Spektrala transformer Laboration: Vokalsyntes
|
|
- Viktoria Öberg
- för 5 år sedan
- Visningar:
Transkript
1 Spektrala transformer Laboration: Vokalsyntes 1 Introduktion I denna laboration är målsättningen att du ska få handgripliga erfartenterer av digital filtrering. Du ska implementera en enkel men användbar typ av återkopplat filter - tvåpolsresonator, och använda den för att simulera mänskligt tal. 2 En modell av vokalproduktion Produktion av vokalljud i mänskligt tal kan grovt sett beskrivas så här: luft pressas ur lungorna mellan stämbanden, vilket ger upphov till ljudpulser, som fortplantas genom talröret (strupen, munhålan, näshålan, etc). Talröret formar ljudet olika beroende på form och läge hos tunga, käke, läppar mm, och producerar den slutliga ljudsignalen. Stämbanden kan därför ses som en ljudkälla, och talröret som ett filter. Denna populära beskrivningsmodell kallas källa-filter-modellen och den ska du tillämpa i denna laboration. Det filter som talröret utgör har en komplicerad överföringsfunktion, som innehåller ett antal resonansfrekvenser som kallas formanter. För vokaler kan filtret effektivt appoximras med ett antal tvåpolsresonatorer som parallellkopplas, där varje formant motsvaras av en resonator. Vanligtvis räcker det med att modellera de fyra första formanterna, vars centrumfrekvenser brukar betecknas F 1, F 2, F 3 och F 4, med tillhörande bandbredder B 1, B 2, B 3 och B 4 3 Utförande Du ska utföra ett antal uppgifter med hjälp av Matlab, och svara på de frågor som ställs i peket. Laborationen utföres självständigt, antingen enskilt eller i grupp om två. Börja med att hämta lab-reson.zip från kurshemsidan. Denna fil innehåller några hjälpfunktioner och andra filer som du kommer att behöva. Packa upp arkivet i din hemkatalog och använd detta som working directory i matlab. I matlabkoden i peket betecknas alltid arrayer och matriser med versaler, medan skalärer betecknas med gemener. Vidare används genomgående konventionen att skriva all kod med skrivmaskinsstil. Den kod som efterfrågas (och ska redovisas) ska oftast vara i form av matlabfunktioner. Ofta beskrivs även hur du kan testa att funktionen gör vad den ska. Du gör klokt i att skriva dessa tester i m-filer (behöver ej vara funktioner) för att göra själva testandet rationellt och konsekvent. Var noga med att dokumentera vad du gör och spara kod, plottar, bilder, ljudfiler och vad det kan vara till redovisningstillfället, då du ska redogöra för hur du kommit fram till dina resultat. 1 (6)
2 3.1 Tvåpolsresonatorn En tvåplolsresonator är en enkel typ av återkopplat filter som beskrivs av överföringsfunktionen H(z) = 1 (1 Re jθ z 1 )(1 Re jθ z 1 ) som har två poler i det komplexa planet på avståndet R från origo, och med vinklarna ±θ. (Dessutom har den två nollställen i origo, men dessa påverkar inte frekvenssvaret.) Tvåpolsresonatorn har ett frekvenssvar som består av en topp, vars läge i frekvensled bestäms av polvinkeln θ, och toppens spetsighet bestäms av polradien R (ju närmare R är 1, desto spetsigare topp). Impulssvaret hos en tvåpolsresonator kan beskrivas som en dämpad svängning, där graden av dämpning bestäms av R - ju mindre R desto mera dämpning får man. Specialfallet när R = 1, dvs polerna ligger på enhetscirkeln, ger en helt odämpad svängning dvs en oscillator. R > 1 ger ett instabilt filter. I denna laboration vill vi styra resonatorn i termer av resonansfrekvens f och bandbredd ψ. Polernas parametrar R och θ kan approximativt bestämmas ur frekvensen f och bandbredden ψ enligt följande 1 : R 1 ψ/2 θ 2πf där f och ψ är resonansfrekvens resp. bandbredd som fraktion av samplingsfrekvensen, dvs f = 0.5 motsvarar nykvistfrekvensen. Förberedelseuppgift (utan matlab) Skriv om uttrycket för överförinsfunktionen H(z) ovan på formen H(z) = b 0 a 0 + a 1 z 1 + a 2 z 2 och bestäm koefficienterna a k uttryckt i frekvens f och bandbredd ψ. Studerar man H(z) ser man att täljarens enda koefficient b 0 kommer att tjäna som någon sorts global förstärkningsfaktor. Detta är speciellt viktigt om resonansfrekvensen ska vara variabel, är det ofta önskvärt att filtrets totala förstärkning är oberoende av resonansfrekvensen. Vi kan låta b 0 ta hand om detta åt oss, genom att välja den så att filtrets förstärkning vid resonansfrekvensen alltid är ett. Detta fås då b 0 = (1 R 2 )sin θ Verifiera gärna att det stämmer med egna uträkningar! Uppgift 1: statiska vokaler I den första uppgiften ska du använda det inbyggda matlabkommandot filter för att skapa ett statiskt tvåpolsfilter enligt ovanstående överföringsfunktion. Som inparametrar till filter 1 dessa approximationer gäller när R 1, dvs för relativt skarpa resonanser, vilket kan antas i denna laboration 2 (6)
3 Magnitude (db) Phase (degrees) Normalized Frequency ( π rad/sample) Normalized Frequency ( π rad/sample) Figur 1. Frekvenssvar och impulssvar för tvåpolsresonatorn då f = 0.1 och b = anger man två vektorer B och A som innehåller koefficienterna b 0,b 1,... resp. a 0,a 1,..., samt en vektor X - indatasekvensen som ska filtreras. För mer info, se help filter. Innan du ger dig på att göra vokalljud är det bra att verifiera att filtret gör vad det ska. Ett bra sätt att göra detta är att plotta frekvenssvar och impulssvar för filtret. Frekvenssvaret får du med kommandot freqz(b,a). Impulssvaret fås genom att mata in en impuls (se tipsruta nedan). I figur 1 kan du se hur dessa plottar bör se ut för f = 0.1 och b = Pröva även med andra värden på f och ψ tills du förstår hur saker hänger ihop. Med hjälp av ditt tvåpolsfilter ska nu syntetisera några statiska vokaler. Använd två parallellkopplade filter för att simulera de två första formanterna F1 och F2. I tabell 1 finner du typvärden på formantfrekvenserna för de Svenska vokalerna. Som källfunktion (dvs stämband ) kan du använda ljudfilen source.wav. Läs in filen med kommandot [X,fs] = wavread( source.wav ) och filtrera med frekvenser ur tabellen, för några olika vokaler som du väljer. Bandbredden kan du sätta till 50 Hz. Lyssna, och spara ljuden till fil och titta gärna på spektrum i exempelvis WaveSurfer 2. Notera att frekvenser och bandbredder naturligtvis måste räknas om till normerad frekvens, dvs delas med samplingsfrekvensen. Matlab-tips En insignal med en impuls skapas enkelt med X = [1 zeros(1,n-1)] där n är önskad sekvenslängd. För plottningen kan det vara bra att även skapa en vektor med tidsvärden: T = 0:n-1 då kan du plotta insignal och utsignal i samma figur med plot(t,x, o-,t,y, *- ) Matlab-tips För att läsa in en ljudfil som en vektor använder du funktionen wavread(). 2 Laddas hem från 3 (6)
4 Tabell 1. Formantfrekvenser i Hz för Svenska vokaler (efter Fant) Vokal exempel F 1 F 2 F 3 F 4 O: rot O rott Å: rå Å rått A: bar A barr I: bil I Bill E: deg E/Ä vägg Ä3 herr Y: ny Y nytt Ö: föd Ö född Ö3 för U: duk U puck För att lyssna på en matlab-vektorn Y som ett ljud med samplingsfrekvensen Hz kan du använda kommandot soundsc(y,16000) För att skriva samma ljud som en wave-fil använder du wavwrite(y,16000, mitt_ljud.wav ) 3.2 Tidsvariabelt filter I talsignalen (och i alla andra någorlunda intressanta ljud) så varierar frekvesninehållet kontinuerligt över tiden. Detta innebär att om man ska modellera tal med ett filter, måste filterparametrarna kunna variera. Problemet i detta fall är att matlabs filter inte tillåter variabla filterkoefficienter, så vill man göra detta måste man antingen filtrera små bitar (typ 10 millisekunder) åt gången, eller så får man göra sin egen filterfunktion. Det senare är mer lärorikt och inte alls så svårt som det kanske låter. Uppgift 2: en tidsvariabel resonator Skriv en funktion som implementerar en tidsvariabel tvåpolsresonator - ett formantfilter. Funktionen ska följa nedanstående prototyp (dvs ha samma in/utparametrar): function Y = formantfilter(f,bw,x) % % formantfilter - time-varying two-pole resonator filter % % input: 4 (6)
5 % F (1xN row vector) - Time-varying resonance frequency (normalized by fs) % BW (real number) - Constant bandwidth (normalized by fs) % X (1xN row vector) - Input sequence % output: % Y (1xN row vector) - Output sequence Funktionen ska alltså ta en insekvens x(n) och filtrera den enligt filterekvationen y(n) = b 0 x(n) a 1 y(n 1) a 2 y(n 2) där b 0 och a n är desamma som de du fick fram i förberedelseuppgiften. Den viktiga skillnaden nu är att de ändras hela tiden, eftersom de beror av F som är en vektor av samma längd som X. Bandbredden kan vara konstant i denna laboration. tips: denna uppgift löses bäst med en for-slinga (se help for) - något som man annars ofta kan klara sig utan i matlab om man använder matriser på bra sätt. Om du vill testa funktionen kan du filtrera en brussignal med ett filtersvep låt f svepa från 0 till 0.5, t.ex. F = (1:8000)/16000;. En brussignal av samma storlek som F skapar du enkelt med N=rand(size(F));. Sätt bandbredden till Lyssna på ljudet - det ska låta som någon sorts swooosch... Ett spektrogram över ljudet bör visa ett tydligt diagonalt stigande band. Att redovisa: m-fil. 3.3 En syntesapparat för vokaler Sista steget i laborationen är att syntetisera vokalsekvenser med hjälp av den nya resonatorn. Varje formant modelleras som en tvåpolsresonator med två formanter får man en hygglig approximation av överföringsfunktionen hos talröret. Resonatorerna parallellkopplas, precis som i första uppgiften. I naturligt tal så ändras talröret - och därmed formanterna - kontinuerligt, dvs de glider mellan olika vokaler. Frekvenserna i tabell 1 är en sorts riktvärden för normaltal, men i praktiken handlar det om et kontinuum (ofta refereat till som vokalrymden). När du syntetiserar vokalsekvenser i sista upgiften ska du ange vokalsekvensen med hjälp av riktvärdena, och sedan interpolera mellan dessa för att skapa kontinuerliga vokalövergångar. Uppgift 3: sammansättning Skriv ett program som syntetiserar vokalsekvenser med hjälp av din resonatorfunktion. För att underlätta, så finns filen vokaler.m som innehåller formantfrekvenserna i tabellen ovan, i form av en variabel för varje vokal (titta i filen så förstår du). Det innebär att du kan beskriva vokalsekvenser på formen U=[vA vi va vo] - (observera transponatet på slutet) - detta ger en matris med målvärden för vokalsekvensen där varje kolumn motsvarar en formant, och varje rad ett målvärde som motsvarar en vokal i vokalsekvensen. För att styra filtret ska sedan styrparametrarna (formantfrekvenserna) ska ha samma samplingsfrekvens som själva ljudsignalen, f s = 16000, så utifrån målvärdesmatrisen måste man interpolera för att få fram styrparametrarna. Det kan göras med kommandot interp1(). För att bespara dig lite möda kan du utgå från nedanstående rader. De gör så att målvärdena läggs ut med dur = 0.3 sekunders mellanrum och sedan interpoleras med en kubisk spline till matrisen P. Precis som i målvärdesmatrisen så motsvarar kolumnerna i P formantfrekvenser, men P kommer att ha lika många rader som det resulterande ljudet ska ha sampel (motsvarande N dur sekunder). Du kan alltså använda kolumnerna i P direkt för att styra ditt formantfilter. 5 (6)
6 fs=16000; dur=0.3; U=[vA vi va vi] ; n=size(u,1); P=interp1(1:n,U,1:1/(fs*dur):n, spline ) ; Du behöver även en röstkälla, och till att börja med kan du använda en brusvektor av längden n (se föregående uppgift). Syntetisera några vokalsekvenser! Bandbredden kan du sätta till samma som i uppgift 1. Glöm inte att frekvenser & bandbredd måste normeras (delas med f s) innan de går in till filtret! När du fått något som låter som viskade/hesa vokalsekvenser, kan du göra samma sak med en tonande röstkälla. Använd den bifogade funktionen simplesource() - det är en enkel implementation av en tidsvariabel röstkälla där varje röstpuls modelleras som en spik. Denna källa måste också ha en styrparameter, F 0 dvs grundtonsfrekvensen. Denna kan modelleras på samma sätt som formatfrekvenserna, och i samma steg, lägg bara till en rad när du skapar matrisen U: U=[vA vi va vi; ] ;... så kommer den att interpoleras på samma sätt som formanterna, och dyka upp som en femte kolumn i P som kan styra röstkällan. F0 ligger normalt mellan Hz för män och Hz för kvinnor. Nu börjar det roliga. Försök få din vokalsyntesmaskin att säga olika saker (fundera ut ord och meningar som bara innehåller vokaler - det finns fler än man tror) och laborera med olika F0-konturer - stigande, fallande, topp i mitten, etc. Kan du få det att låta som en fråga? Vill man laborera mera så är det är även intressant att applicera olika skalfaktorer på de olika kolumnerna, för att skala formantfrekvenserna respektive grundtonen. Hur ändras rösten när formanterna skalas? Grundtonen? Kan du få rösten att låta mer manlig/kvinnlig/barnslig? Att redovisa: m-fil, ljudfiler och kommentarer. Matlab-tips För att skala kolumnerna i en matris kan man skapa en diagonal matris med skalfaktorer, som man multiplicerar med. Exempel: B=A*diag([2 1.5])skalar kolumnerna i A med 2, 1 respektive (6)
Spektrala transformer Laboration: Vokalsyntes
Spektrala transformer Laboration: Vokalsyntes 1 Introduktion I denna laboration är målsättningen att du ska få handgripliga erfartenterer av digital filtrering. Du ska implementera en enkel men användbar
Laboration i tidsdiskreta system
Laboration i tidsdiskreta system A. Tips Användbara MATLAB-funktioner: conv Faltning square Skapa en fyrkantvåg wavread Läs in en ljudfil soundsc Spela upp ett ljud ones Skapa en vektor med godtyckligt
DT1130 Spektrala transformer Tentamen
DT3 Spektrala transformer Tentamen 5 Tentamen består av fem uppgifter där varje uppgift maximalt ger p. Normalt gäller följande betygsgränser: E: 9 p, D:.5 p, C: p, B: 6 p, A: 8 p Tillåtna hjälpmedel:
DT1130 Spektrala transformer Tentamen
DT Spektrala transformer Tentamen 72 Tentamen består av fem uppgifter där varje uppgift maximalt ger 4 p. Normalt gäller följande betygsgränser: E: 9 p, D:.5 p, C: 4 p, B: 6 p, A: 8 p Tillåtna hjälpmedel:
DT1130 Spektrala transformer Tentamen
DT3 Spektrala transformer Tentamen 3 Tentamen består av fem uppgifter där varje uppgift maximalt ger 4 p. Normalt gäller följande betygsgränser: E: 9 p, D:.5 p, C: 4 p, B: 6 p, A: 8 p Tillåtna hjälpmedel:
DT1120/DT1130 Spektrala transformer Tentamen
DT/DT3 Spektrala transformer Tentamen 86 Tentamen består av fem uppgifter där varje uppgift maximalt ger 4 p. Normalt gäller följande betygsgränser: E: 9 p, D:.5 p, C: 4 p, B: 6 p, A: 8 p Tillåtna hjälpmedel:
DIGITALA FILTER. Tillämpad Fysik Och Elektronik 1. Frekvensfunktioner FREKVENSSVAR FÖR ETT TIDSDISKRET SYSTEM. x(n)= Asin(Ωn)
DIGITALA FILTER TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 1 Frekvensfunktioner x(n)= Asin(Ωn) y(n) H(z) TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 2 FREKVENSSVAR FÖR ETT TIDSDISKRET SYSTEM
Spektrala transformer Laboration: DTMF-detektor
Spektrala transformer Laboration: DTMF-detektor 1 Introduktion I denna laboration kommer du att bygga en detektor för att identifiera DTMF-signaler, dvs de tonsignaler som används för signallering i telenätet
DT1130 Spektrala transformer Tentamen
DT3 Spektrala transformer Tentamen 6 Tentamen består av fem uppgifter där varje uppgift maximalt ger 4 p. Normalt gäller följande betygsgränser: E: 9 p, D:.5 p, C: 4 p, B: 6 p, A: 8 p Tillåtna hjälpmedel:
2F1120 Spektrala transformer för Media Tentamen
F Spektrala transformer för Media Tentamen 68 Tentamen består av fem uppgifter där varje uppgift maximalt ger p. Normalt gäller följande betygsgränser: :9 p, : p, 5: 7 p Tillåtna hjälpmedel: räknare, formelblad
Spektrala Transformer
Spektrala Transformer Kurssammanfattning Fyra kärnkoncept Sampling Faltning Poler och nollställen Fouriertransform Koncept #1: Sampling En korrekt samplad signal kan rekonstrueras exakt, dvs ingen information
TIDSDISKRETA SYSTEM SYSTEMEGENSKAPER. Minne Kausalitet Tidsinvarians. Linjäritet Inverterbarhet Stabilitet. System. Tillämpad Fysik och Elektronik 1
TIDSDISKRETA SYSTEM TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 1 SYSTEMEGENSKAPER x[n] System y[n] Minne Kausalitet Tidsinvarians Linjäritet Inverterbarhet Stabilitet TILLÄMPAD FYSIK OCH ELEKTRONIK,
Digital Signalbehandling i Audio/Video
Digital Signalbehandling i Audio/Video Institutionen för Elektrovetenskap Laboration 1 (del 2) Stefan Dinges Lund 25 2 Kapitel 1 Digitala audioeffekter Den här delen av laborationen handlar om olika digitala
REGLERTEKNIK Laboration 5
6 SAMPLADE SYSTEM 6. Sampling av signaler När man använder en dator som regulator, kan man endast behandla signaler i diskreta tidpunkter. T.ex. mäts systemets utsignal i tidpunkter med visst mellanrum,
Signalanalys med snabb Fouriertransform
Laboration i Fourieranalys, MVE030 Signalanalys med snabb Fouriertransform Den här laborationen har två syften: dels att visa lite på hur den snabba Fouriertransformen fungerar, och lite om vad man bör
Laboration i Fourieranalys, TMA132 Signalanalys med snabb Fouriertransform
Laboration i Fourieranalys, TMA132 Signalanalys med snabb Fouriertransform Den laborationen har syften: dels att visa lite hur den snabba Fouriertransformen fungerar, och lite om vad man den an dels att
Reglerteknik AK. Tentamen 24 oktober 2016 kl 8-13
Institutionen för REGLERTEKNIK Reglerteknik AK Tentamen 24 oktober 26 kl 8-3 Poängberäkning och betygsättning Lösningar och svar till alla uppgifter skall vara klart motiverade. Tentamen omfattar totalt
Resttentamen i Signaler och System Måndagen den 11.januari 2010, kl 14-19
Resttentamen i Signaler och System Måndagen den 11.januari 2010, kl 14-19 Tillåtna hjälpmedel: Valfri miniräknare (utan möjlighet till trådlös kommunkation). Valfri litteratur, inkl. kursböcker, formelsamlingar.
Spektrala transformer Laboration: JPEG-kodning
Spektrala transformer Laboration: JPEG-kodning 1 Introduktion I denna laboration kommer du att få experimentera med transfom-baserad bildkompression enligt JPEG-metoden. Du kommer att implementera en förenklad
REGLERTEKNIK Laboration 4
Lunds Tekniska Högskola Avdelningen för Industriell elektroteknik och automation LTH Ingenjörshögskolan, Campus Helsingborg REGLERTEKNIK Laboration 4 Dynamiska system Inledning Syftet med denna laboration
Analys/syntes-kodning
Analys/syntes-kodning Många talkodare bygger på en princip som kallas analys/syntes-kodning. Istället för att koda en vågform, som man normalt gör i generella ljudkodare och i bildkodare, så har man parametrisk
Faltningsreverb i realtidsimplementering
Faltningsreverb i realtidsimplementering SMS45 Lp1 26 DSP-system i praktiken Jörgen Anderton - jorand-3@student.ltu.se Henrik Wikner - henwik-1@student.ltu.se Introduktion Digitala reverb kan delas upp
Tentamen i TMA 982 Linjära System och Transformer VV-salar, 27 aug 2013, kl
Tentamen i TMA 982 Linjära System och Transformer VV-salar, 27 aug 2013, kl 8.30-12.30 Examinatorer: Lars Hammarstrand och Thomas Wernstål Tentamen består av två delar (Del I och Del II) på sammanlagt
System. Z-transformen. Staffan Grundberg. 8 februari 2016
Z-transformen 8 februari 2016 Innehåll Z-transformen Tidsdiskreta LTI-system Överföringsfunktioner Frekvensegenskaper Z-transformen Z-transformen av en tidsdiskret signal y[n] ges av Y (z) = Z[y] = y[n]z
Laborationsprojekt i digital ljudsyntes
Laborationsprojekt i digital ljudsyntes A. Målsättning Att studenten skall få fördjupade kunskaper i digital signalbehandling genom att lära sig de grundläggande principerna för digital ljudsyntes av stränginstrumentliknande
Övningar med Digitala Filter med exempel på konstruktion och analys i MatLab
Övningar med Digitala Filter med exempel på konstruktion och analys i MatLab Eddie Alestedt Vt-2002 Digitala filter Digitala filter appliceras på samplade signaler och uppvisar helt andra egenskaper än
TSBB16 Datorövning A Samplade signaler Faltning
Name: ID number: Passed: LiU-ID: Date: TSBB16 Datorövning A Samplade signaler Faltning Utvecklad av Klas Nordberg Computer Vision Laboratory, Linköping University, Sweden 24 augusti 2015 Introduktion Denna
Introduktion Digitala filter. Filter. Staffan Grundberg. 12 maj 2016
12 maj 216 Innehåll Introduktion Första ordningens system Andra ordningens system Fördröjning Allmänt om filter Butterworthfilter Första ordningens system Andra ordningens system Fördröjning Allmänt om
Kompletterande räkneuppgifter i Spektrala Transformer Komplex analys, sampling, kvantisering, serier och filter Laura Enflo & Giampiero Salvi
Kompletterande räkneuppgifter i Spektrala Transformer Komplex analys, sampling, kvantisering, serier och filter & Giampiero Salvi Komplex analys Om man endast använder den reella tallinjen är det inte
MODELLERING AV DYNAMISKA SYSTEM OCH INLUPP 2
UPPSALA UNIVERSITET AVDELNINGEN FÖR SYSTEMTEKNIK EKL och PSA, 2002 BC, 2009 MODELLERING AV DYNAMISKA SYSTEM DATORSTÖDD RÄKNEÖVNING OCH INLUPP 2 1. Överföringsfunktioner 2. Tillståndsmetodik Förberedelseuppgifter:
Talets akustik repetition
Pétur Helgason VT 29 Talets akustik repetition 29-3-3 Vad är ljud för någonting? Vi människor lever och rör oss i ett skikt med gas som ligger ovanpå jordens yta. Gasen består av ca 8 % kväve och 2 % syre.
DIGITALA FILTER DIGITALA FILTER. Tillämpad Fysik Och Elektronik 1
DIGITALA FILTER TILLÄMPAD FYIK OCH ELEKTRONIK, UMEÅ UNIVERITET 1 DIGITALA FILTER Digitala filter förekommer t.ex.: I Photoshop och andra PC-programvaror som filtrerar. I apparater med signalprocessorer,
KÄLLA-FILTER. Repetition. Talapparaten i källa-filter perspektivet. Repetition (ff) Ljudkällor i talapparaten (ff) Ljudkällor i talapparaten
KÄLLA-FILTER Repetition - Repetition av resonans och filter Komplexa ljudvågor: deltoner Amplitudspektrum - Talapparaten som resonator - Talapparaten som källa-filtersystem - Spektrum, Spektrogram, spektrograf
TSDT15 Signaler och System
TSDT5 Signaler och System DATORUPPGIFTER VÅREN 03 OMGÅNG Mikael Olofsson, mikael@isy.liu.se Efter en förlaga av Lasse Alfredsson February, 03 Denna uppgiftsomgång behandlar faltning samt system- & signalanalys
Lab lanserade R.A. Moog Inc. en ny synt: Minimoog. Den var designad av Bill Hemsath och Robert Moog och kom att revolutionera musikhistorien.
Lab 1 1970 lanserade R.A. Moog Inc. en ny synt: Minimoog. Den var designad av Bill Hemsath och Robert Moog och kom att revolutionera musikhistorien. Minimoogen var egentligen en ganska enkel synt. Den
MODELLERING AV DYNAMISKA SYSTEM OCH INLUPP 2
UPPSALA UNIVERSITET AVDELNINGEN FÖR SYSTEMTEKNIK EKL och PSA, 2002, rev BC 2009, 2013 MODELLERING AV DYNAMISKA SYSTEM DATORSTÖDD RÄKNEÖVNING OCH INLUPP 2 1. Överföringsfunktioner 2. Tillståndsmetodik Förberedelseuppgifter:
RÄKNEEXEMPEL FÖRELÄSNINGAR Signaler&System del 2
t 1) En tidskontinuerlig signal x( t) = e 106 u( t) samplas med sampelperioden 1 µs, varefter signalen trunkeras till 5 sampel. Den så erhållna signalen får utgöra insignal till ett tidsdiskret LTI-system
DT1120 Spektrala transformer för Media Tentamen
DT Spektrala transformer för Media Tentamen 77 Tentamen består av fem uppgifter där varje uppgift maximalt ger 4 p. Normalt gäller följande betygsgränser: 3:9 p, 4: 3 p, 5: 7 p Tillåtna hjälpmedel: räknare,
Miniräknare, formelsamling i signalbehandling.
LUNDS TEKNISKA HÖGSKOLA Inst. för Elektro- och Informationsteknik Tentamen 05-0-4 DIGITAL SIGNALBEHANDLING, ESS040 Tid: 4.00 9.00 Sal: Sparta B, D Hjälpmedel: Miniräknare, formelsamling i signalbehandling.
Tillämpning av komplext kommunikationssystem i MATLAB
(Eller: Vilken koppling har Henrik Larsson och Carl Bildt?) 1(5) - Joel Nilsson joelni at kth.se Martin Axelsson maxels at kth.se Sammanfattning Kommunikationssystem används för att överföra information,
Tentamen i ESS 010 Signaler och System E3 V-sektionen, 16 augusti 2005, kl 8.30 12.30
Tentamen i ESS 00 Signaler och System E3 V-sektionen, 6 augusti 2005, kl 8.30 2.30 Examinator: Mats Viberg Tentamen består av 5 uppgifter som vardera ger maximalt 0 p. För godkänd tentamen fordras ca 20
Spektrala Transformer
Spektrala Transformer Tidsdiskreta signaler, kvantisering & sampling Tidsdiskreta signaler Tidskontinuerlig signal Ex: x(t) = sin(ωt) t är ett reellt tal ω har enheten rad/s Tidsdiskret signal Ex: x(n)
Spektrogram att göra ljud synligt
Spektrogram att göra ljud synligt 2011-02-23 Vad är ljud för någonting? Vi människor lever och rör oss i ett skikt med gas som ligger ovanpå jordens yta. Gasen består av ca 80 % kväve och 20 % syre. Denna
Laplace, Fourier och resten varför alla dessa transformer?
Laplace, Fourier och resten varför alla dessa transformer? 1 Bakgrund till transformer i kontinuerlig tid Idé 1: Representera in- och utsignaler till LTI-system i samma basfunktion Förenklad analys! Idé
Föreläsning 10, Egenskaper hos tidsdiskreta system
Föreläsning 10, Egenskaper hos tidsdiskreta system Reglerteknik, IE1304 1 / 26 Innehåll Kapitel 18.1. Skillnad mellan analog och digital reglering 1 Kapitel 18.1. Skillnad mellan analog och digital reglering
Grundläggande signalbehandling
Digital Signalbehandling Lab 1 Grundläggande signalbehandling Denna version: juli 2007 LERTEKNIK REG Namn: Personnr: AU T O MA RO TI C C O N T LINKÖPING L Datum: Godkänd: 1 Introduktion Syftet med denna
Laboration i Fourieranalys för F2, TM2, Kf2 2011/12 Signalanalys med snabb Fouriertransform (FFT)
Laboration i Fourieranalys för F2, TM2, Kf2 2011/12 Signalanalys med snabb Fouriertransform (FFT) Den här laborationen har två syften: dels att visa hur den snabba Fouriertransformen fungerar och vad man
Flerdimensionell signalbehandling SMS022
Luleå tekniska universitet Avd för signalbehandling Frank Sjöberg Flerdimensionell signalbehandling SMS022 Laboration 4 Array Processing Syfte: Syftet med den här laborationen är att få grundläggande förståelese
Flerdimensionella signaler och system
Luleå tekniska universitet Avd för signalbehandling Magnus Sandell (reviderad av Frank Sjöberg) Flerdimensionell signalbehandling SMS033 Laboration 1 Flerdimensionella signaler och system Syfte: Den här
Tentamen ssy080 Transformer, Signaler och System, D3
Tentamen ssy080 Transformer, Signaler och System, D3 Examinator: Ants R. Silberberg 19 oktober 2011 kl. 08.30-12.30 sal: Hörsalsvägen Förfrågningar: Ants Silberberg, tel. 1808 Lösningar: Anslås torsdag
Liten MATLAB introduktion
Liten MATLAB introduktion Denna manual ger en kort sammanfattning av de viktigaste Matlab kommandon som behövs för att definiera överföringsfunktioner, bygga komplexa system och analysera dessa. Det förutsätts
TSKS21 Signaler, Information och Bilder Lab 2: Digitalisering
TSKS21 Signaler, Information och Bilder Lab 2: Digitalisering Mikael Olofsson 8 februari 2017 Fyll i detta med bläckpenna Laborant Personnummer Datum Godkänd 1 1 Allmänt Denna laboration syftar till att
Språkljudens akustik. Akustik, akustiska elementa och talanalys
Akustik, akustiska elementa och talanalys Språkljudens akustik Mattias Heldner KTH Tal, musik och hörsel heldner@kth.se Talsignalen mer lättåtkomlig än andra delar av talkommunikationskedjan Det finns
Lab skapades Ove (Orator Verbis Electris) av Gunnar Fant, KTH.
Lab 2 1953 skapades Ove (Orator Verbis Electris) av Gunnar Fant, KTH. Ove var en talsyntesmaskin som kunde göra vokalljud. Ganska bra sådana dessutom, i alla fall med tanke på dåtidens teknik. Här finns
Spektrala transformer Laboration: JPEG-kodning
Spektrala transformer Laboration: JPEG-kodning 1 Introduktion I denna laboration kommer du att få experimentera med transfom-baserad bildkompression enligt JPEG-metoden. Du kommer att implementera en förenklad
GRUNDKURS I SIGNALBEHANDLING (454300), 5sp Tentamen
GRUNDKURS I SIGNALBEHANDLING (454300), 5sp Tentamen 26.02013 kursens övningsuppgifter eller gamla tentamensuppgifter, eller Matlab-, Scilab- eller Octave- programmerbara kalkylatorer eller datorer. 1.
1. Vi har givet två impulssvar enligt nedan (pilen under sekvenserna indikerar den position där n=0) h 1 (n) = [ ]
TEKNISKA HÖGSKOLAN I LUND Institutionen för elektro- och informationsteknik Kurskod: ESS00 Tentamen i Digital Signalbehanding Datum: 0 5 Time period: 08.00 3.00 Bedömning: Sex uppgifter. Varje uppgift
Projekt 3: Diskret fouriertransform
Projekt 3: Diskret fouriertransform Diskreta fouriertransformer har stor praktisk användning inom en mängd olika områden, från analys av mätdata till behandling av digital information som ljud och bildfiler.
Tillämpad digital signalbehandling Laboration 1 Signalbehandling i Matlab och LabVIEW
Institutionen för data- och elektroteknik 004-03-15 Signalbehandling i Matlab och LabVIEW 1 Introduktion Vi skall i denna laboration bekanta oss med hur vi kan använda programmen Matlab och LabVIEW för
Laboration 3 Sampling, samplingsteoremet och frekvensanalys
Laboration 3 Sampling, samplingsteoremet och frekvensanalys 1 1 Introduktion Syftet med laborationen är att ge kunskaper i att tolka de effekter (speglingar, svävningar) som uppkommer vid sampling av en
Exempelsamling Grundläggande systemmodeller. Klas Nordberg Computer Vision Laboratory Department of Electrical Engineering Linköping University
Exempelsamling Grundläggande systemmodeller Klas Nordberg Computer Vision Laboratory Department of Electrical Engineering Linköping University Version: 0.11 September 14, 2015 Uppgifter markerade med (A)
Lab 1 Analog modulation
2 Lab-PM för TSEI67 Telekommunikation Lab 1 Analog modulation Med Simulink kan man som sagt bygga upp ett kommunikationssystem som ett blockschema, och simulera det. Ni ska i denna laboration inledningsvis
Laplace, Fourier och resten varför alla dessa transformer?
Laplace, Fourier och resten varför alla dessa transformer? 1 Vi har sett hur ett LTI-system kan ges en komplett beskrivning av dess impulssvar. Genom att falta insignalen med impulssvaret erhålls systemets
Signalbehandling Röstigenkänning
L A B O R A T I O N S R A P P O R T Kurs: Klass: Datum: I ämnet Signalbehandling ISI019 Enk3 011211 Signalbehandling Röstigenkänning Jonas Lindström Martin Bergström INSTITUTIONEN I SKELLEFTEÅ Sida: 1
Digital signalbehandling Digitalt Ljud
Signalbehandling Digital signalbehandling Digitalt Ljud Bengt Mandersson Hur låter signalbehandling Institutionen för elektro- och informationsteknik 2008-10-06 Elektronik - digital signalbehandling 1
Tentamen i Signaler och kommunikation, ETT080
Inst. för informationsteknologi Tentamen i Signaler och kommunikation, ETT080 2 juni 2006, kl 14 19 Skriv namn och årskurs på alla papper. Börja en ny lösning på ett nytt papper. Använd bara en sida av
Laboration i Fourieranalys för F2, TM2, Kf2 2013/14 Signalanalys med snabb Fouriertransform (FFT)
Laboration i Fourieranalys för F2, TM2, Kf2 2013/14 Signalanalys med snabb Fouriertransform (FFT) Den här laborationen har två syften: dels att visa hur den snabba Fouriertransformen fungerar och vad man
Lab 4: Digital transmission Redigerad av Niclas Wadströmer. Mål. Uppstart. Genomförande. TSEI67 Telekommunikation
TSEI67 Telekommunikation Lab 4: Digital transmission Redigerad av Niclas Wadströmer Mål Målet med laborationen är att bekanta sig med transmission av binära signaler. Det innebär att du efter laborationen
När man vill definiera en matris i MATLAB kan man skriva på flera olika sätt.
"!$#"%'&)(*,&.-0/ 177 Syftet med denna övning är att ge en introduktion till hur man arbetar med programsystemet MATLAB så att du kan använda det i andra kurser. Det blir således inga matematiska djupdykningar,
TAIU07 Matematiska beräkningar med Matlab
TAIU07 Matematiska beräkningar med Matlab Laboration 3. Linjär algebra Namn: Personnummer: Epost: Namn: Personnummer: Epost: Godkänd den: Sign: Retur: 1 Introduktion 2 En Komet Kometer rör sig enligt ellipsformade
Signal- och bildbehandling TSBB03
Tentamen i Signal- och bildbehandling TSBB03 Tid: 2004-06-0 kl. 8-2 Lokaler: Garnisonen Ansvarig lärare: Maria Magnusson Seger besöker lokalen kl. 9.00 och 0.45. tel 073-804 38 67 Hjälpmedel: Räknedosa,
LUNDS TEKNISKA HÖGSKOLA Institutionen för Elektro- och Informationsteknik
LUNDS TEKNISKA HÖGSKOLA Institutionen för Elektro- och Informationsteknik SIGNALBEHANDLING I MULTIMEDIA, EITA50, LP4, 209 Inlämningsuppgift av 2, Assignment out of 2 Inlämningstid: Lämnas in senast kl
Exempelsamling Grundläggande systemmodeller. Klas Nordberg Computer Vision Laboratory Department of Electrical Engineering Linköping University
Exempelsamling Grundläggande systemmodeller Klas Nordberg Computer Vision Laboratory Department of Electrical Engineering Linköping University Version: 0.1 August 25, 2015 Uppgifter markerade med (A) är
Laboration 1 - Simplexmetoden och Modellformulering
Linköpings universitet Optimeringslära grundkurs för Y Matematiska institutionen Laboration 1 Optimeringslära 30 januari 2013 Laboration 1 - Simplexmetoden och Modellformulering Den första delen av laborationen
Digitala filter. FIR Finit Impulse Response. Digitala filter. Digitala filter. Digitala filter
Digitala filter Digitala filter FIR Finit Impulse Response Digitala filter förekommer t.ex.: I Matlab, Photoshop oh andra PCprogramvaror som filtrerar. I apparater med signalproessorer, t.ex. mobiltelefoner,
Impulssvaret Betecknas h(t) respektive h(n). Impulssvaret beskriver hur ett system reagerar
6 Sjätte lektionen 6.1 Transformvärlden 6.1.1 Repetera Rita upp en tankekarta över följande begrepp där du anger hur de hänger ihop och hur de betecknas. Vad beskriver de? Impulssvaret Amplitudsvaret (frekvensgången)
Spektrala Transformer
Spektrala Transformer Tidsdiskreta signaler, kvantisering & sampling Tidsdiskreta signaler Tidskontinuerlig signal Ex: x(t) = sin(ωt) t är ett reellt tal ω har enheten rad/s Tidsdiskret signal Ex: x(n)
( ), så kan du lika gärna skriva H ( ω )! ( ) eftersom boken går igenom laplacetransformen före
Några allmänna kommentarer gällande flera av lösningarna: Genomgående används kausala signaler och kausala system, vilket innebär att det är den enkelsidiga laplacetransformen som används. Bokens författare
G(s) = 5s + 1 s(10s + 1)
Projektuppgift 1: Integratoruppvridning I kursen behandlas ett antal olika typer av olinjäriteter som är mer eller mindre vanligt förekommande i reglersystem. En olinjäritet som dock alltid förekommer
Tentamen ssy080 Transformer, Signaler och System, D3
Tentamen ssy080 Transformer, Signaler och System, D3 Examinator: Ants R. Silberberg oktober 009 kl. 4.00-8.00 lokal: Johanneberg Förfrågningar: Ants Silberberg, tel. 808 Lösningar: Anslås torsdag okt.
Tentamen i Styr- och Reglerteknik, för U3 och EI2
Högskolan i Halmstad Sektionen för Informationsvetenskap, Data- och Elektroteknik (IDE) Tentamen i Styr- och Reglerteknik, för U3 och EI2 Tid: Onsdagen den 12 Augusti kl. 9-13, 29 Sal: - Tillåtna hjälpmedel:
Digital signalbehandling Kamfilter och frekvenssamplande filter
Institutionen för eletroteni 999--9 Kamfilter och frevenssamplande filter I frevenssamplande filter utgår vi från en filterstrutur som har ett stort antal nollställen i frevensgången och modellerar filtrets
LUNDS TEKNISKA HÖGSKOLA Inst. for Elektro- och Informationsteknik. SIGNALBEHANDLING I MULTIMEDIA, ETI265 Inlämningsuppgift 1 (av 2), Task 1 (out of 2)
LUNDS TEKNISKA HÖGSKOLA Inst. for Elektro- och Informationsteknik SIGNALBEHANDLING I MULTIMEDIA, ETI65 Inlämningsuppgift (av ), Task (out of ) Inlämningstid: Inlämnas senast kl 7. fredagen den 5:e maj
REGLERTEKNIK KTH. REGLERTEKNIK AK EL1000/EL1110/EL1120 Tentamen , kl
REGLERTEKNIK KTH REGLERTEKNIK AK EL/EL/EL2 Tentamen 2 2 4, kl. 4. 9. Hjälpmedel: Kursboken i glerteknik AK (Glad, Ljung: glerteknik eller motsvarande) räknetabeller, formelsamlingar och räknedosa. Observeraattövningsmaterial
Exercises Matlab/simulink V
817/Thomas Munther IDE-sektionen Exercises Matlab/simulink V MA-filter ( Moving Average ) Detta är ju egentligen inget annat än ett FIR-filter fast där vi använder samma vikter på alla insignaltermer och
1. Ange samtliga uppsättningar av heltal x, y, z som uppfyller båda ekvationerna. x + 2y + 24z = 13 och x 11y + 17z = 8.
Tentamenskrivning MATA15 Algebra: delprov 1, 6hp Lördagen den mars 014 Matematikcentrum Matematik NF LÖSNINGSFÖRSLAG 1. Ange samtliga uppsättningar av heltal x, y, z som uppfyller båda ekvationerna x +
Vektorgeometri för gymnasister
Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Skalärprodukt Innehåll Skalärprodukt - Inledning
Föreläsning 11, Dimensionering av tidsdiskreta regulatorer
Föreläsning 11, Dimensionering av tidsdiskreta regulatorer KTH 8 februari 2011 1 / 28 Innehåll 1 Kapitel 19.2. Polplaceringsmetoden 2 3 4 5 6 2 / 28 Innehåll 1 Kapitel 19.2. Polplaceringsmetoden 2 3 4
Hambley avsnitt
Föreläsning 0 Hambley avsnitt 6.6.8 Filter [6.2, 6.5 6.8] Vid kommunikation används tidsharmoniska signaler. Dessa har ett visst frekvensband centrerad kring en bärfrekvens. Som exempel kan en sändare
3D- LJUD. Binaural syntes med hjälp av HRTF- filter och duplexteorin. DT1174 Ljud som informationsbärare Sandra Liljeqvist
3D- LJUD Binaural syntes med hjälp av HRTF- filter och duplexteorin DT1174 Ljud som informationsbärare Sandra Liljeqvist sanlil@kth.se 2012-11- 14 Inledning Mitt mål är att illustrera binaural syntes med
Signalbehandling, förstärkare och filter F9, MF1016
Signalbehandling, förstärkare och filter F9, MF1016 Signalbehandling, inledning Förstärkning o Varför förstärkning. o Modell för en förstärkare. Inresistans och utresistans o Modell för operationsförstärkaren
A
Lunds Universitet LTH Ingenjorshogskolan i Helsingborg Tentamen i Reglerteknik 2008{05{29. Ett system beskrivs av foljande in-utsignalsamband: dar u(t) ar insignal och y(t) utsignal. d 2 y dt 2 + dy du
FÖRELÄSNING 13: Analoga o p. 1 Digitala filter. Kausalitet. Stabilitet. Ex) på användning av analoga p. 2 filter = tidskontinuerliga filter
FÖRELÄSNING 3: Analoga o p. Digitala filter. Kausalitet. Stabilitet. Analoga filter Ideala filter Butterworthfilter (kursivt här, kommer inte på tentan, men ganska bra för förståelsen) Kausalitet t oh
Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK DATORLABORATION 4 MATEMATISK STATISTIK, FÖR I/PI, FMS 121/2, HT-3 Laboration 4: Stora talens lag, Centrala gränsvärdessatsen och enkla punktskattningar
Stabilitetsanalys och reglering av olinjära system
Laboration i Reglerteori, TSRT09 Stabilitetsanalys och reglering av olinjära system Denna version: 18 januari 2017 3 2 1 0 1 2 3 0 10 20 30 40 50 REGLERTEKNIK Namn: Personnr: AUTOMATIC LINKÖPING CONTROL
Hambley avsnitt
Föreläsning Hambley avsnitt 6.6.8 Filter [6.2, 6.5 6.8] Nästan all trådlös och trådbunden kommunikation är baserad på tidsharmoniska signaler. Signalerna utnyttjar ett frekvensband centrerad kring en bärfrekvens.
Datorövning 2 Matlab/Simulink. Styr- och Reglerteknik för U3/EI2
Högskolan i Halmstad Sektionen för Informationsvetenskap, Dator- och Elektroteknik 08/ Thomas Munther Datorövning 2 Matlab/Simulink i Styr- och Reglerteknik för U3/EI2 Laborationen förutsätter en del förberedelser
Optimal Signalbehandling Datorövning 1 och 2
Institutionen för Elektro- och Informationsteknik Lunds Universitet Lunds Tekniska Högskola Optimal Signalbehandling Datorövning 1 och 2 Leif Sörnmo Martin Stridh 2011 Department of Electrical and Information
ERE 102 Reglerteknik D Tentamen
CHALMERS TEKNISKA HÖGSKOLA Institutionen för signaler och system Reglerteknik, automation och mekatronik ERE 02 Reglerteknik D Tentamen 202-2-2 4.00 8.00 Examinator: Bo Egar, tel 372. Tillåtna hjälpmedel: