullständigt problem. Frågan om det har en polnomiell lösning är ekvivalent med det berömda P=NP? problemet. Vi hänvisar till referenserna, eller kurser i algoritm- och kompleitetsteori, för mer om booleska funktioners roll i teoretisk datalogi. Referenser [] M.R. Gare and D.S. Johnson, Computers and intractabilit: A guide to the theor of NPcompleteness, W.H. Freeman, San Fransisco, 979 [2] I. Wegener, The compleit of Boolean functions, Wile-Teubner, Stuttgart, 987 5
6 3. övningar:. Utöver de aiom för boolesk algebra som nämndes i teten (distributivitet, dubbel negation och de Morgans lagar), så finns följande aiom i det vanligaste aiomsstemet: (a) =, = (idempotens) (b) =, = (kommutativitet) (c) ( z) = ( ) z, ( z) = ( ) z (associativitet) (d) ( ) =, ( ) = (absorption) (e) [ ( z)] = ( ) ( z) [ ( z)] = ( ) ( z) (f) =, = =, = (modularitet) (g) =, = (komplementlagar) Verifiera att dessa aiom gäller för sstemet av delmängder till en n-mängd där, och betder union, skärning och komplement. 2. Visa följande dualitetsprincip för boolesk algebra: Om P är ett sant påstående om boolesk algebra och om P erhålls genom att bta alla -tecken mot -tecken och vice versa, så är också P ett sant påstående. 3. Bevisa följande booleska identitet: ( ) ( z) (z ) = ( ) ( z) (z ). 4. Låt = +ȳ. Detta motsvarar den logiska funktionen eklusivt eller (XOR). (a) Skriv upp en sanningsvärdestabell för. (b) Visa att ( ) z = ( z). (c) Skriv z på disjunktiv normalform. 5. Vi har sett att varje boolesk funktion kan uttrckas med hjälp av de tre elementära operationerna {+,, }; vi kallade sådana uttrck booleska polnom. Visa att följande par av elementära operationer räcker för att uttrcka alla booleska funktioner: (a) {+, } (b) {, } (c) {, } (d) Kan uttrckas enbart med {+, }? n (e) Har dessa resultat någon betdelse för konstruktionen e av logiska kretsar? 6. En boolesk funktion f() kallas monoton om = f() f() för alla, B n. Visa följande: 6
7 (a) Om f() kan uttrckas med enbart operationerna {+, } så är funktionen monoton, (b) Om f() är monoton så kan den uttrckas enbart med operationerna {+, }. 7. Hitta enklast möjliga uttrck för följande booleska funktioner, och rita motsvarande logiska krets: (a) + ȳ + (b) ȳz + z + z + ȳz + z (c) ȳ zw + ȳz w + z w + zw + z w + z w + zw. 8. Ett cirkulärt arrangemang av elementen i B n så att två element i följd skiljer sig i eakt en position kallas en Gra-kod. Vid konstruktionen av Karnaugh-diagrammet för n = 4 använde vi Gra-koden,,,. (a) Konstruera en Gra-kod för B 3. (b) Visa att en Gra-kod eisterar för alla B n, n. 7
Träning i bevisföring
KTHs Matematiska Cirkel Träning i bevisföring Andreas Enblom Institutionen för matematik, 2005 Finansierat av Marianne och Marcus Wallenbergs Stiftelse 1 Mängdlära Här kommer fyra tips på hur man visar
Läs mera n = A2 n + B4 n. { 2 = A + B 6 = 2A + 4B, S(5, 2) = S(4, 1) + 2S(4, 2) = 1 + 2(S(3, 1) + 2S(3, 2)) = 3 + 4(S(2, 1) + 2S(2, 2)) = 7 + 8 = 15.
1 Matematiska Institutionen KTH Lösningar till tentamensskrivning på kursen Diskret Matematik, moment A, för D och F, SF161 och SF160, den juni 008 kl 08.00-1.00. DEL I 1. (p) Lös rekursionsekvationen
Läs merLathund, procent med bråk, åk 8
Lathund, procent med bråk, åk 8 Procent betyder hundradel, men man kan också säga en av hundra. Ni ska kunna omvandla mellan bråkform, decimalform och procentform. Nedan kan ni se några omvandlingar. Bråkform
Läs mer912 Läsförståelse och matematik behöver man lära sig läsa matematik?
912 Läsförståelse och matematik behöver man lära sig läsa matematik? Med utgångspunkt från min egen forskning kring läsförståelse av matematiska texter kommer jag att diskutera olika aspekter av läsning
Läs merMoment 2 - Digital elektronik. Föreläsning 1 Binära tal och logiska grindar
Moment 2 - Digital elektronik Föreläsning 1 Binära tal och logiska grindar Jan Thim 1 F1: Binära tal och logiska grindar Innehåll: Introduktion Talsystem och koder Räkna binärt Logiska grindar Boolesk
Läs merNågot om permutationer
105 Något om permutationer Lars Holst KTH, Stockholm 1. Inledning. I många matematiska resonemang måste man räkna antalet fall av olika slag. Den del av matematiken som systematiskt studerar dylikt brukar
Läs merAlgebra, polynom & andragradsekvationer en pampig rubrik på ett annars relativt obetydligt dokument
Algebra, polynom & andragradsekvationer en pampig rubrik på ett annars relativt obetydligt dokument Distributiva lagen a(b + c) = ab + ac 3(x + 4) = 3 x + 3 4 = 3x + 12 3(2x + 4) = 3 2x + 3 4 = 6x + 12
Läs merL(9/G)MA10 Kombinatorik och geometri Gruppövning 1
L(9/G)MA10 Kombinatorik och geometri Gruppövning 1 Lisa och Pelle leker med svarta och vita byggklossar. Deras pedagogiska föräldrar vill att de lär sig matematik samtidigt som de håller på och leker.
Läs merFöreläsning 8: Räkning. Duvhålsprincipen. Kombinatorik
Föreläsning 8: Räkning. Duvhålsprincipen. Kombinatorik Summaregeln Om och B är disjunkta mängder så B = + B, ty innehåller inga upprepningar Produktregeln Om och B är disjunkta mängder så är B = B Exempel:
Läs mer729G04 - Hemuppgift, Diskret matematik
79G04 - Hemuppgift, Diskret matematik 5 oktober 015 Dessa uppgifter är en del av examinationen i kursen 79G04 Programmering och diskret matematik. Uppgifterna ska utföras individuellt och självständigt.
Läs mer7, Diskreta strukturer
Objektorienterad modellering och diskreta strukturer 7, Diskreta strukturer Sven Gestegård Robertz Datavetenskap, LTH 2015 Modeller Matematiska modeller Kontinuerliga modeller Kontinuerliga funktioner
Läs merDe grundläggande logiska grindarna
dlab00a Namn Datum Handledarens sign. Laboration De grundläggande logiska grindarna Varför denna laboration? Till de grundläggande digitala kretsarna brukar man räkna kretsar som innehåller NND- och NORgrindar.
Läs merIdag. Hur vet vi att vår databas är tillräckligt bra?
Idag Hur vet vi att vår databas är tillräckligt bra? Vad är ett beroende? Vad gör man om det blivit fel? Vad är en normalform? Hur når man de olika normalformerna? DD1370 (Föreläsning 6) Databasteknik
Läs merÖvningshäfte i matematik för. Kemistuderande BL 05
Övningshäfte i matematik för Kemistuderande BL 05 Detta häfte innehåller några grundläggande övningar i de delar av matematiken som man har användning för i de tidiga kemistudierna. Nivån är gymnasiematematik,
Läs merVi skall skriva uppsats
Vi skall skriva uppsats E n vacker dag får du höra att du skall skriva uppsats. I den här texten får du veta vad en uppsats är, vad den skall innehålla och hur den bör se ut. En uppsats är en text som
Läs mer4-6 Trianglar Namn:..
4-6 Trianglar Namn:.. Inledning Hittills har du arbetat med parallellogrammer. En sådan har fyra hörn och motstående sidor är parallella. Vad händer om vi har en geometrisk figur som bara har tre hörn?
Läs merx 2 + px = ( x + p 2 x 2 2x = ( x + 2
Inledande kurs i matematik, avsnitt P.3 P.3. Bestäm en ekvation för cirkeln med mittpunkt i (0, 0) och radie 4. Med hjälp av kvadratkompletteringsformeln + p = ( + p ) ( p ) En cirkel med mittpunkt i (
Läs merSnabbslumpade uppgifter från flera moment.
Snabbslumpade uppgifter från flera moment. Uppgift nr Ställ upp och dividera utan hjälp av miniräknare talet 48 med 2 Uppgift nr 2 Skriv talet 3 8 00 med hjälp av decimalkomma. Uppgift nr 3 Uppgift nr
Läs merPartnerskapsförord. giftorättsgods görs till enskild egendom 1, 2. Parter 3. Partnerskapsförordets innehåll: 4
Partnerskapsförord giftorättsgods görs till enskild egendom 1, 2 Parter 3 Namn Telefon Adress Namn Telefon Adress Partnerskapsförordets innehåll: 4 Vi skall ingå registrerat partnerskap har ingått registrerat
Läs merSF1625 Envariabelanalys
Modul 2: Derivata Institutionen för matematik KTH 8 september 2015 Derivata Innehåll om derivata (bokens kapitel 2). Definition vad begreppet derivata betyder Tolkning hur man kan tolka derivata Deriveringsregler
Läs merVolymer av n dimensionella klot
252 Volymer av n dimensionella klot Mikael Passare Stockholms universitet Ett klot med radien r är mängden av punkter vars avstånd till en given punkt (medelpunkten) är högst r. Låt oss skriva B 3 (r)
Läs merF5 Introduktion till digitalteknik
George Boole och paraplyet F5 Introduktion till digitalteknik EDAA05 Roger Henriksson Jonas Wisbrant p = b! (s " r) George Boole (1815-1864) Professor i Matematik, Queens College, Cork, Irland 2 Exklusiv
Läs merHa det kul med att förmedla och utveckla ett knepigt område!
Kul med pizzabitar Första gången eleverna får materialet i handen bör dem få sin egen tid till att undersöka det på det viset blir dem bekanta med dess olika delar. Det kan också vara en god idé att låta
Läs mer4-3 Vinklar Namn: Inledning. Vad är en vinkel?
4-3 Vinklar Namn: Inledning I det här kapitlet skall du lära dig allt om vinklar: spetsiga, trubbiga och räta vinklar. Och inte minst hur man mäter vinklar. Att mäta vinklar och sträckor är grundläggande
Läs mer2005-01-31. Hävarmen. Peter Kock
2005-01-31 Hävarmen Kurs: WT0010 Peter Kock Handledare: Jan Sandberg Sammanfattning Om man slår upp ordet hävarm i ett lexikon så kan man läsa att hävarm är avståndet mellan kraften och vridningspunkten.
Läs merDOP-matematik Copyright Tord Persson. Bråktal -3-2 -1 0 1 2 3. Läs av vilka tal på tallinjen, som pilarna pekar på. Uppgift nr 10 -3-2 -1 0 1 2 3
Bråktal Uppgift nr En limpa delas i 4 lika stora delar. Hur stor del av limpan blir varje del? Uppgift nr 2 Hur många tiondelar behövs för att det skall räcka till en hel? Uppgift nr Hur läser man ut bråket
Läs merExempel på tentamensuppgifter i LMA100, del 1
Exempel på tentamensuppgifter i LMA100, del 1 Diskret matematik 1. Givet är de 7 bokstäverna i ordet APPARAT. Hur många olika ord (= bokstavspermutationer) kan man bilda av dem med (a) 7 bokstäver (b)
Läs merKonsten att multiplicera (stora) heltal
Konsten att multiplicera (stora) heltal 18 november 2006 Stora heltal Mental bild: Handmultiplikation av tal med hundratals siffor. Datormultiplikation av tal med miljontals siffror. Mina exempel är mycket
Läs merOM KOMPLEXA TAL. 1 Om a är ett positivt reellt tal så betecknar a det positiva reella tal vars kvadrat är a men det är
OM KOMPLEXA TAL Inledning. Vilka olika talområden finns det? Jag gör en snabb genomgång av vad ni tidigare stött på, bl.a. för att repetera standardbeteckningarna för de olika talmängderna. Positiva heltal,
Läs merRepetition av cosinus och sinus
Repetition av cosinus och sinus Av Eric Borgqvist, 00-08-6, Lund Syftet med detta dokument är att få en kort och snabb repetition av vissa egenskaper hos de trigonometriska funktionerna sin och cos. Det
Läs merFacit med lösningsförslag kommer att anslås på vår hemsida www.ebersteinska.norrkoping.se. Du kan dessutom få dem via e-post, se nedan.
Detta häfte innehåller uppgifter från fyra olika områden inom matematiken. Meningen är att de ska tjäna som en självtest inför gymnasiet. Klarar du dessa uppgifter så är du väl förberedd inför gymnasiestudier
Läs merSEPARABLA DIFFERENTIALEKVATIONER
SEPARABLA DIFFERENTIALEKVATIONER En differentialekvation (DE) av första ordningen sägs vara separabel om den kan skrivas på formen P ( y) Q( ) () Den allmänna lösningen till () erhålles genom att integrera
Läs merkonstanterna a och b så att ekvationssystemet x 2y = 1 2x + ay = b 2 a b
Tentamen i Inledande matematik för V och AT, (TMV25), 20-0-26. Till denna uppgift skulle endast lämnas svar, men här ges kortfattade lösningar. a) Bestäm { konstanterna a och b så att ekvationssystemet
Läs merPRÖVNINGSANVISNINGAR
Prövning i Matematik 5 PRÖVNINGSANVISNINGAR Kurskod MATMAT05 Gymnasiepoäng 100 Läromedel Valfri aktuell lärobok för kurs Matematik 5 Skriftligt prov, 4h Teoretiskt prov Bifogas Provet består av två delar.
Läs merMöbiustransformationer.
224 Om Möbiustransformationer Torbjörn Kolsrud KTH En Möbiustransformation är en komplexvärd funktion f av en komplex variabel z på formen f(z) = az + b cz + d. Här är a b c och d komplexa tal. Ofta skriver
Läs merEkvationssystem, Matriser och Eliminationsmetoden
Matematiska institutionen Göteborgs universitet och Chalmers tekniska högskola Version 359 Ekvationssystem, Matriser och Eliminationsmetoden - En inledning Ekvationssystem - matrisformulering Vi såg att
Läs merBoll-lek om normer. Nyckelord: likabehandling, hbt, normer/stereotyper, skolmiljö. Innehåll
1 Boll-lek om normer Nyckelord: likabehandling, hbt, normer/stereotyper, skolmiljö Innehåll Materialet bygger på en övning där eleverna, genom en lek med bollar, får utmana sin förmåga att kommunicera
Läs merEDA Digital och Datorteknik 2009/2010
EDA45 - Digital och Datorteknik 29/2 EDA 45 - Digital och Datorteknik 29/2, lärobokens kapitel 3 Ur innehållet: Satslogik och Boolesk algebra Grindar Funktionstabell Binär evaluering Normal orm/förenklad
Läs merAvsikt På ett lekfullt sätt färdighetsträna, utveckla elevers känsla för hur vårt talsystem är uppbyggt samt hitta mönster som uppkommer.
Strävorna 4A 100-rutan... förmåga att förstå, föra och använda logiska resonemang, dra slutsatser och generalisera samt muntligt och skriftligt förklara och argumentera för sitt tänkande.... grundläggande
Läs merDigital- och datorteknik
Digital- och datorteknik Föreläsning #3 Biträdande professor Jan Jonsson Institutionen för data- och informationsteknik Chalmers tekniska högskola Logikgrindar Från data till digitala byggblock: Kursens
Läs merIdag: Dataabstraktion
Idag: Dataabstraktion Hur använder vi det vi hittills kan om Scheme för att realisera (implementera) sammansatta data? Hur separerar man datastrukturen från resten av ett program så att ändringar i datastrukturen
Läs merFunktionsbegreppet. Kapitel 7. 7.1 Introduktion till funktioner. Definition av funktion
Kapitel 7 Old mathematicians never die, the just lose some of their functions. Okänd Funktionsbegreppet Funktionsbegreppet kan med rätta sägas vara ett av de mest centrala i matematiken och dess tillämpningar.
Läs merTentamen i Linjär algebra (TATA31/TEN1) 2013 08 24, 14 19.
LINKÖPINGS UNIVERSITET Matematiska Institutionen Ulf Janfalk Kurskod: TATA Provkod: TEN Tentamen i Linjär algebra (TATA/TEN 8, 9. Inga hjälpmedel. Ej räknedosa. För godkänt räcker 9 poäng och minst uppgifter
Läs merDet är ni som läser detta.
Vem är Folkspel? Det är ni som läser detta. Folkspel ägs av 69 olika riksorganisationer Bl.a Riksidrottsförbundet (RF), där vi syns mest Hjärtebarnsföreningen, Friluftsfrämjandet, De synskadades riksförbund,
Läs merSammanfatta era aktiviteter och effekten av dem i rutorna under punkt 1 på arbetsbladet.
Guide till arbetsblad för utvecklingsarbete Arbetsbladet är ett verktyg för dig och dina medarbetare/kollegor när ni analyserar resultatet från medarbetarundersökningen. Längst bak finns en bilaga med
Läs merÖvningshäfte Algebra, ekvationssystem och geometri
Stockholms Tekniska Gmnasium --9 Övningshäfte Algebra, ekvationssstem och geometri Nivå: rätt svårt Fråga : f är ett polnom. Beräkna värdet av f, f och fπ Fråga : Ingångslönen på företaget Börjes Gurkinläggning
Läs merIndividuellt Mjukvaruutvecklingsprojekt
Individuellt Mjukvaruutvecklingsprojekt RPG-spel med JavaScript Författare Robin Bertram Datum 2013 06 10 1 Abstrakt Den här rapporten är en post mortem -rapport som handlar om utvecklandet av ett RPG-spel
Läs merKapitel 6. f(x) = sin x. Figur 6.1: Funktionen sin x. 1 Oinas-Kukkonen m.fl. Kurs 6 kapitel 1
Kapitel 6 Gränsvärde 6. Definition av gränsvärde När vi undersöker gränsvärdet av en funktion undersöker vi vad som händer med funktionsvärdet då variabeln, x, går mot ett visst värde. Frågeställningen
Läs merUppdrag: Huset. Fundera på: Vilka delar i ditt hus samverkar för att elen ska fungera?
Uppdrag: Huset Praktiskt arbete: (Krav) Göra en skiss över ditt hus. Bygga en modell av ett hus i en kartong med minst två rum. Koppla minst tre lampor och två strömbrytare till ditt hus. Visa både parallellkoppling
Läs merModul 6: Integraler och tillämpningar
Institutionen för Matematik SF65 Envariabelanalys Läsåret 5/6 Modul 6: Integraler och tillämpningar Denna modul omfattar kapitel 6. och 6.5 samt kapitel 7 i kursboken Calculus av Adams och Essex och undervisas
Läs merBoken om Teknik. Boken om Teknik är en grundbok i Teknik för åk 4 6.
Boken om Teknik Boken om Teknik är en grundbok i Teknik för åk 4 6. PROVLEKTION: Teknikens arbetssätt att göra på riktigt Följande provlektion är ett utdrag ur Boken om Teknik. Uppslaget som är hämtat
Läs merLaborativ matematik som bedömningsform. Per Berggren och Maria Lindroth 2016-01-28
Laborativ matematik som bedömningsform Per Berggren och Maria Lindroth 2016-01-28 Kul matematik utan lärobok Vilka förmågor tränas Problemlösning (Förstå frågan i en textuppgift, Använda olika strategier
Läs merVÄRDERINGSÖVNINGAR. Vad är Svenskt?
VÄRDERINGSÖVNINGAR Vad är Svenskt? Typ av övning: Avstamp till diskussion. Övningen belyser hur svårt det är att säga vad som är svenskt och att normen vad som anses vara svenskt ändras med tiden och utifrån
Läs merSF1620 Matematik och modeller
KTH Teknikvetenskap, Institutionen för matematik 1 SF160 Matematik och modeller 007-09-10 Andra veckan Trigonometri De trigonometriska funktionerna och enhetscirkeln Redan vid förra veckans avsnitt var
Läs merGruppenkät. Lycka till! Kommun: Stadsdel: (Gäller endast Göteborg)
Gruppenkät Du har deltagit i en gruppaktivitet! Det kan ha varit en tjej- / killgrupp, ett läger eller ett internationellt ungdomsutbyte. Eller så har ni kanske ordnat ett musikarrangemang, skött ett café,
Läs merNATIONELLA MATEMATIKTÄVLING
NATIONELLA MATEMATIKTÄVLING PRATA OM SPELS EN KURS I SANNOLIKHET 1 INLEDNING Sannolikhetskursen består av sju olika steg där det sista steget utgörs av själva tävlingsmomentet. Det är upp till pedagogen
Läs merErfarenheter från ett pilotprojekt med barn i åldrarna 1 5 år och deras lärare
Erfarenheter från ett pilotprojekt med barn i åldrarna 1 5 år och deras lärare I boken får vi följa hur barn tillsammans med sina lärare gör spännande matematikupptäckter - i rutinsituationer - i leken
Läs merSnapphanalegen. Firekángabogena. Spelregler. (4 spelare)
Snapphanalegen Firekángabogena Spelregler 1 800 (4 spelare) 800 är ett spel med anor från 1400-talet. Spelet ställer stora krav på spelarnas skicklighet. Fyra deltagare spelar ihop parvis. Spelet cirkulerar
Läs merFör dig som är valutaväxlare. Så här följer du reglerna om penningtvätt i din dagliga verksamhet INFORMATION FRÅN FINANSINSPEKTIONEN
För dig som är valutaväxlare Så här följer du reglerna om penningtvätt i din dagliga verksamhet INFORMATION FRÅN FINANSINSPEKTIONEN MARS 2016 DU MÅSTE FÖLJA LAGAR OCH REGLER Som valutaväxlare ska du följa
Läs merDatorövning 2 Statistik med Excel (Office 2007, svenska)
Datorövning 2 Statistik med Excel (Office 2007, svenska) Denna datorövning fokuserar på att upptäcka samband mellan två variabler. Det görs genom att rita spridningsdiagram och beräkna korrelationskoefficienter
Läs merEDA Digital och Datorteknik 2010/2011
EDA45 - Digital och Datorteknik 2/2 EDA 45 - Digital och Datorteknik 2/2, lärobokens kapitel 3 Ur innehållet: Satslogik och Boolesk algebra Grindar Funktionstabell Binär evaluering Normal orm/förenklad
Läs mer1. Frekvensfunktionen nedan är given. (3p)
TENTAMEN I MATEMATIK MED MATEMATISK STATISTIK HF14 TEN 11 kl 1.15-.15 Hjälpmedel: Formler och tabeller i statistik, räknedosa Fullständiga lösningar erfordras till samtliga uppgifter. Lösningarna skall
Läs merKontrollskrivning i Linjär algebra 2014 10 30, 14 18.
LINKÖPINGS UNIVERSITET Matematiska Institutionen Ulf Janfalk Kurskod: TATA Provkod: KTR Kontrollskrivning i Linjär algebra, 8. Inga hjälpmedel. Ej räknedosa. På uppgift skall endast svar ges. Varje rätt
Läs merRiktlinjer - Rekryteringsprocesser inom Föreningen Ekonomerna skall vara genomtänkta och välplanerade i syfte att säkerhetsställa professionalism.
REKRYTERINGSPOLICY Upprättad 2016-06-27 Bakgrund och Syfte Föreningen Ekonomernas verksamhet bygger på ideellt engagemang och innehar flertalet projekt där såväl projektledare som projektgrupp tillsätts
Läs merEnkätresultat för elever i åk 9 i Borås Kristna Skola i Borås hösten 2012. Antal elever: 20 Antal svarande: 19 Svarsfrekvens: 95% Klasser: Klass 9
Enkätresultat för elever i åk 9 i Borås Kristna Skola i Borås hösten 2012 Antal elever: 20 Antal svarande: 19 Svarsfrekvens: 95% Klasser: Klass 9 Skolenkäten Skolenkäten går ut en gång per termin till
Läs merHemsida Arbetsrum. Skapa arbetsrumslista
Skapa arbetsrumslista Hemsida Arbetsrum För att kunna skapa en arbetsrumslista så markerar du i navigeringsfönstret där den nya sidan ska ligga. Klicka på menyknappen till höger om sidnamnet och sedan
Läs merIndex vid lastbilstransporter
index vid lastbilstransporter Matematiken Snabbhjälpen för att räkna rätt Index vid lastbilstransporter Innehåll A. Tre steg för att räkna rätt Sidan 1 B. Förändring enligt index 2 C. Andelskorrigering
Läs merKvinnor som driver företag pensionssparar mindre än män
Pressmeddelande 7 september 2016 Kvinnor som driver företag pensionssparar mindre än män Kvinnor som driver företag pensionssparar inte i lika hög utsträckning som män som driver företag, 56 respektive
Läs merHT 2011 FK2004 Tenta Lärare delen 4 problem 6 poäng / problem
HT 2011 FK2004 Tenta Lärare delen 4 problem 6 poäng / problem Problem 1 (6p) En undersökning utfördes med målet att besvara frågan Hur stor andel av den vuxna befolkningen i Sverige äger ett skjutvapen?.
Läs merTränarguide del 1. Mattelek. www.mv-nordic.se
Tränarguide del 1 Mattelek www.mv-nordic.se 1 ATT TRÄNA MED MATTELEK Mattelek är ett adaptivt träningsprogram för att träna centrala matematiska färdigheter såsom antalsuppfattning, den inre mentala tallinjen
Läs merDet är bra om även distriktsstyrelsen gör en presentation av sig själva på samma sätt som de andra.
Modul: Föreningspresentation Ett stort blädderblocksblad delas upp i fyra rutor. Deltagarna, som under detta pass är indelade föreningsvis, får i uppgift att rita följande saker i de fyra rutorna: Föreningsstyrelsen
Läs merUtdrag ur protokoll vid sammanträde 2013-10-15. Ändrad deklarationstidpunkt för mervärdesskatt. Förslaget föranleder följande yttrande av Lagrådet:
1 LAGRÅDET Utdrag ur protokoll vid sammanträde 2013-10-15 Närvarande: F.d. justitierådet Leif Thorsson samt justitieråden Gudmund Toijer och Olle Stenman. Ändrad deklarationstidpunkt för mervärdesskatt
Läs merNär du som vårdpersonal vill ta del av information som finns hos en annan vårdgivare krävs det att:
1 (6) Sammanhållen journalföring information till dig som möter patienter Detta är ett kunskapsunderlag om sammanhållen journalföring för dig som arbetar i vården. Underlaget innehåller en kort beskrivning
Läs merTankar om elevtankar. HÖJMA-projektet
Tankar om elevtankar HÖJMA-projektet JAN UNENGE I förra numret av NÄMNAREN påbörjades en redogörelse från ett intressant forsknings- och utvecklingsarbete vid Lärarhögskolan i Jönköping. Den artikeln behandlade
Läs merSkriva B gammalt nationellt prov
Skriva B gammalt nationellt prov Skriva B.wma Då fortsätter vi skrivträningen. Detta avsnitt handlar om att anpassa sin text till en särskild situation, en speciell texttyp och särskilda läsare. Nu ska
Läs merGemensam problemlösning. Per Berggren och Maria Lindroth 2013-03-12
Gemensam problemlösning 2013-03-12 Strategispel Hur ska du spela för att vinna dessa strategispel? Nim Tactical Att arbeta som en matematiker Först vill matematiker ha ett intressant problem. Matematiker
Läs merOmvandla Vinklar. 1 Mattematiskt Tankesätt
Omvandla Vinklar 1 Mattematiskt Tankesätt (Kan användas till mer än bara vinklar) 2 Omvandla med hjälp av Huvudräkning (Snabbmetod i slutet av punkt 2) 3 Omvandla med Miniräknare (Casio) Läs denna Först
Läs mer10.03.2010. Översikt. Rapport från skolverket. Förändring av matematikprestationerna 1995 2003-2007. Grundtankar bakom Pixel
Översikt Hur är situationen i Sverige och Norge när det gäller matematik-kompetensen? Är det nödvändigt att undervisa på andra sätt än vi gjort tidigare? Förändring av matematikprestationerna 1995 2003-2007
Läs merSveriges Trafikskolors Riksförbund Film om körkort för nysvenskar Speakertext - Svensk
Sveriges Trafikskolors Riksförbund Film om körkort för nysvenskar Speakertext - Svensk Vägen till svenskt körkort Funderar du på att skaffa svenskt körkort för personbil? I den här filmen får du reda på
Läs merSerieliknande bilder som visar olika påståenden om ett begrepp eller en situation i en vardaglig kontext.
Begrepps bilder 1 Serieliknande bilder som visar olika påståenden om ett begrepp eller en situation i en vardaglig kontext. Publikrekord avrundning Millgate House Education Åsikter presenteras visuellt
Läs merLPP laboration. Förmågor: Centralt innehåll: Kunskapskrav:
LPP laboration Syfte: Eleverna ska få möjlighet att undersöka vardagliga naturvetenskapliga händelser och skapa förståelse kring varför dessa händelser äger rum. Eleverna ska göra det med hjälp av naturvetenskapliga
Läs merAbstrakt algebra för gymnasister
Abstrakt algebra för gymnasister Veronica Crispin Quinonez Sammanfattning. Denna text är föreläsningsanteckningar från föredraget Abstrakt algebra som hölls under Kleindagarna på Institutet Mittag-Leffler
Läs merExamensarbete är det en kurs? Inst. för Samhällsbyggnad 2009
Examensarbete är det en kurs? Inst. för Samhällsbyggnad 2009 Examensarbete som kurs Examensarbete är en kurs om 30 hp för civilingenjörer, 15 hp för brandingenjörer och 7,5 hp för högskoleexamen Som alla
Läs merKampanj kommer från det franska ordet campagne och innebär att man under en tidsbegränsad period bedriver en viss verksamhet.
EN LITEN KAMPANJSKOLA Kampanj kommer från det franska ordet campagne och innebär att man under en tidsbegränsad period bedriver en viss verksamhet. Finns det något man kan tänka på när man ska sprida ett
Läs merMätningar på op-förstärkare. Del 3, växelspänningsförstärkning med balanserad ingång.
Mätningar på op-förstärkare. Del 3, växelspänningsförstärkning med balanserad ingång. Denna gång skall vi titta närmare på en förstärkare med balanserad ingång och obalanserad utgång. Normalt använder
Läs merDenna talesmannapolicy gäller tillsammans med AcadeMedias kommunikationspolicy. I kommuniaktionspolicyn finns följande formulering:
Talesmannapolicy AcadeMedia Denna talesmannapolicy gäller tillsammans med AcadeMedias kommunikationspolicy. I kommuniaktionspolicyn finns följande formulering: Anställda på AcadeMedia som vill delta i
Läs merUtveckla arbetsmiljö och verksamhet genom samverkan
DEL 1: Utveckla arbetsmiljö och verksamhet genom samverkan Modulen inleds med det övergripande målet för modul 6 och en innehållsförteckning över utbildningens olika delar. Börja med att sätta ramarna
Läs merDiskussionsfrågor till version 1 och 2
Diskussionsfrågor till version 1 och 2 Version 1 Tillgång till internet i hemmet A. Vilken åldersgrupp har haft den största ökningen av tillgång till internet under perioden? B. Kan man med hjälp av de
Läs merDu ska nu skapa ett litet program som skriver ut Hello World.
Tidigare har vi gjort all programmering av ActionScript 3.0 i tidslinjen i Flash. Från och med nu kommer vi dock att ha minst två olika filer för kommande övningar, minst en AS-fil och en FLA-fil. AS Denna
Läs merTentamen i Programmering grundkurs och Programmering C
1 of 6 Örebro universitet Akademin för naturvetenskap och teknik Thomas Padron-McCarthy (thomas.padron-mccarthy@oru.se) Tentamen i Programmering grundkurs och Programmering C för D1 m fl, även distanskursen
Läs merTentamen i matematisk statistik (9MA241/9MA341/LIMAB6, STN2) 2012-01-09 kl 08-13
LINKÖPINGS UNIVERSITET MAI Johan Thim Tentamen i matematisk statistik (9MA241/9MA341/LIMAB6, STN2) 212-1-9 kl 8-13 Hjälpmedel är: miniräknare med tömda minnen och formelbladet bifogat. Varje uppgift är
Läs mer3.1 Linjens ekvation med riktningskoefficient. y = kx + l.
Kapitel Analytisk geometri Målet med detta kapitel är att göra läsaren bekant med ekvationerna för linjen, cirkeln samt ellipsen..1 Linjens ekvation med riktningskoefficient Vi utgår från ekvationen 1
Läs merKoll på cashen - agera ekonomicoach!
För elever Fördjupningsuppgift: Koll på cashen - agera ekonomicoach! Fördjupningsuppgift: Ekonomicoach Så här går det till Börja med att se filmen Koll på cashen. Därefter är ni redo för att komma igång.
Läs merHandledning för digitala verktyg Talsyntes och rättstavningsprogram. Vital, StavaRex och SpellRight
Handledning för digitala verktyg Talsyntes och rättstavningsprogram Vital, StavaRex och SpellRight Elevens namn:.. Skola: Datum:.. Varför behövs en handledning? Denna handledning är tänkt att användas
Läs merFrån min. klass INGER BJÖRNELOO
Från min klass INGER BJÖRNELOO Vi har nu följt Inger Björneloos klass under två år. Klassen börjar i höst på sitt sista lågstadieår, åk 3. Denna årgång av NÄMNAREN kommer att följa upp vad de gör och hur
Läs merSamtals- och dokumentationsunderlag Språk och erfarenheter
Kartläggningsmaterial för nyanlända elever Samtals- och dokumentationsunderlag Språk och erfarenheter Steg 1 2 3 Samtals- och dokumentationsunderlag Steg 1 Information till elev och vårdnadshavare före
Läs merLathund till Annonsportalen
Lathund till Annonsportalen * För uppdrags-/arbetsgivare * www.gu.se/samverkan/annonsportalen/ Snabbvägar: 1. Klicka på För arbetsgivare 2. Sök efter arbetsgivarens namn i sökrutan. a. Om namnet finns
Läs merProjektet har liksom Wången många år på nacken. Redan på 1950-talet bedrevs här forskning på brukshästarnas hovar.
Projektet har liksom Wången många år på nacken. Redan på 1950-talet bedrevs här forskning på brukshästarnas hovar. 1 En kort presentation av föredragshållaren som här försöker ursäkta varför han aldrig
Läs merCAEBBK01 Drag och tryckarmering
Drag och tryckarmering Användarmanual 1 Eurocode Software AB Innehåll 1 INLEDNING 3 1.1 ANVÄNDNINGSOMRÅDEN 3 1.2 TEKNISK BESKRIVNING 3 1.3 ARMERINGENS INLÄGGNING 4 1.4 ARBETSKURVA BETONG 4 2 INSTRUKTIONER
Läs merMatematik för sjöingenjörsprogrammet
Matematik för sjöingenjörsprogrammet Matematiska Vetenskaper 9 augusti 01 Innehåll 5 komplexa tal 150 5.1 Inledning................................ 150 5. Geometrisk definition av de komplexa talen..............
Läs mer