Lab skapades Ove (Orator Verbis Electris) av Gunnar Fant, KTH.
|
|
- Emma Britta Håkansson
- för 5 år sedan
- Visningar:
Transkript
1 Lab skapades Ove (Orator Verbis Electris) av Gunnar Fant, KTH. Ove var en talsyntesmaskin som kunde göra vokalljud. Ganska bra sådana dessutom, i alla fall med tanke på dåtidens teknik. Här finns en video där Jonas Beskow (också KTH) använder motion capture för att kontrollera Ove. I slutet av videon får ni dock en kort glimt av Gunnar Fant, och det interface han utvecklade i början av 50-talet: Denna övning går ut på att framställa talljud med hjälp av Matlab, på liknande sätt som Ove. Grundljudet För att skapa ett vokalljud krävs ett bredbandigt ljud, och sedan ett antal filter som formar detta ljud för att skapa formanterna, dvs de karaktäristiska övertoner som gör att olika språkljud skiljer sig åt. Först behövs en fundamentalfrekvens (F 0 ). Det är själva grundtonen i rösten. För att härma en mansröst ligger F 0 runt 130 Hz, för att härma en kvinnoröst ligger F 0 runt 195 Hz. F 0 gör ni enklast genom att skapa en sinuston i rätt frekvens och längd som ni senare mixar in. Ni kan också testa att göra ett bandpassfilter med rätt brytfrekvens (F 0 ) och som ni senare applicerar på det bredbandiga ljudet. Ett sätt att sedan skapa ett bredbandigt ljud är med brus. Vitt brus (white Gaussian noise) i Matlab skapas med y = wgn(m,n,p);, där y är en m*n vektor med signalstyrkan p (som definieras i decibel relativt till en watt). Eftersom ett ljud inte får överstiga/understiga +/-1 när det spelas upp eller sparas ut från Matlab, måste ni kolla skalan så att inte distorsion uppstår. Tänk också på längden på vektorn, samt samplingsfrekvensen, och åt vilket håll ni bygger vektorn (allt blir enklare om ni jobbar med vektorer åt samma håll). Sätt samplingsfrekvensen till och ljudlängden till 3 sekunder. Formanter För att forma formanterna behövs tre bandpassfilter (F 1, F 2, F 3 ). Dessa filter skapar övertonsserien som gör talljudet. I huvudsak är det de första två formantfrekvenserna som definierar vokalljudet, vilket syns på att de varierar markant mer mellan vokalljuden än vad F 3 gör. Formantfiltrerna filtrerar det ursprungliga ljudet parallellt och inte seriellt. Skulle filtren läggas parallellt skulle det inte finnas mycket information för F 3 om F 0 användes först, och tvärt om, eftersom de frekvenserna redan skulle vara dämpade av det/de tidigare filtren. Välj ett vokalljud (engelskt sådant) utifrån följande tabell (M = man, W = kvinna, Ch = barn):
2 Ovanstående tabell kommer från: Peterson, G.E., and H.L. Barney, "Control Methods Used in a Study of the Vowels," Journal of the Acoustical Society of America, vol. 24, Bandpassfilter skapas enkelt med matlabkod. Bandpassfiltren ska filtrera det bredbandiga ljudet parallellt, och de tre filtrerade ljuden ska därefter summeras/mixas samman i olika amplitudnivåer. Ett filter skapas med [b,a] = butter(n,wn,ftype);, där b och a är koefficienterna för filtrets transferfunktion, n ställer ordningen på filtret, Wn är brytfrekvensen(erna) och ftype sätter filtertypen. Ni filtrerar därefter originalljudet genom dataout = filter(b,a,datain);. Lämpligt är 2a-ordningens bandpassfilter. Brytfrekvenserna sätts till korrekt Hz enligt ovanstående tabell, och bandbredden för filtren ska vara bredast för F 1, smalare för F 2 och smalast för F 3. Sätt bandbredden till 0.1 för F 1 (dvs lägre brytfrekvens för F 1 = F 1 -F 1 *0.1 och övre brytfrekvens för F 1 = F 1 +F 1 *0.1), 0.07 för F 2 och 0.05 för F 3. Liksom i laboration 1 ska brytfrekvensen Wn vara ett värde normaliserat mellan 0 och 1, där 1 motsvaras av halva samplingsfrekvensen (enligt Nyquistteoremet). Amplitud på formanterna och mix Sedan ska de fyra ljuden mixas, summeras ihop till ett ljud. I tabellen ovan visas amplituden för F 1, F 2, respektive F 3 dämpat gentemot F 0. Värdet är angivet i db och behöver konverteras från db till magnitud. Detta fixas enkelt med db2mag() eller med (10^(amplitudeSetting/20)). Multiplicera varje formantljud med motsvarande formantnivå, och summera slutligen de fyra ljuden. Infade och utfade Ljudet borde fadeas in och ut lite för att snygga till starten och slutet. Detta går enkelt att göra linjärt med en fadevektor som går från 0 till 1 i ett visst antal steg, till exempel 100ms, och se till att ta hänsyn till samplingsfrekvensen. Exempelvis: fadevektor = [0:1/4410:1]; men, det är snyggare att göra detta så att det enkelt går att förändra fadetiden i ms. Denna vektor vänder vi sedan på för att göra utfade, se fliplr. Skapa sedan en vektor med ettor i som är lika lång som längden av F 0 minus två fadevektor. Använd ones(n), se till fadevektorn och vektorn har samma proportioner, annars måste den ena transponeras med. Därefter skapar ni en ny vektor där ni först lägger till fadevektor,
3 sedan vektorn med ettor och slutligen fadevektor men som är vänd. Slutligen applicerar ni fadevektorn på det färdiga talljudet med.*. Spela upp ert vokalljud. p = audioplayer(y, Fs); playblocking(p); Förbättringar Nu är det dags för att förbättra, eller i alla fall förändra, vokalljudet. Bruset skapar egentligen inte den bästa grunden för talljud. Kanske vore rosa brus, dvs brus som har jämn fördelning av energi i alla oktaver, även kallat 1/f-brus, ge ett bättre bredbandigt ljud. Men, i stället ska ni använda additiv syntesmetod bestående av fyra operatorer. Skapa därför en frekvensmodulerad signal som byggs upp av en sinusoscillator i F 0, som frekvensmoduleras av en sinusoscillator i F 1, som moduleras av en sinus i F 2, som moduleras av en sinus i F 3. Liknande detta, fast med fyra operatorer: outputsine = sin(2*pi*t.*freq+fmdepth*sin(2*pi*t.*freq)); Därefter ska formantfiltren appliceras som tidigare. Testa att spela upp vokalljudet igen. Ett annat sätt att få ett bättre talljud är genom summering av många sinus med olika frekvenser, en så kallad Band-Limited Pulse Generator. Detta görs genom att skapa ett antal sinustoner från grundfrekvensen, F 0, och uppåt (så långt som det behövs övertoner, dvs till och med F 3 och lagom långt uppåt i frekvenserna så att F 3 s alla övertoner ryms) fördelade över frekvenserna. Detta kan ni räkna ut, tillräckligt noga genom att dela F 3 s frekvens med F 0 s frekvens, avrunda och lägga till 10. Detta ger 29 sinusljud för a enligt tabellen ovan (2440/130+10). Skapa den första övertonen genom att ta F 0 s frekvens*(i+1), om i räknas från 1 och upp till antalet sinusljud. Lämpligt används en for- (eller while-) loop till detta. Sinustonerna skapar ett mjukare och mer naturligt vokalljud jämfört mot det brusiga bruset och det metalliska FM-ljudet. Tänk på att skala ljudet i efterhand så att inte distorsion uppstår, och att alla toner summeras lika starka. Därefter ska formantfiltren appliceras som tidigare. Testa att spela upp vokalljudet igen. Vidare utvecklingar Ett sätt att göra vokalljudet mer levande och intressant är att skapa en enkel envelop som förändrar tonhöjden, antingen i en uppåtgående eller nedåtgående rörelse. Detta görs tämligen enkelt genom att skapa en vektor för frekvensförändringen som går från 1 (originalfrekvens) till det läge ni vill komma till, 1.05 för 5% uppåt eller 0.90 för 10% nedåt osv. Stegen i denna vektor måste dela förändringen i längden av tidsvektorn för F 0. Om t är tidsvektorn för F 0, startfrekvens är startförändring av F 0 s grundfrekvens, slutfrekvens är slutförändring av F 0 s grundfrekvens så: frekvensvektor = [startfrekvens:skillnad mellan startfrekvens och slutfrekvens/(length(t)-1):slutfrekvens]; Detta läggs sedan till F0 genom: fundamentalsinus = sin(2*pi*fundamentalfrekvens.* frekvensvektor.*t);
4 Enklast är att enbart applicera detta på F 0 (om ni använder sinustoner), eftersom F 0 mixas in utan att filtreras. Vidare kan ni skapa en mer intressant amplitudenvelop än fade in och fade ut, som en ADSR (Attack, Decay, Sustain, och Release), och applicera den på ljudet. Vill ni skapa en mer intressant envelop kan ni göra det liknande som gjordes i Yamaha DX7 och Casio CZ1000 där envelopen bestod av flera steg och varje steg bestod av en tidsinställning och ett värde. Det varje steg gjorde var att gå till värdet på den tid som ställdes in. Ni kan också amplitudmodulera talljudet exempelvis med en sinusvåg, genom att skapa en sinuston som modulerar talljudet i ställbar frekvens och styrka. Kom ihåg att en sinus normalt svänger mellan -1 och +1, men amplituden nog bäst moduleras någonstans mellan 0.75 och 1 liknande den blå vågformen nedan (den röda vågformen är ett vokalljud och den gula är en enkel amplitudenvelop). Ljudet lär säkerligen bli mer levande med sådana amplitudmodulationer, om än kanske inte nödvändigtvis mer röstlikt eller verkligt. Finns tid kan ni prova att förändra ordningen/brantheten på bandpassfiltren och se vad som händer, om det blir bättre eller sämre. Prova gärna andra sorters filter än butterworth också. Att rapportera Namn på er: Redogör för vilket vokalljud ni använt:
5 Vilken metod att skapa det bredbandiga ljudet var bäst? Varför? Hur skiljde sig ljuden åt? Vad innebar dessa skillnader för slutljudet? Vilken typ av filter användes? Dvs brytfrekvenser, ordning, osv? Varför? Hann ni testa pitchenvelop? Vad innebar det för slutljudet? Hann ni testa AM eller amplitudenvelop? Hur och vilken? Vad innebar det för slutljudet? Hann ni testa andra typer än Butterworth-filter? Hur skiljde sig filtren åt? Vilken typ av filter passade bäst? Hur skulle man kunna skapa konsonanter som S, T, K, eller L, M, N,?
6 Vidare läsning Peterson, G.E., and H.L. Barney, "Control Methods Used in a Study of the Vowels," Journal of the Acoustical Society of America, vol. 24, Mer info om formanter: Och ännu mer info om rösten: En kort text om modellering av talljud, Measuring and Modeling Speech Production: En mer djupgående kurs om talsyntes: Och slutligen kan det kanske roa er att lyssna på gamla inspelningar från historiska talsyntesmaskiner:
Lab lanserade R.A. Moog Inc. en ny synt: Minimoog. Den var designad av Bill Hemsath och Robert Moog och kom att revolutionera musikhistorien.
Lab 1 1970 lanserade R.A. Moog Inc. en ny synt: Minimoog. Den var designad av Bill Hemsath och Robert Moog och kom att revolutionera musikhistorien. Minimoogen var egentligen en ganska enkel synt. Den
TNMK054 - LJUDTEKNIK 1 FILTER OCH VCF
TNMK054 - LJUDTEKNIK 1 FILTER OCH VCF NÅGRA FREKVENSER Bastrumma Kropp 60-80Hz, snärt 2,5kHz Virveltrumma Kropp 240Hz, krispighet 5kHz HiHat & cymbaler Gongljud 200Hz, briljans 7,5-12kHz Hängpuka Kropp
Grundläggande ljud- och musikteori
Grundläggande ljud- och musikteori Jan Thim Magnus Eriksson Lektionens syfte Syftet med denna lektion är är att att ge ge förståelse för för decibelbegreppet, spektrum, digitalisering och och olika olika
Grundläggande signalbehandling
Beskrivning av en enkel signal Sinussignal (Alla andra typer av signaler och ljud kan skapas genom att sätta samman sinussignaler med olika frekvens, Amplitud och fasvridning) Periodtid T y t U Amplitud
Språkljudens akustik. Akustik, akustiska elementa och talanalys
Akustik, akustiska elementa och talanalys Språkljudens akustik Mattias Heldner KTH Tal, musik och hörsel heldner@kth.se Talsignalen mer lättåtkomlig än andra delar av talkommunikationskedjan Det finns
Tillämpning av komplext kommunikationssystem i MATLAB
(Eller: Vilken koppling har Henrik Larsson och Carl Bildt?) 1(5) - Joel Nilsson joelni at kth.se Martin Axelsson maxels at kth.se Sammanfattning Kommunikationssystem används för att överföra information,
KÄLLA-FILTER. Repetition. Talapparaten i källa-filter perspektivet. Repetition (ff) Ljudkällor i talapparaten (ff) Ljudkällor i talapparaten
KÄLLA-FILTER Repetition - Repetition av resonans och filter Komplexa ljudvågor: deltoner Amplitudspektrum - Talapparaten som resonator - Talapparaten som källa-filtersystem - Spektrum, Spektrogram, spektrograf
Ämnesområde Hörselvetenskap A Kurs Akustik och ljudmiljö, 7 hp Kurskod: HÖ1015 Tentamenstillfälle 4
IHM Kod: Ämnesområde Hörselvetenskap A Kurs Akustik och ljudmiljö, 7 hp Kurskod: HÖ115 Tentamenstillfälle 4 Datum 213-11-7 Tid 4 timmar Kursansvarig Susanne Köbler Tillåtna hjälpmedel Miniräknare Linjal
Csound. Csound exempel
Csound Lång historia, föregångare (Music 4), tidigt 60-tal programstyrda oscillatorer som sammankopplas till instrument i en orkester -fil (.orc) en notfil ( score.sco) anger när och hur instrumenten skall
Vocoding och frekvensskiftningsexperiment inom det audiologiska forskningsfältet Av Morgan Karlsson
Vocoding och frekvensskiftningsexperiment inom det audiologiska forskningsfältet Av Morgan Karlsson Vocoding Några av de första försöken att återskapa tal elektroniskt gjordes på 30-talet av fysikern Homer
Ljudlära. Ljud är Periodicitet. Introduktion. Ljudlära viktigt ur två aspekter:
Introduktion Ljudlära Ljudlära viktigt ur två aspekter: 1. Ljudets fysikaliska egenskaper 2. Vad vi uppfattar med hörseln Syfte: att lära sig göra relevanta kopplingar mellan faktisk vetenskap och sinnlig
Spektrala transformer Laboration: Vokalsyntes
Spektrala transformer Laboration: Vokalsyntes 1 Introduktion I denna laboration är målsättningen att du ska få handgripliga erfartenterer av digital filtrering. Du ska implementera en enkel men användbar
Talets akustik repetition
Pétur Helgason VT 29 Talets akustik repetition 29-3-3 Vad är ljud för någonting? Vi människor lever och rör oss i ett skikt med gas som ligger ovanpå jordens yta. Gasen består av ca 8 % kväve och 2 % syre.
Övningar med Digitala Filter med exempel på konstruktion och analys i MatLab
Övningar med Digitala Filter med exempel på konstruktion och analys i MatLab Eddie Alestedt Vt-2002 Digitala filter Digitala filter appliceras på samplade signaler och uppvisar helt andra egenskaper än
Idag. Tillägg i schemat. Segmenteringsproblemet. Transkription
Tillägg i schemat 21/9 slutar 16.00 ist f 15.00 5/10 slutar 16.00 ist f 15.00 Idag talkommunikationskedjan ljudvågor, enkla och sammansatta vågrörelser frekvens och amplitud ljudtryck, decibel källa-filter-modellen
TNMK054 - LJUDTEKNIK 1 RUM, REVERB,
TNMK054 - LJUDTEKNIK 1 RUM, REVERB, TNMK054 - LJUDTEKNIK 1 SUSTAIN SUSTAIN Pianosustain SUSTAIN Pianosustain Analog sustain Uppåtkompression Distortion Brus Brum SUSTAIN Stråke och fiol Stråken skapar
Lyssna på bitar av ljudet Titta på ljudet
Lab 4 En viktig uppgift för en ljudforensiker är att bearbeta ljudinspelningar för att få fram så bra hörbarhet som möjligt, samt att testa äktheten i en ljudinspelning. Ytterligare arbetsuppgifter är
Laborationsprojekt i digital ljudsyntes
Laborationsprojekt i digital ljudsyntes A. Målsättning Att studenten skall få fördjupade kunskaper i digital signalbehandling genom att lära sig de grundläggande principerna för digital ljudsyntes av stränginstrumentliknande
! Susanne Schötz! ! akustisk-fonetisk analys! ! grupparbete!! om vi hinner: introduktion till Praat (kort demo)!
Introduktion till akustisk analys (av tal)!! akustiska elementa!! akustisk analys!! grupparbete: akustisk analys!! om hinner: introduktion till Praat!! mina bilder finns att ladda ner här: http://person2.sol.lu.se/susanneschotz/teaching_files/intro_ak.pdf!
DT1130 Spektrala transformer Tentamen
DT3 Spektrala transformer Tentamen 5 Tentamen består av fem uppgifter där varje uppgift maximalt ger p. Normalt gäller följande betygsgränser: E: 9 p, D:.5 p, C: p, B: 6 p, A: 8 p Tillåtna hjälpmedel:
Elektronik 2018 EITA35
Elektronik 218 EITA35 Föreläsning 1 Filter Lågpassfilter Högpassfilter (Allpassfilter) Bodediagram Hambley 296-32 218-1-2 Föreläsning 1, Elektronik 218 1 Laboration 2 Förberedelseuppgifter! (Ingen anmälan
Elektro och Informationsteknik LTH Laboration 4 Tidsplan, frekvensplan och impedanser
Elektro och Informationsteknik LTH Laboration 4 Tidsplan, frekvensplan och impedanser Elektronik för D ETIA01 Andrés Alayon Glasunov Palmi Thor Thorbergsson Anders J Johansson Lund Mars 2009 Laboration
Kapitel 2 o 3 Information och bitar Att skicka signaler på en länk. Jens A Andersson
Kapitel 2 o 3 Information och bitar Att skicka signaler på en länk Jens A Andersson Att göra Kursombud Williams bok???? Kolla schemat: Övningar flyttade Labanmälan ska funka nu 2 Att sända information
Ämnesområde Hörselvetenskap A Kurs Akustik och ljudmiljö, 7 hp Kurskod: HÖ1015 Tentamenstillfälle 1
Hälsoakademin Kod: Ämnesområde Hörselvetenskap A Kurs Akustik och ljudmiljö, 7 hp Kurskod: HÖ115 Tentamenstillfälle 1 Datum 211 11 3 Tid 4 timmar Kursansvarig Susanne Köbler Tillåtna hjälpmedel Miniräknare
Denna våg passerar mikrofonen, studsar mot väggen och passerar åter mikrofonen efter tiden
Lösning till inlämningsuppgift 1 Beskriv först ljudtrycket för den infallande vågen som en funktion av tiden. Eftersom trycket ökar linjärt mellan sågtandsvågens språng och eftersom periodtiden är T=1
Ulrik Söderström 20 Jan Signaler & Signalanalys
Ulrik Söderström ulrik.soderstrom@tfe.umu.se 20 Jan 2009 Signaler & Signalanalys Sinusspänning Sinus och cosinus samma form men fasförskjutna Fasförskjutning tidsfördröjning Sinus och cosinus är väldigt
Ulrik Söderström 19 Jan Signalanalys
Ulrik Söderström ulrik.soderstrom@tfe.umu.se 9 Jan 200 Signaler & Signalanalys l Sinusspänning Sinus och cosinus samma form men fasförskjutna Fasförskjutning tidsfördröjning Sinus och cosinus är väldigt
Kapitel 2 o 3 Information och bitar Att skicka signaler på en länk. Jens A Andersson
Kapitel 2 o 3 Information och bitar Att skicka signaler på en länk Jens A Andersson Att sända information mellan datorer värd 11001000101 värd Två datorer som skall kommunicera. Datorer förstår endast
TSBB16 Datorövning A Samplade signaler Faltning
Name: ID number: Passed: LiU-ID: Date: TSBB16 Datorövning A Samplade signaler Faltning Utvecklad av Klas Nordberg Computer Vision Laboratory, Linköping University, Sweden 24 augusti 2015 Introduktion Denna
Spektrala Transformer
Spektrala Transformer Tidsdiskreta signaler, kvantisering & sampling Tidsdiskreta signaler Tidskontinuerlig signal Ex: x(t) = sin(ωt) t är ett reellt tal ω har enheten rad/s Tidsdiskret signal Ex: x(n)
Bildbehandling i frekvensdomänen
Uppsala Tekniska Högskola Signaler och system Handledare: Mathias Johansson Uppsala 2002-11-27 Bildbehandling i frekvensdomänen Erika Lundberg 800417-1602 Johan Peterson 790807-1611 Terese Persson 800613-0267
Faltningsreverb i realtidsimplementering
Faltningsreverb i realtidsimplementering SMS45 Lp1 26 DSP-system i praktiken Jörgen Anderton - jorand-3@student.ltu.se Henrik Wikner - henwik-1@student.ltu.se Introduktion Digitala reverb kan delas upp
Kapitel 2 o 3 Information och bitar Att skicka signaler på en länk. Jens A Andersson
Kapitel 2 o 3 Information och bitar Att skicka signaler på en länk Jens A Andersson Att sända information mellan datorer värd 11001000101 värd Två datorer som skall kommunicera. Datorer förstår endast
Frekvensplanet och Bode-diagram. Frekvensanalys
Frekvensplanet och Bode-diagram Frekvensanalys Signaler Allt inom elektronik går ut på att manipulera signaler genom signalbehandling (Signal Processing). Analog signalbehandling Kretsteori: Nod-analys,
MEDIESIGNALER INTRODUKTION
Rev. 150119 US MEDIESIGNALER INTRODUKTION 1 VILKA PROBLEM LÖSER VI MED SIGNAL- BEHANDLING? Akustik. Inspelning av sorl från fikarummet vid TFE. Varför pratar alla så högt? Varför hör man inte vad någon
Spektrala Transformer
Spektrala Transformer Tidsdiskreta signaler, kvantisering & sampling Tidsdiskreta signaler Tidskontinuerlig signal Ex: x(t) = sin(ωt) t är ett reellt tal ω har enheten rad/s Tidsdiskret signal Ex: x(n)
TNMK054 - LJUDTEKNIK 1 LJUDSYNTES
TNMK054 - LJUDTEKNIK 1 LJUDSYNTES KORT HISTORIA 1870 s - Elisha Gray Music Telegraph 1917 - Léon Theremin 1935 - Laurens Hammond 1939-40 - Homer Dudley Vocoder and Voder 1942 - Harold Rhodes 1950 s - RCA
1 Figuren nedan visar en transversell våg som rör sig åt höger. I figuren är en del i vågens medium markerat med en blå ring prick.
10 Vågrörelse Vågor 1 Figuren nedan visar en transversell våg som rör sig åt höger. I figuren är en del i vågens medium markerat med en blå ring prick. y (m) 0,15 0,1 0,05 0-0,05 0 0,5 1 1,5 2 x (m) -0,1-0,15
Laboration i Fourieroptik
Laboration i Fourieroptik David Winge Uppdaterad 30 januari 2015 1 Introduktion I detta experiment ska vi titta på en verklig avbildning av Fouriertransformen. Detta ska ske med hjälp av en bild som projiceras
Generering av ljud utifrån fysikalisk simulering
UMEÅ UNIVERSITET Projektrapport Enheten för professionskurser 2010-05-18 Generering av ljud utifrån fysikalisk simulering Introduktion till ingenjörsarbete Namn Anders Berglund Viktor Johansson Sara Leonardsson
Laboration i tidsdiskreta system
Laboration i tidsdiskreta system A. Tips Användbara MATLAB-funktioner: conv Faltning square Skapa en fyrkantvåg wavread Läs in en ljudfil soundsc Spela upp ett ljud ones Skapa en vektor med godtyckligt
Ljudsyntes. TNMK054 - Ljudteknik 1
Ljudsyntes TNMK054 - Ljudteknik 1 Ljudsyntes Vilken ansats? Matematisk? Fysisk? Elektronisk? Baserat på en analogsynt Kort historia 1870 s - Elisha Gray Music Telegraph 1917 - Léon Theremin 1935 - Laurens
Signalbehandling Röstigenkänning
L A B O R A T I O N S R A P P O R T Kurs: Klass: Datum: I ämnet Signalbehandling ISI019 Enk3 011211 Signalbehandling Röstigenkänning Jonas Lindström Martin Bergström INSTITUTIONEN I SKELLEFTEÅ Sida: 1
Tentamen i Signaler och kommunikation, ETT080
Inst. för informationsteknologi Tentamen i Signaler och kommunikation, ETT080 2 juni 2006, kl 14 19 Skriv namn och årskurs på alla papper. Börja en ny lösning på ett nytt papper. Använd bara en sida av
Akustiska elementa. Ljudvågor. Ljud och ljudvågor (ff) Ljud och ljudvågor. Ljud och ljudvågor (3) Ljud och ljudvågor (4)
Akustiska elementa - Ljudvågor: enkla och sammansatta - Amplitud och intensitet - Resonans, filter, spektrum Ljudvågor " Ljud sprids i form av ljudvågor " Ljudvågor uppstår när ett objekt vibrerar och
Signalanalys med snabb Fouriertransform
Laboration i Fourieranalys, MVE030 Signalanalys med snabb Fouriertransform Den här laborationen har två syften: dels att visa lite på hur den snabba Fouriertransformen fungerar, och lite om vad man bör
Hambley avsnitt
Föreläsning 0 Hambley avsnitt 6.6.8 Filter [6.2, 6.5 6.8] Vid kommunikation används tidsharmoniska signaler. Dessa har ett visst frekvensband centrerad kring en bärfrekvens. Som exempel kan en sändare
Ljud. Låt det svänga. Arbetshäfte
Ljud Låt det svänga Arbetshäfte Ljud När ljudvågorna träffar örat börjar trumhinnan svänga i takt vi hör ett ljud! Trumhinnan Ljud är en svängningsrörelse. När ett föremål börjar vibrera packas luftens
Granska befintlig kod och kommentarer Testa loopbackfunktionen
Lab 5 I denna laboration ska ni testa på hårdvarunära programmering och realtidsprocessning av ljud. Till er hjälp har ni ett enkelt shield till Arduino. Ett shield är som ett skal som man trycker på Arduino
Kihl & Andersson: , 3.1-2, (ej CDM) Stallings: 3.1-4, 5.1, 5.2, 5.3, 8.1, 8.2
Kihl & Andersson: 2.1-2.3, 3.1-2, 3.5-6 (ej CDM) Stallings: 3.1-4, 5.1, 5.2, 5.3, 8.1, 8.2 Hej Hej Vad är klockan? 14.00 Hej då New connection Connection approved Request for data Data transfer End connection
Spektrala transformer Laboration: Vokalsyntes
Spektrala transformer Laboration: Vokalsyntes 1 Introduktion I denna laboration är målsättningen att du ska få handgripliga erfartenterer av digital filtrering. Du ska implementera en enkel men användbar
Kapitel 2 o 3 Information och bitar Att skicka signaler på en länk. Att sända information mellan datorer. Information och binärdata
Kapitel 2 o 3 Information och bitar Att skicka signaler på en länk Jens A Andersson (Maria Kihl) Att sända information mellan datorer värd 11001000101 värd Två datorer som skall kommunicera. Datorer förstår
Prov i vågrörelselära vt06 Lösningsförslag
Prov i vågrörelselära vt06 Lösningsförslag Hjälpmedel: Formelsamling, fysikbok, miniräknare, linjal, sunt förnuft. 7 uppgifter vilka inlämnas på separat papper snyggt och välstrukturerat! Låt oss spela
Filter, dynamik, mix. TNMK054 - Ljudteknik 1
Filter, dynamik, mix TNMK054 - Ljudteknik 1 Några frekvenser Bastrumma Virveltrumma Kropp 60-80Hz, snärt 2,5kHz Kropp 240Hz, krispighet 5kHz HiHat & cymbaler Gongljud 200Hz, briljans 7,5-12kHz Hängpuka
Projekt 1 (P1) Problembeskrivning och uppdragsspecifikation
Projekt 1 (P1) Problembeskrivning och uppdragsspecifikation Etapp 1 Problem med mätsignalen m.a.p. sampling, vikning och spektraltäthet Problembeskrivning Uppdragsgivaren överväger att skaffa nya A/D-omvandlare
Hambley avsnitt
Föreläsning Hambley avsnitt 6.6.8 Filter [6.2, 6.5 6.8] Nästan all trådlös och trådbunden kommunikation är baserad på tidsharmoniska signaler. Signalerna utnyttjar ett frekvensband centrerad kring en bärfrekvens.
Upp gifter. c. Hjälp Bengt att förklara varför det uppstår en stående våg.
1. Bengt ska just demonstrera stående vågor för sin bror genom att skaka en slinkyfjäder. Han lägger fjädern på golvet och ber sin bror hålla i andra änden. Sen spänner han fjädern genom att backa lite
Amplitudmodulation för vindkraftsljud
Amplitudmodulation för vindkraftsljud Martin Almgren, ÅF Almgren 2012 02 07 1 Akustisk kamera klipp på youtube Länk Almgren 2012 02 07 2 Varför är det lätt att höra vindkraftljud? Det karakteristiska svischande
2F1120 Spektrala transformer för Media Tentamen
F Spektrala transformer för Media Tentamen 68 Tentamen består av fem uppgifter där varje uppgift maximalt ger p. Normalt gäller följande betygsgränser: :9 p, : p, 5: 7 p Tillåtna hjälpmedel: räknare, formelblad
Analys/syntes-kodning
Analys/syntes-kodning Många talkodare bygger på en princip som kallas analys/syntes-kodning. Istället för att koda en vågform, som man normalt gör i generella ljudkodare och i bildkodare, så har man parametrisk
Perception. Intonation och tonhöjd. Intrinsisk F0. Intonation och tonhöjd (ff) Akustiska och perceptoriska drag. Perception av prosodiska drag
Perception Akustiska och perceptoriska drag Samband mellan akustiska och perceptoriska drag Tyngpunkt på perceptorisk relevanta drag Prosodi Vokaler Konsonanter Perception i största allmänhet Primära akustiska
Laboration 3 Sampling, samplingsteoremet och frekvensanalys
Laboration 3 Sampling, samplingsteoremet och frekvensanalys 1 1 Introduktion Syftet med laborationen är att ge kunskaper i att tolka de effekter (speglingar, svävningar) som uppkommer vid sampling av en
Bildbehandling i frekvensdomänen. Erik Vidholm
Bildbehandling i frekvensdomänen Erik Vidholm erik@cb.uu.se 9 december 2002 Sammanfattning Detta arbete beskriver hur en bild kan tolkas som en tvådimensionell digital signal, hur denna signal Fouriertransformeras
Byggsats Radio med förstärkare Art.nr: 99409
1 Byggsats Radio med förstärkare Art.nr: 99409 Förrådsgatan 33A 542 35 Mariestad sagitta@sagitta.se Tel: 0501 163 44 Fax: 0501 787 80 www.sagitta.se Inledning Byggsatsen består av en radiomottagare, en
Laboration i Fourieroptik
Laboration i Fourieroptik David Winge Uppdaterad 4 januari 2016 1 Introduktion I detta experiment ska vi titta på en verklig avbildning av Fouriertransformen. Detta ska ske med hjälp av en bild som projiceras
Samtidig visning av alla storheter på 3-fas elnät
Samtidig visning av alla storheter på 3-fas elnät Med nätanalysatorerna från Qualistar+ serien visas samtliga parametrar på tre-fas elnätet på en färgskärm. idsbaserad visning Qualistar+ visar insignalerna
Att fånga den akustiska energin
Att fånga den akustiska energin När vi nu har en viss förståelse av vad ljud egentligen är kan vi börja sätta oss in i hur det kan fångas upp och efterhand lagras. När en ljudvåg sprider sig är det inte
Kod: Datum 2014-02-01. Kursansvarig Susanne Köbler. Tillåtna hjälpmedel. Miniräknare Linjal Språklexikon vid behov
Institutionen för hälsovetenskap och medicin 2 Kod: Ämnesområde Hörselvetenskap A Kurs Akustik och ljudmiljö, 7 hp Kurskod: HÖ115 Tentamenstyp Individuell salstentamen Tentamenstillfälle Uppsamling 1 Provkod
Digital signalbehandling Digitalt Ljud
Signalbehandling Digital signalbehandling Digitalt Ljud Bengt Mandersson Hur låter signalbehandling Institutionen för elektro- och informationsteknik 2008-10-06 Elektronik - digital signalbehandling 1
Passiva filter. Laboration i Elektronik E151. Tillämpad fysik och elektronik UMEÅ UNIVERSITET Ulf Holmgren. Ej godkänd. Godkänd
Tillämpad fysik och elektronik UMEÅ UNIVESITET Ulf Holmgren LABOATION Analog elektronik 961219 Passiva filter Laboration i Elektronik E151 Namn Namn Ej godkänd Datum Datum Godkänd Datum PASSIVA FILTE -
Laboration i Fourieranalys, TMA132 Signalanalys med snabb Fouriertransform
Laboration i Fourieranalys, TMA132 Signalanalys med snabb Fouriertransform Den laborationen har syften: dels att visa lite hur den snabba Fouriertransformen fungerar, och lite om vad man den an dels att
Hörselkontroll Bullerskydd med öronproppar
Laborationer i miljöfysik Hörselkontroll Bullerskydd med öronproppar Målet med övningen är att ta upp ett audiogram för en person, samt att undersöka hur mycket ljudet dämpas i olika frekvensområden med
Digital kommunikation. Maria Kihl
Digital kommunikation Maria Kihl Läsanvisningar Kihl & Andersson: 2.1-2.3, 3.1-2, 3.5-6 (ej CDM) Stallings: 3.1-4, 5.1, 5.2, 5.3, 8.1, 8.2 2 Protokoll När människor kommunicerar använder vi ett språk.
Centralt innehåll. O Hur ljud uppstår, breder ut sig och kan registreras på olika sätt. O Ljudets egenskaper och ljudmiljöns påverkan på hälsan.
LJUD Fysik åk 7 Centralt innehåll O Hur ljud uppstår, breder ut sig och kan registreras på olika sätt. O Ljudets egenskaper och ljudmiljöns påverkan på hälsan. Tre avsnitt O Ljudets egenskaper O Ljudvågor
Grundläggande signalbehandling
Digital Signalbehandling Lab 1 Grundläggande signalbehandling Denna version: juli 2007 LERTEKNIK REG Namn: Personnr: AU T O MA RO TI C C O N T LINKÖPING L Datum: Godkänd: 1 Introduktion Syftet med denna
Flerdimensionell signalbehandling SMS022
Luleå tekniska universitet Avd för signalbehandling Frank Sjöberg Flerdimensionell signalbehandling SMS022 Laboration 4 Array Processing Syfte: Syftet med den här laborationen är att få grundläggande förståelese
DIGITALA FILTER. Tillämpad Fysik Och Elektronik 1. Frekvensfunktioner FREKVENSSVAR FÖR ETT TIDSDISKRET SYSTEM. x(n)= Asin(Ωn)
DIGITALA FILTER TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 1 Frekvensfunktioner x(n)= Asin(Ωn) y(n) H(z) TILLÄMPAD FYSIK OCH ELEKTRONIK, UMEÅ UNIVERSITET 2 FREKVENSSVAR FÖR ETT TIDSDISKRET SYSTEM
Ämnesområde Hörselvetenskap A Kurs Signalteori, 7,5 hp Kurskod: HÖ1007 Tentamenstillfälle
Institutionen för hälsovetenskap och medicin Kod: Ämnesområde Hörselvetenskap A Kurs Signalteori, 7,5 hp Kurskod: HÖ1007 Tentamenstillfälle Datum 2013-08-19 Tid 4 timmar Kursansvarig Susanne Köbler Tillåtna
SÄTT DIG NER, 1. KOLLA PLANERINGEN 2. TITTA I DITT SKRIVHÄFTE.
SÄTT DIG NER, 1. KOLLA PLANERINGEN 2. TITTA I DITT SKRIVHÄFTE. Vad gjorde vi förra gången? Har du några frågor från föregående lektion? 3. titta i ditt läromedel (boken) Vad ska vi göra idag? Optik och
Psykoakustik. Ljudtrycksnivå. Hörselns omfång. Hörnivå(loudness) Människans hörsel är ganska väl studerad och det finns bra modeller för den.
Psykoakustik Ljudtrycksnivå Människans hörsel är ganska väl studerad och det finns bra modeller för den. Detta kan utnyttjas vid ljudkodning för att placera distorsionen (kvantiseringsbruset) så att det
GRUNDKURS I SIGNALBEHANDLING (454300), 5sp Tentamen
GRUNDKURS I SIGNALBEHANDLING (454300), 5sp Tentamen 26.02013 kursens övningsuppgifter eller gamla tentamensuppgifter, eller Matlab-, Scilab- eller Octave- programmerbara kalkylatorer eller datorer. 1.
Spektrogram att göra ljud synligt
Spektrogram att göra ljud synligt 2011-02-23 Vad är ljud för någonting? Vi människor lever och rör oss i ett skikt med gas som ligger ovanpå jordens yta. Gasen består av ca 80 % kväve och 20 % syre. Denna
Resttentamen i Signaler och System Måndagen den 11.januari 2010, kl 14-19
Resttentamen i Signaler och System Måndagen den 11.januari 2010, kl 14-19 Tillåtna hjälpmedel: Valfri miniräknare (utan möjlighet till trådlös kommunkation). Valfri litteratur, inkl. kursböcker, formelsamlingar.
DT1130 Spektrala transformer Tentamen
DT3 Spektrala transformer Tentamen 3 Tentamen består av fem uppgifter där varje uppgift maximalt ger 4 p. Normalt gäller följande betygsgränser: E: 9 p, D:.5 p, C: 4 p, B: 6 p, A: 8 p Tillåtna hjälpmedel:
Signal- och Bildbehandling FÖRELÄSNING 4. Multiplikationsteoremet. Derivatateoremet
Signal- och Bildbehandling FÖRELÄSNING 4 Fouriertransformen, forts Mer egenskaper av fouriertransformen Enkel tillämpning: Filtrera bort oönskat buller från vacker visselton Fouriertransformen, slutsats
Tema - Matematik och musik
Tema - Matematik och musik Författarna och Bokförlaget Borken, 2011 Allt vi uppfattar som ljud, från den nästan smärtsamma upplevelsen på en rockkonsert till insekternas surr en sommardag, består av mer
Tentamen i TMA 982 Linjära System och Transformer VV-salar, 27 aug 2013, kl
Tentamen i TMA 982 Linjära System och Transformer VV-salar, 27 aug 2013, kl 8.30-12.30 Examinatorer: Lars Hammarstrand och Thomas Wernstål Tentamen består av två delar (Del I och Del II) på sammanlagt
3. Metoder för mätning av hörförmåga
3. Metoder för mätning av hörförmåga Sammanfattning Förekomst och grad av hörselnedsättning kan mätas med flera olika metoder. I kliniskt arbete används oftast tonaudiogram. Andra metoder är taluppfattningstest
Kapitel 2 o 3. Att skicka signaler på en länk. (Maria Kihl)
Kapitel 2 o 3 Information och bitar Att skicka signaler på en länk Jens A Andersson (Maria Kihl) Att sända information mellan datorer värd äd 11001000101 värd äd Tåd Två datorer som skall kllkommunicera.
TNMK054 - LJUDTEKNIK 1 INTRODUKTION
TNMK054 - LJUDTEKNIK 1 INTRODUKTION NIKLAS Analoga syntar Ljud- & musikteknik Datorer, musik & elektronisk musik Programmering Noisource Media- & kommunikations- vetenskap PhD i teknisk audiologi TNMK054
Projekt 6. Fourieroptik Av Eva Danielsson och Carl-Martin Sikström
Projekt 6. Fourieroptik Av Eva Danielsson och Carl-Martin Sikström Introduktion I detta experiment ska vi titta på en verklig avbildning av fouriertransformen. Detta ska ske med hjälp av en bild som projiceras
Effekter och ljudprocessorer
2008-09-22 Effekter och ljudprocessorer Mixern är ljudteknikerns främsta elektriska redskap för att påverka ljudet. Den ger möjlighet att justera nivå och klangfärg (med EQ). Men det kan behövas fler möjligheter
Tentamen i Krets- och mätteknik, fk - ETEF15
Tentamen i Krets- och mätteknik, fk - ETEF15 Institutionen för elektro- och informationsteknik LTH, Lund University 2016-10-27 8.00-13.00 Uppgifterna i tentamen ger totalt 60. Uppgifterna är inte ordnade
Laboration 3, TNGD10 Rörliga medier
Laboration 3, TNGD10 Rörliga medier Praktisk övning/workshop 1 laboration á 2h, grupper om 4-8 studenter Idéen med denna laboration/workshop är att ni ska få testa teorin från föreläsningarna, jobba praktiskt
Digital signalbehandling fk Adaptiv filtrering
Institutionen för data- och elektroteknik 1999-11-16 Inledning Det finns många sammanhang då parametrarna inte är bekanta i förväg utan vårt måste anpassa sig till situationen. Några exempel bortfiltrering
Mätning av lågfrekvent buller i Gråbo
Mikael Ögren Akustiker Göteborg den 2 maj 2012 Sahlgrenska Universitetssjukhuset Arbets- och miljömedicin Västra Götalandsregionens Miljömedicinska Centrum (VMC) ADRESS Box 414, 405 30 Göteborg BESÖK Medicinaregatan
Digital Signalbehandling i Audio/Video
Digital Signalbehandling i Audio/Video Institutionen för Elektrovetenskap Laboration 1 (del 2) Stefan Dinges Lund 25 2 Kapitel 1 Digitala audioeffekter Den här delen av laborationen handlar om olika digitala
I Rymden finns ingen luft. Varför kan man inte höra några ljud där?
Ljud Vad är ljud? Luften består av små atomer som sitter ihop och bildar molekyler. När vi hör ljud är det luftens molekyler som har satts i rörelse. Sådana rörelser kallar vi ljudvågor. De sprids och
Signaler & Signalanalys
Ulrik Söderström ulrik.soderstrom@tfe.umu.se Jan 8 Signaler & Signalanals Sinusspänning Sinus och cosinus samma form men fasförskjutna Fasförskjutning tidsfördröjning Sinus och cosinus är väldigt enkla
Apparater på labbet. UMEÅ UNIVERSITET 2004-04-06 Tillämpad fysik och elektronik Elektronik/JH. Personalia: Namn: Kurs: Datum:
UMEÅ UNIVERSITET 2004-04-06 Tillämpad fysik och elektronik Elektronik/JH Apparater på labbet Personalia: Namn: Kurs: Datum: Återlämnad (ej godkänd): Rättningsdatum Kommentarer Godkänd: Rättningsdatum Signatur