Akustiska elementa. Ljudvågor. Ljud och ljudvågor (ff) Ljud och ljudvågor. Ljud och ljudvågor (3) Ljud och ljudvågor (4)
|
|
- Niklas Bergqvist
- för 8 år sedan
- Visningar:
Transkript
1 Akustiska elementa - Ljudvågor: enkla och sammansatta - Amplitud och intensitet - Resonans, filter, spektrum Ljudvågor " Ljud sprids i form av ljudvågor " Ljudvågor uppstår när ett objekt vibrerar och sätter luften omkring i svängningar " Ljudvågor uppstår när en luftström stötter mot ett hinder " Ljudvågor sprids i alla riktningar kring ljudkällan Vad är ljudvågor? Ljud och ljudvågor " Ljudet är en vibration som löper genom luften " Dessa vibrationer är lufttrycksvariationer, luftförtätningar och luftförtunningar " Luftmolekylerna har sitt stabila läge i ett luftrum i viloläge " Ett objekt kommer i hastig rörelse och påverkar närmaste luftmolekylerna Ljud och ljudvågor (ff) " Luftmolekylen (A) ger väg till detta föremålets rörelse/deplacering " Luftmolekylen (A) närmar sig luftmolekylen (B) som befinner sig bredvid, som i sin tur ger väg till den första luftmolekylen (A) " Luftmolekylen (B) närmar sig nästa luftmolekylen (C), som också stöts iväg " Osv. --> fortplantning av rörelse Ljud och ljudvågor (3) " Luftmolekyl (A) som stötte på luftmolekyl (B) skjuts tillbaks till utlösande objekt i svängning som igen stötter luftmolekyl (A) ifrån sig " Luftmolekyl (B) som stötte på luftmolekyl (C) också skjuts tillbaks " Rörelse av luftmolekyler fram och tillbaka leder till ansamlingar av dessa --> luftförtätningar Ljud och ljudvågor (4) " Rörelse av luftmolekyler fram och tillbaka leder dessutom till uttuning av dessa --> luftförtunningar " Denna lufttrycksvariationen förnimmas som ljud efter påträffandet på det mänskliga hörselsystemet " Ljud fortplantas i luft med en hastighet av 340m/s (i vatten med 1500m/s) " Ljud fortplantas också i andra materialier men inte i vakuum 1
2 Vågor: transversell och logitudinell " Ljudvågor fortplantas longitudinellt " Andra vågor transversellt: vatten, pendel " Samma princip, därför samma framställningsform " Återkommande mönster med ett utgångsläge, maximalläge och minimalläge --> oscillation Vågor: transversell och logitudinell (ff) " Maximal luftförtätning står för maximal lufttryck, som liknar ett maximum i en transversell våg " Minimal luftförtätning (= luftförtunning) står för minimal lufttryck, som liknar ett minimum i en transversell våg " diagram som visar sådana vågor kallas för oscillogram Ljudvågornas delar Ljudvågornas delar (ff) " Viloläge (= utgångsläge, nolläge) " Maximum, minimum " Från nolläge till nolläge efter en genomgång av både maximum och minimum kallas period " Antal fullbordade vibrationer (perioder alltså) inom en sekund motsvarar tonhöjden av en ljud våg " Tidslängd av en sådan period kallas för periodtid " Mindre stämgaffel vibrerar fortare och utför därför mer perioder under en sekund " Detta medför att periodtiden för varje period är kortare än för en större stämmgaffel som vibrerar långsamare Ljudvågor: definitioner " Antal perioder per sekund kallas frekvens F och mäts i Hertz [Hz] " Gamla förkortningar är: - p/s, perioder per sekund - cps, engelska: cycles per second " 1000Hz = 1000p/s = 1000cps = 1kHz Ljudvågor: definitioner (ff) " Periodtiden T hänger ihop med frekvens, de är samma sak sedd ifrån olika synvinklar: förekommer det 100 svängningar /perioder under en sekund (= 100Hz), så är periodtiden 1/100 sekund " F = 1/T och T = 1/F och T x F =1 2
3 Ljudvågor: definitioner (3) " Om F = 100Hz --> T = 1s/100 = 0.01s " Om F = 200Hz --> T = 1s/200 = 0.005s " Om F = 1kHz --> T = 1s/1000 = 0.001s " Om F = 125Hz --> T = 1s/125 = 0.008s " Om F = 350Hz --> T = 1s/350 = s Våglängd " Avstånd i rummet mellan en förtätning och nästa förtätning (eller: en förtunning och nästa förtunning) " För ljudvågor samband med utbredningshastighet av ljud, då vågen inte står stilla utan vandrar ifrån det vibrerande objektet " Avstånd = periodtid x ljudhastighet " λ = T x c Våglängd (ff) " λ = T x c = 1/F x c = c/f " C = 340m/s " F = 100Hz: λ = (340m/s) / (100Hz) = 3.4m " F = 200Hz: λ = (340m/s) / (200Hz) = 1.7m " F = 125Hz: λ = (340m/s) / (125Hz) = 2.72m Amplitud " Vibrationens lodrätta utslag kallas för amplitud " Amplituden representera avstånd mellan ljudvågens nollinje och dess maximum och ljudvågens nollinje och dess minimum " Amplituden avspeglar intensiteten av svängningen (vibrationen, oscillationen), som förnimmas som ljudvolymen Amplitud (ff) " En ljudvåg med större amplitud förnimmas som en starkare ljudsignal " En ljudvåg med mindre amplitud förnimmas som en svagare ljudsignal " Variation i amplitud ( och därmed ljud volymen) är baserad på variation i utslaget av ett objekts rörelse " Större utslag (= kraftigare rörelse) påverkar intensiteten av ljudet, men inte frekvens! Intensitet " Intensitet mäts som (ljudtrycks-) effekt/ytenhet " Effekt P: Energi per sekund [Nm/s] --> i [Watt] " Intensitet I = P/A [W/cm 2 ] " Ju större energiflöde per ytenhet desto större kraft per ytenhet, som är samma som tryck per ytenhet " Decibel [db] är ett annat mått 3
4 Intensitet (ff) " Decibel [db] är ett annat mått " Relatera akustiska styrkan hos två olika ljud " 0dB satt vid hörseltröskel för personer med god hörsel (10-16 W/cm 2 ) " Tal av normal volymen ca. 65dB " Smärtgränsen ca 120dB " Den minsta upptäckbara styrkeskillnaden 0.5-1dB Dämpade ljudvågor " Hittills: antagande om regelbunden återkommande svängningar " Men: ljudet avtar gradvis i samband med att stämgaffelns svängningar avtar --> dämpning " Avtar oscillationen långsamt --> svag dämpad svängning " Avtar oscillationen snabbt --> kraftig dämpad svängning Ljudvågsdiagram " Horisontellt, vågrät (x-axel): - tidsdimension - från vänster till höger stigande, - ger information om frekvens (perioder per sekund) " Vertikalt, lodrät (y-axel): - intensitetsdimension, amplitud - nedanför nolllinjen negativ - ovanför nollinjen positiv Enkla vs. Komplexa ljudvågor " Hittills: enkla ljudvågor, rena ljud, s.k. sinustoner, syntetiska toner " Naturtoner är klang, dvs en ansammling av toner " I första hand kommer det till deltoner " I andra hand påverkas tonbildning av omgivningens resonanskaraktär Komplexa ljudvågor: deltoner " Grundton, egenfrekvens " Tillägg av övertoner helt naturligt " Svängning av ett objekt består av grundton och övertoner --> deltonerna " Gitarrsträng eller fiolsträng svänger som helhet, men också uppdelat i lika stora delar Komplexa ljudvågor: deltoner (ff) " Gitarrsträng eller fiolsträng: - hela strängen svänger upp och ner --> grundton = 1sta delton - halva strängen svänger upp och ner --> 1sta överton = 2ndra delton - tredje dels bitar av strängen svänger --> 2ndra överton = 3dje delton - fjärde dels bitar av strängen svänger --> 3dje överton = fjärde delton osv. 4
5 Komplexa ljudvågor: deltoner (3) " Vågor av alla dessa deltoner summeras upp och bilda tillsammans tonens klang " Med deltonens högre ordning avtar amplituden " Samma princip ägar rum med stämtonbildning i struphuvudet Amplitudspektrum " Komponenter av ljudvågor och deras intensitetsrelation visas med ett diagram som kallas amplitudspektrum eller bara spektrum (spektra i pluralis) " Horisontellt/vågrätt (x-axel) representera lodrätta sträck i jämn avstånd grundtonsfrekvens och övriga tillhörande deltoner " Vertikalt/lodrät (y-axel) motsvarar dessa sträckens längd för deltonens amplitud Periodicitet och fas " Hittills: svängningar i fas " Stigande från nolllinjen mot maximum " Men: ljud som startas vid olika tidpunkter kan också läggas samman till en vågform " Fasförskjutning Analys av en komplex ljudvåg " Den omvända vägen: uppdelning av en naturlig ljudvåg i sina delar " Fourrieranalys (18h.-talet) " Antal och frekvenskaraktär av enkla svängningar som ingår i en komplex ljudvåg och deras amplitud " Matematisk serie (och manuellt genomförd mycket tidskrävande) " Datorprogram, essentiell för talanalys Periodiska och operiodiska signaler " Hittills: periodiska signaler " Men det finns också operiodiska signaler: brusljud (frikativor), enstaka pulser (klusiler) Periodiska signaler " Periodisk: samma förlopp upprepas gång på gång " Ton av ett blåsinstrument eller en fjol " Vokaler, nasaler, lateraler --> tonande ljud " Baserad på stämläpparnas regelbunden svängning 5
6 Operiodiska signaler " Inget förlopp upprepas i dessa ljud " Brusljud (frikativor): luftströmmen stötter på en trång passage, luftströmmen trycks ihop och genom passagen, luften breder ut sig ur alla håll, oregelbundet virvelbildning (turbulenser) " Pulser (klusiler): explosionen ger ett enda utslag som inte upprepas Periodiska och operiodiska signaler " Tonande frikativor innehåller båda komponenter: - dels grundtonens periodicitet - dels frikativans operiodisk karaktär " Signalen har därför ett regelbundet mönster i botten med pålägg av taggar Spektrum av periodiska och operiodiska signaler " Ett spektrum av periodiska signaler består av enstaka spikar i jämn avstånd med varierande amplitude " Ett spektrum av operiodiska signaler bestr av en genomgående linje representerande andelar av alla frekvenser med varierande amplitud Fri svängning vs bunden svängning " Kroppar eller objekt som svänger i sig själva efter en impuls och då med sin inneboende frekvens, egenfrekvensen (t.ex. stämgaffel, gitarrsträng, trumma) --> fri svängning " Kroppar eller objekt som blir utsatt att svänga, satts i svängning av ett annat svängandet objekt --> bunden svängning Bundna svängningar " Bunden svängning = påtvingat svängning " Excitationssvängning måste stämmer överens med objektets egenfrekvens " Detta leder till förstärkning av själva ljudet --> resonans " Är excitationssvängningens amplitud stark (= energirik) kan detta leder till objektets destruktion Komplexa ljudvågor: resonans " Objekt som sätts i svängningar har vånligtvis flera egenfrekvenser " Ett utlösandet ljud som sätter ett objekt i svängning har också flera egenfrekvenser " Frekvenskomponenter av ett objekt som ligger nära excitationsfrekvensen blir då förstärkta " Egenfrekvensen förstärks mest och förstärkning minska med ökande avstånd 6
7 Resonans och filter " En resonator fungerar som ett filter " Vissa frekvenser släpps genom, medan andra blir försvagade eller släpps inte allts genom " Klassiska exempel: Helmholtz resonatorer " Olika storlekar gynnar olika frekvensområde " Olika materialier olika förstärknings-grad för samma frekvensomrade Resonans och filter (ff) " Materialvariation påverkar formen av förstärkningskurvan --> bandbred " Bandbred: alla frekvenser som blir förstärkta ner till 3dB under toppen (centerfrekvensen) " Helmholtzresonatorer: -glaskula har smalare bandbred -kula med mjukare väggar större bandbred Resonans och filter (3) " Skillnad mellan olika musikinstrument " Resonanskaraktär (=filteregenskap) kan beskrivas med en kurva " Dessa filterkurvor kan ha flera toppar beroende t.ex. av varandra följande röravsnitt med varierande tvärsnitt - trompet, också talapparaten " Filterkurvan kallas också för: transferfunktion, överföringskurva Filter " Filterkurvor (transferfunktioner) är inte nödvändigtvis symmetriska " Lågpassfilter: släpper genom frekvenser nedanför en definerad nivå " Högpassfilter: släpper genom frekvenser ovanför en definerad nivå " Bandpassfilter: släpper genom frekvenser mellan en lägre och en högre frekvens --> inom ett band Filter (ff) " Tekniska filter nödvändiga för fonetisk analys (t.ex. bandpassfilter) " Mindre abrupta filter som minskar eller förtsärkar vissa frekvensområden " Filter av olika sorter i stereoutrustning: man förstärker inte alla frekvensandelar utan anpassa de till hörseln " Talapparatens (ansatsrörets) filteregenskap har symmetriska toppar 7
KÄLLA-FILTER. Repetition. Talapparaten i källa-filter perspektivet. Repetition (ff) Ljudkällor i talapparaten (ff) Ljudkällor i talapparaten
KÄLLA-FILTER Repetition - Repetition av resonans och filter Komplexa ljudvågor: deltoner Amplitudspektrum - Talapparaten som resonator - Talapparaten som källa-filtersystem - Spektrum, Spektrogram, spektrograf
Läs merTalets akustik repetition
Pétur Helgason VT 29 Talets akustik repetition 29-3-3 Vad är ljud för någonting? Vi människor lever och rör oss i ett skikt med gas som ligger ovanpå jordens yta. Gasen består av ca 8 % kväve och 2 % syre.
Läs merSpråkljudens akustik. Akustik, akustiska elementa och talanalys
Akustik, akustiska elementa och talanalys Språkljudens akustik Mattias Heldner KTH Tal, musik och hörsel heldner@kth.se Talsignalen mer lättåtkomlig än andra delar av talkommunikationskedjan Det finns
Läs merSkillnader vokaler - konsonanter. Konsonanters akustiska mönster. Vokaler. Konsonanter. Konsonantklasser. Sonoranter
Konsonanters akustiska mönster Ô Skillnader vokaler - konsonanter Ô Indelning konsonanter Ô Enskilda konsonantklassers typiska drag Ô Artikulationsställe och akustisk representation Skillnader vokaler
Läs merIdag. Tillägg i schemat. Segmenteringsproblemet. Transkription
Tillägg i schemat 21/9 slutar 16.00 ist f 15.00 5/10 slutar 16.00 ist f 15.00 Idag talkommunikationskedjan ljudvågor, enkla och sammansatta vågrörelser frekvens och amplitud ljudtryck, decibel källa-filter-modellen
Läs mer! Susanne Schötz! ! akustisk-fonetisk analys! ! grupparbete!! om vi hinner: introduktion till Praat (kort demo)!
Introduktion till akustisk analys (av tal)!! akustiska elementa!! akustisk analys!! grupparbete: akustisk analys!! om hinner: introduktion till Praat!! mina bilder finns att ladda ner här: http://person2.sol.lu.se/susanneschotz/teaching_files/intro_ak.pdf!
Läs merDigital behandling av tal. Litteratur till dagens lektion. Talproduktion. Akustisk Fonetik. Akustiska Elementa och Digital Signalbehandling
Digital behandling av tal Akustiska Elementa och Digital Signalbehandling Rebecca Jonson Talteknologikursen VT2007 Inom talteknologi vill vi producera och analysera tal vilket kräver kunskap om talproduktion
Läs merAkustiska Elementa och Digital Signalbehandling
Akustiska Elementa och Digital Signalbehandling Rebecca Jonson Talteknologikursen VT2005 Akustisk behandling av tal Inom talteknologi vill vi producera och analysera tal vilket kräver kunskap om talproduktion
Läs merUpp gifter. c. Hjälp Bengt att förklara varför det uppstår en stående våg.
1. Bengt ska just demonstrera stående vågor för sin bror genom att skaka en slinkyfjäder. Han lägger fjädern på golvet och ber sin bror hålla i andra änden. Sen spänner han fjädern genom att backa lite
Läs merVågor. En våg är en störning som utbreder sig En våg överför energi från en plats till en annan. Det sker ingen masstransport
Vågor En våg är en störning som utbreder sig En våg överför energi från en plats till en annan. Det sker ingen masstransport Vågtyper Transversella Mediets partiklar rör sig vinkelrätt mot vågens riktning.
Läs merLjud. Låt det svänga. Arbetshäfte
Ljud Låt det svänga Arbetshäfte Ljud När ljudvågorna träffar örat börjar trumhinnan svänga i takt vi hör ett ljud! Trumhinnan Ljud är en svängningsrörelse. När ett föremål börjar vibrera packas luftens
Läs merLäran om ljudet Ljud är egentligen tryckförändringar i något material. För att ett ljud ska uppstå måste något svänga eller vibrera.
Akustik Läran om ljudet Ljud är egentligen tryckförändringar i något material. För att ett ljud ska uppstå måste något svänga eller vibrera. När en gitarrsträng vibrerar, rör den sig fram och tillbaka.
Läs merPerception. Intonation och tonhöjd. Intrinsisk F0. Intonation och tonhöjd (ff) Akustiska och perceptoriska drag. Perception av prosodiska drag
Perception Akustiska och perceptoriska drag Samband mellan akustiska och perceptoriska drag Tyngpunkt på perceptorisk relevanta drag Prosodi Vokaler Konsonanter Perception i största allmänhet Primära akustiska
Läs merTalakustik Ljudvågen period periodtid Frekvens Hz Infraljud ultraljud
Göteborgs universitet: Institutionen för lingvistik Fonetik, fonologi och grafonomi, distans Kompletterande text till avsnittet Talakustik Nedanstående text utgör ett komplement till kurslitteraturen,
Läs merVad är ljud? När man spelar på en gitarr så rör sig strängarna snabbt fram och tillbaka, de vibrerar.
LJUD Vad är ljud? När man spelar på en gitarr så rör sig strängarna snabbt fram och tillbaka, de vibrerar. När strängen rör sig uppåt, pressar den samman luften på ovansidan om strängen => luftmolekylerna
Läs merCentralt innehåll. O Hur ljud uppstår, breder ut sig och kan registreras på olika sätt. O Ljudets egenskaper och ljudmiljöns påverkan på hälsan.
LJUD Fysik åk 7 Centralt innehåll O Hur ljud uppstår, breder ut sig och kan registreras på olika sätt. O Ljudets egenskaper och ljudmiljöns påverkan på hälsan. Tre avsnitt O Ljudets egenskaper O Ljudvågor
Läs merLjud, Hörsel. vågrörelse. och. Namn: Klass: 7A
Ljud, Hörsel och vågrörelse Namn: Klass: 7A Dessa förmågor ska du träna: använda fysikens begrepp, modeller och teorier för att beskriva och förklara fysikaliska samband i naturen och samhället genomföra
Läs merSpektrogram att göra ljud synligt
Spektrogram att göra ljud synligt 2011-02-23 Vad är ljud för någonting? Vi människor lever och rör oss i ett skikt med gas som ligger ovanpå jordens yta. Gasen består av ca 80 % kväve och 20 % syre. Denna
Läs merMEDIESIGNALER INTRODUKTION
Rev. 150119 US MEDIESIGNALER INTRODUKTION 1 VILKA PROBLEM LÖSER VI MED SIGNAL- BEHANDLING? Akustik. Inspelning av sorl från fikarummet vid TFE. Varför pratar alla så högt? Varför hör man inte vad någon
Läs merLjudlära. Ljud är Periodicitet. Introduktion. Ljudlära viktigt ur två aspekter:
Introduktion Ljudlära Ljudlära viktigt ur två aspekter: 1. Ljudets fysikaliska egenskaper 2. Vad vi uppfattar med hörseln Syfte: att lära sig göra relevanta kopplingar mellan faktisk vetenskap och sinnlig
Läs mer1 Figuren nedan visar en transversell våg som rör sig åt höger. I figuren är en del i vågens medium markerat med en blå ring prick.
10 Vågrörelse Vågor 1 Figuren nedan visar en transversell våg som rör sig åt höger. I figuren är en del i vågens medium markerat med en blå ring prick. y (m) 0,15 0,1 0,05 0-0,05 0 0,5 1 1,5 2 x (m) -0,1-0,15
Läs merVåglära och Optik Martin Andersson mading1977@gmail.com
Våglära och Optik Martin Andersson mading1977@gmail.com A - Våglära (Kapitel 19-21) Innehåll: I - Beskrivning, Egenskaper hos vibrationer och vågor II - Mekaniska vågor ljud I - Beskrivning, egenskaper
Läs merLjud Molekyler i rörelse
A här får du lära dig J hur ljud bildas och sprids varför vi ser blixten före vi hör mullret när åskan går vad som menas med ultraljud och infraljud skillnaden mellan starka och svaga samt höga och låga
Läs merLjudmaskiner. Dra med en fuktig pappersbit längs tråden som sitter fast i plastburken. Till påsken kan du göra en påsktupp av en likadan burk.
Ljud åk 3-4; station a) Ljudmaskiner 1. Kacklande burk. Beskrivning: Se länk på sidan 'Bygga'. Dra med en fuktig pappersbit längs tråden som sitter fast i plastburken. Till påsken kan du göra en påsktupp
Läs merMål med temat vad är ljud?
Vad är ljud? När vi hör är det luftens molekyler som har satts i rörelse. När en mygga surrar och låter är det för att den med sina vingar puttar på luften. När en högtalare låter är det för att den knuffar
Läs merTPPA-B(2): Akustisk fonetik I. Praktisk info. Kurslitteratur
TPPA-B(2): Akustisk fonetik I Mattias Heldner KTH Tal, musik och hörsel heldner@kth.se Praktisk info Schema, läsanvisningar, handouts, länkar och dylikt finns på: http://www.ling.gu.se/~mattias/tppa_b/
Läs merProv i vågrörelselära vt06 Lösningsförslag
Prov i vågrörelselära vt06 Lösningsförslag Hjälpmedel: Formelsamling, fysikbok, miniräknare, linjal, sunt förnuft. 7 uppgifter vilka inlämnas på separat papper snyggt och välstrukturerat! Låt oss spela
Läs merGrundläggande ljud- och musikteori
Grundläggande ljud- och musikteori Jan Thim Magnus Eriksson Lektionens syfte Syftet med denna lektion är är att att ge ge förståelse för för decibelbegreppet, spektrum, digitalisering och och olika olika
Läs mer= T. Bok. Fysik 3. Harmonisk kraft. Svängningsrörelse. Svängningsrörelse. k = = = Vågrörelse. F= -kx. Fjäder. F= -kx. massa 100 g töjer fjärder 4,0 cm
Bok Vågrörelse Fysik 3 Fysik 3, Vågrörelse Mekanisk vågrörelse Ljud Ljus Harmonisk kraft Ex [ F] [ k ] N / m [ x] Fjäder F -kx F -kx [ F] k fjäderkonstanten [ k ] [ x] - kraften riktad mot jämviktsläget
Läs merPraktisk info. T-PPA 2 Lektion 1: Akustiska elementa
T-PPA 2 Lektion 1: Akustiska elementa Mattias Heldner KTH Tal, musik och hörsel heldner@kth.se Praktisk info Schema, läsanvisningar, handouts, länkar och dylikt finns på: http://www.ling.gu.se/~mattias/t-ppa_2/
Läs merAkustisk fonetik. Akustiska elementa. Ljudvågor. Ljudvågor. Talkommunikationskedjan. Talkommunikationskedjan
Talkommunikationskedjan Akustisk fonetik I den första förläsningen talade vi om talkommunikationskedjan, alltså den serie av händelser som börjar med en tanke i en talares huvud och slutar med en tolkning
Läs merSÄTT DIG NER, 1. KOLLA PLANERINGEN 2. TITTA I DITT SKRIVHÄFTE.
SÄTT DIG NER, 1. KOLLA PLANERINGEN 2. TITTA I DITT SKRIVHÄFTE. Vad gjorde vi förra gången? Har du några frågor från föregående lektion? 3. titta i ditt läromedel (boken) Vad ska vi göra idag? Optik och
Läs mer1. Mekanisk svängningsrörelse
1. Mekanisk svängningsrörelse Olika typer av mekaniska svängningar och vågrörelser möter oss överallt i vardagen allt från svajande höghus till telefoner med vibrationen påslagen hör till denna kategori.
Läs merI Rymden finns ingen luft. Varför kan man inte höra några ljud där?
Ljud Vad är ljud? Luften består av små atomer som sitter ihop och bildar molekyler. När vi hör ljud är det luftens molekyler som har satts i rörelse. Sådana rörelser kallar vi ljudvågor. De sprids och
Läs merUltraljudsfysik. Falun
Ultraljudsfysik Falun 161108 Historik Det första försöken att använda ultraljud inom medicin gjordes på 1940- och 1950-talet. 1953 lyckades två kardiolger i Lund (Edler och Hertz) med hjälp av en lånad
Läs merAtt fånga den akustiska energin
Att fånga den akustiska energin När vi nu har en viss förståelse av vad ljud egentligen är kan vi börja sätta oss in i hur det kan fångas upp och efterhand lagras. När en ljudvåg sprider sig är det inte
Läs merUppgifter 2 Grundläggande akustik (II) & SDOF
Uppgifter Grundläggande akustik (II) & SDOF. Två partiklar rör sig med harmoniska rörelser. = 0 u ( Acos( där u ( Acos( t ) 6 a. Vad är frekvensen för de båda rörelserna? b. Vad är periodtiden? c. Den
Läs mer1. a) I en fortskridande våg, vad är det som rör sig från sändare till mottagare? Svara med ett ord. (1p)
Problem Energi. a) I en fortskridande våg, vad är det som rör sig från sändare till mottagare? Svara med ett ord. (p) b) Ge en tydlig förklaring av hur frekvens, period, våglängd och våghastighet hänger
Läs merGrundläggande akustik. Rikard Öqvist Tyréns AB
Grundläggande akustik Rikard Öqvist Tyréns AB Rikard Öqvist Umeåbo och Akustikkonsult sedan 2011 Industridoktorand sedan semestern 2014, disputation dec 2016 rikard.oqvist@tyrens.se 010-452 31 27 Vad är
Läs merSvängningar och frekvenser
Svängningar och frekvenser Vågekvationen för böjvågor Vågekvationen för böjvågor i balkar såväl som plattor härleds med hjälp av elastiska linjens ekvation. Den skiljer sig från de ovanstående genom att
Läs mer2. Mekaniska vågrörelser i en dimension
2. Mekaniska vågrörelser i en dimension Reflexion Även om alla vågrörelser kan beskrivas med begreppen och, för de flesta naturligt förekommande vågorna, de matematiska uttrycken introducerade i kapitel
Läs merF8 Rumsakustik, ljudabsorption. Hur stoppar vi ljudet? Rumsakustik 3 förklaringsmodeller. Statistisk rumsakustik.
Hur stoppar vi ljudet? Isolering Blockera ljudvägen ingen energiförlust Absorption F8 Rumsakustik, ljudabsorption Omvandla ljud till värme energiförlust Rumsakustik 3 förklaringsmodeller Statistisk rumsakustik
Läs merFYSIK ÅK 9 AKUSTIK OCH OPTIK. Fysik - Måldokument Lena Folkebrant
Fysik - Måldokument Lena Folkebrant FYSIK ÅK 9 AKUSTIK OCH OPTIK Ljud är egentligen tryckförändringar i något material. För att ett ljud ska uppstå måste något svänga eller vibrera. När en gitarrsträng
Läs merF8 Rumsakustik, ljudabsorption. Hur stoppar vi ljudet? Rumsakustik 3 förklaringsmodeller. Isolering. Absorption. Statistisk rumsakustik
F8 Rumsakustik, ljudabsorption Hur stoppar vi ljudet? Isolering Blockera ljudvägen ingen energiförlust Absorption Omvandla ljud till värme energiförlust Rumsakustik 3 förklaringsmodeller Statistisk rumsakustik
Läs merRepetitionsuppgifter i vågrörelselära
Repetitionsuppgifter i vågrörelselära 1. En harmonisk vågrörelse med frekvensen 6, Hz och utbredningshastigheten 1 m/s har amplituden a. I en viss punkt och vid en viss tid är elongationen +,5a. Hur stor
Läs merHandledning laboration 1
: Fysik 2 för tekniskt/naturvetenskapligt basår Handledning laboration 1 VT 2017 Laboration 1 Förberedelseuppgifter 1. För en våg med frekvens f och våglängd λ kan utbredningshastigheten skrivas: 2. Färgen
Läs merLaboration Svängningar
Laboration Svängningar Laboranter: Fredrik Olsen Roger Persson Utförande datum: 2007-11-22 Inlämningsdatum: 2007-11-29 Fjäder Högtalarmembran Stativ Fjäder Ultraljudssensor Försökets avsikt Syftet med
Läs merVågrörelselära. Christian Karlsson Uppdaterad: Har jag använt någon bild som jag inte får använda så låt mig veta så tar jag bort den.
Vågrörelselära Christian Karlsson Uppdaterad: 161003 Har jag använt någon bild som jag inte får använda så låt mig veta så tar jag bort den. christian.karlsson@ckfysik.se [14] 1 Elasticitet (bl.a. fjädrar)
Läs merFormelsamling finns sist i tentamensformuläret. Ämnesområde Hörselvetenskap A Kurs Akustik och ljudmiljö, 7,5hp Kurskod: HÖ1004 Tentamenstillfälle 1
Ämnesområde Hörselvetenskap A Kurs Akustik och ljudmiljö, 7,5hp Kurskod: HÖ1004 Tentamenstillfälle 1 Datum 2011-06-01 Tid 4 timmar Kursansvarig Åsa Skagerstrand Tillåtna hjälpmedel Övrig information Resultat:
Läs merProblem Vågrörelselära & Kvantfysik, FK november Givet:
Räkneövning 3 Vågrörelselära & Kvantfysik, FK2002 29 november 2011 Problem 16.5 Givet: En jordbävning orsakar olika typer av seismiska vågor, bland annat; P- vågor (longitudinella primär-vågor) med våghastighet
Läs merÄmnesområde Hörselvetenskap A Kurs Akustik och ljudmiljö, 7 hp Kurskod: HÖ1015 Tentamenstillfälle 4
IHM Kod: Ämnesområde Hörselvetenskap A Kurs Akustik och ljudmiljö, 7 hp Kurskod: HÖ115 Tentamenstillfälle 4 Datum 213-11-7 Tid 4 timmar Kursansvarig Susanne Köbler Tillåtna hjälpmedel Miniräknare Linjal
Läs merDT1130 Spektrala transformer Tentamen
DT3 Spektrala transformer Tentamen 5 Tentamen består av fem uppgifter där varje uppgift maximalt ger p. Normalt gäller följande betygsgränser: E: 9 p, D:.5 p, C: p, B: 6 p, A: 8 p Tillåtna hjälpmedel:
Läs merVågrörelselära och optik
Vågrörelselära och optik Kapitel 16-1 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator: Kapitel 14.1 14.4 Mekaniska vågor: Kapitel 15.1
Läs merHambley avsnitt
Föreläsning 0 Hambley avsnitt 6.6.8 Filter [6.2, 6.5 6.8] Vid kommunikation används tidsharmoniska signaler. Dessa har ett visst frekvensband centrerad kring en bärfrekvens. Som exempel kan en sändare
Läs merLjudfysik Patrik Eriksson 2001
Ljudfysik Patrik Eriksson 2001 Meny: Vad är ljud? Ljudvågen Reflektion Diffraktion Ljudnivå (db-begreppet) Örat Hörtröskeln Smärttröskeln Perception Svävning Masking Riktningsuppfattning Rymd/rumsklang
Läs merHambley avsnitt
Föreläsning Hambley avsnitt 6.6.8 Filter [6.2, 6.5 6.8] Nästan all trådlös och trådbunden kommunikation är baserad på tidsharmoniska signaler. Signalerna utnyttjar ett frekvensband centrerad kring en bärfrekvens.
Läs mer2. Ljud. 2.1 Ljudets uppkomst
2. Ljud 2.1 Ljudets uppkomst Ljud är en mekanisk vågrörelse som fortskrider i ett medium (t.ex. luft, vatten...) Någon typ av medium är ett krav; I vakuum kan ljudet inte fortskrida. I vätskor och gaser
Läs merGrundläggande signalbehandling
Beskrivning av en enkel signal Sinussignal (Alla andra typer av signaler och ljud kan skapas genom att sätta samman sinussignaler med olika frekvens, Amplitud och fasvridning) Periodtid T y t U Amplitud
Läs merRepetition Harmonisk svängning & vågor - Fy2 Heureka 2: kap. 7, 9, 13 version 2016
Repetition Harmonisk svängning & vågor - Fy2 Heureka 2: kap. 7, 9, 13 version 2016 Harmonisk svängning En svängning fram och tillbaka kring ett jämviktsläge, där den resulterande kraften på den svängande
Läs merVår hörsel. Vid normal hörsel kan vi höra:
Vår hörsel Vår hörsel är fantastisk! Vid ett telefonsamtal kan vi med hjälp av det första eller två första orden oftast veta vem som ringer Vid normal hörsel kan vi höra: från viskning till öronbedövande
Läs merDenna våg passerar mikrofonen, studsar mot väggen och passerar åter mikrofonen efter tiden
Lösning till inlämningsuppgift 1 Beskriv först ljudtrycket för den infallande vågen som en funktion av tiden. Eftersom trycket ökar linjärt mellan sågtandsvågens språng och eftersom periodtiden är T=1
Läs mer1. Allmänt vågrörelser mekaniska vågrörelser
1. Allmänt vågrörelser mekaniska vågrörelser Definition En mekanisk vågrörelse utgörs av en regelbundet upprepad (periodisk) störning i en del av ett medium (material) som fortplantas (utbreder sig) genom
Läs merTema - Matematik och musik
Tema - Matematik och musik Författarna och Bokförlaget Borken, 2011 Allt vi uppfattar som ljud, från den nästan smärtsamma upplevelsen på en rockkonsert till insekternas surr en sommardag, består av mer
Läs merAkustik. vågrörelse. och. Arbetshäfte. Namn: Klass:
Akustik och vågrörelse Arbetshäfte Namn: Klass: Akustik och vågrörelse E- nivå Du genomför och redogör för uppgifter och undersökningar efter instruktioner, individuellt eller i grupp. Du kan med hjälp
Läs merVågfysik. Superpositionsprincipen
Vågfysik Superposition Knight, Kap 21 Superpositionsprincipen Superposition = kombination av två eller fler vågor. Vågor partiklar Elongation = D 1 +D 2 D net = Σ D i Superpositionsprincipen 1 2 vågor
Läs merVågrörelselära. Uppdaterad: [1] Elasticitet (bl.a. fjädrar) [15] Superposition / [2] Elastisk energi /
Vågrörelselära Har jag använt någon bild som jag inte får Uppdaterad: 171017 använda? Låt mig veta så tar jag bort den. christian.karlsson@ckfysik.se [1] Elasticitet (bl.a. fjädrar) [15] Superposition
Läs merTFEI02: Vågfysik. Tentamen : Svar och anvisningar. t s(x,t) =s 0 sin 2π T x. v = fλ =3 5 m/s = 15 m/s
140528: TFEI02 1 TFEI02: Vågfysik Tentamen 140528: Svar och anvisningar Uppgift 1 a) En fortskridande våg kan skrivas på formen: t s(x,t) =s 0 sin 2π T x λ Vi ser att periodtiden är T =1/3 s, vilket ger
Läs merÄmnesområde Hörselvetenskap A Kurs Akustik och ljudmiljö, 7 hp Kurskod: HÖ1015 Tentamenstillfälle 1
Hälsoakademin Kod: Ämnesområde Hörselvetenskap A Kurs Akustik och ljudmiljö, 7 hp Kurskod: HÖ115 Tentamenstillfälle 1 Datum 211 11 3 Tid 4 timmar Kursansvarig Susanne Köbler Tillåtna hjälpmedel Miniräknare
Läs merLaboration 1 Fysik
Laboration 1 Fysik 2 2015 : Fysik 2 för tekniskt/naturvetenskapligt basår Laboration 1 Förberedelseuppgifter 1. För en våg med frekvens f och våglängd λ kan utbredningshastigheten skrivas: 2. Färgen på
Läs merE-strängen rör sig fyra gånger så långsamt vid samma transversella kraft, accelerationen. c) Hur stor är A-strängens våglängd?
Problem. Betrakta en elgitarr. Strängarna är 660 mm långa. Stämningen är E-A-d-g-b-e, det vill säga att strängen som ger tonen e-prim (330 Hz) ligger två oktav högre i frekvens än E-strängen. Alla strängar
Läs merF9 Rumsakustik, ljudabsorption
F9 Rumsakustik, ljudabsorption Hur stoppar vi ljudet? Isolering Blockera ljudvägen ingen energiförlust Absorption Omvandla ljud till värme energiförlust 1 Rumsakustik 3 förklaringsmodeller Statistisk rumsakustik
Läs merObservera att uppgifterna inte är ordnade efter svårighetsgrad!
TENTAMEN I FYSIK FÖR n1, 19 DECEMBER 2003 Skrivtid: 14.00-19.00 Hjälpmedel: Formelblad och räknare. Börja varje ny uppgift på nytt blad. Lösningarna ska vara väl motiverade och försedda med svar. Kladdblad
Läs merVocoding och frekvensskiftningsexperiment inom det audiologiska forskningsfältet Av Morgan Karlsson
Vocoding och frekvensskiftningsexperiment inom det audiologiska forskningsfältet Av Morgan Karlsson Vocoding Några av de första försöken att återskapa tal elektroniskt gjordes på 30-talet av fysikern Homer
Läs merLjudalstring. Luft Luft Luft Luft Luft Luft Luft Luft. Förtätning
1 Akustik grunder Vad är ljud? 2 Akustik grunder Ljudalstring Luft Luft Luft Luft Luft Luft Luft Luft Förtätning Förtunning Förtätning Förtunning 3 Akustik grunder Spridningsvägar 4 Akustik grunder Helheten
Läs merElektronik 2018 EITA35
Elektronik 218 EITA35 Föreläsning 1 Filter Lågpassfilter Högpassfilter (Allpassfilter) Bodediagram Hambley 296-32 218-1-2 Föreläsning 1, Elektronik 218 1 Laboration 2 Förberedelseuppgifter! (Ingen anmälan
Läs merVågrörelselära och optik
Vågrörelselära och optik Kapitel 15 1 Vågrörelselära och optik Kurslitteratur: University Physics by Young & Friedman (14th edition) Harmonisk oscillator: Kapitel 14.1 14.4 : Kapitel 15.1 15.8 Ljud och
Läs merTFEI02: Vågfysik. Tentamen : Svar och anvisningar. t 2π T x. s(x,t) = 2 cos [2π (0,4x/π t/π)+π/3]
TFEI0: Vågfysik Tentamen 14100: Svar och anvisningar Uppgift 1 a) Vågen kan skrivas på formen: vilket i vårt fall blir: s(x,t) =s 0 sin t π T x + α λ s(x,t) = cos [π (0,4x/π t/π)+π/3] Vi ser att periodtiden
Läs merApp for measurements
F10 Rumsakustik 2 App for measurements Room acoustics Traffic noise APM Tool lite : free Need to use a big clap as sound source Road noise from Tyrens (explanation) Schall app (KW), measurement of SPL
Läs merAkustik läran om ljudet
Akustik läran om ljudet Innehåll Exempel på ljudkällor... 1 Hur ljud uppstår... 1 Så här fungerar örat... 1 Ytterörat samlar upp ljud... 2 I mellanörat sitter hörselbenen... 2 Innerörat... 2 Det var lite
Läs merAkustik. Läran om ljudet
Akustik Läran om ljudet Vad är ljud? Ljud är förtätningar och förtunningar som uppstår i omgivningen när ett föremål vibrerar. Ljud kräver materia för att kunna spridas, t.ex. luft. Ett föremål som vibrerar
Läs mer1.3 Uppkomsten av mekanisk vågrörelse
1.3 Uppkomsten av mekanisk vågrörelse För att en mekanisk vågrörelse skall kunna uppstå, behövs ett medium, något som rörelsen kan framskrida i. Det kan vara vatten, luft, ett bord, jordskorpan, i princip
Läs merKod: Datum 2014-02-01. Kursansvarig Susanne Köbler. Tillåtna hjälpmedel. Miniräknare Linjal Språklexikon vid behov
Institutionen för hälsovetenskap och medicin 2 Kod: Ämnesområde Hörselvetenskap A Kurs Akustik och ljudmiljö, 7 hp Kurskod: HÖ115 Tentamenstyp Individuell salstentamen Tentamenstillfälle Uppsamling 1 Provkod
Läs merKälla: Kunskapsträdet - Fysik
Källa: Kunskapsträdet - Fysik Det är nästan omöjligt att hitta en plats där det inte finns några ljud. Vi störs inte av alla ljud. Utomhus kan man säga att fågelsång och vindens susande hör till tysta
Läs merHjälpmedel: Grafritande miniräknare, gymnasieformelsamling, linjal och gradskiva
Fysik Bas 2 Provmoment: Ladokkod: Tentamen ges för: KBAST17h KBASX17h 9 högskolepoäng Tentamensdatum: 2018-05-28 Tid: 09:00-13:00 Hjälpmedel: Grafritande miniräknare, gymnasieformelsamling, linjal och
Läs merF2 Beskrivning av ljud. Ljud = vågrörelse. Tryckvariation Akustisk Planering VTA070 Infrastruktursystem VVB090
F2 Beskrivning av ljud Akustisk Planering VTA070 Infrastruktursystem VVB090 Ljud = vågrörelse En rörelse som sprids genom ett medium, tex luft Partiklarna svänger kring sina respektive jämviktslägen Tryckvariation
Läs merVad är ljud? Ljud skapas av vibrationer
Vad är ljud? Ljud skapas av vibrationer När en gitarrist spelar på en sträng börjar den att svänga snabbt fram och tillbaka - den vibrerar och du hör ett ljud. När du sjunger är det dina stämband som vibrerar
Läs merSamtidig visning av alla storheter på 3-fas elnät
Samtidig visning av alla storheter på 3-fas elnät Med nätanalysatorerna från Qualistar+ serien visas samtliga parametrar på tre-fas elnätet på en färgskärm. idsbaserad visning Qualistar+ visar insignalerna
Läs merGrundläggande Akustik
Läran om ljud och ljudutbredning Ljud i fritt fält Ljudet utbreder sig som tryckväxlingar kring atmosfärstrycket Våglängden= c/f I luft, ljudhastigheten c= 344 m/s eller 1130 ft/s 1ft= 0.3048 m Intensiteten
Läs merBilaga A, Akustiska begrepp
(5), Akustiska begrepp Beskrivning av ljud Ljud som vi hör med örat är tryckvariationer i luften. Ljudet beskrivs av dess styrka (ljudtrycksnivå), dess frekvenssammansättning och dess varaktighet. Ljudtrycksnivå
Läs mer3. Mekaniska vågor i 2 (eller 3) dimensioner
3. Mekaniska vågor i 2 (eller 3) dimensioner Brytning av vågor som passerar gränsen mellan två material Eftersom utbredningshastigheten för en mekanisk våg med största sannolikhet ändras då den passerar
Läs merINNEHÅLL. Inledning... 4. Genomförande... 5. Ljud... 7. Centralt innehåll... 6. Ljud - En presentation... 7. Uppdragskort... 8. 2 Radioparabolen...
2012: 1 INNEHÅLL Inledning... 4 Genomförande... 5 Ljud... 6 Centralt innehåll... 6 Ljud... 7 Ljud - En presentation... 7 Uppdragskort... 8 2 Radioparabolen... 8 3 DigiWall, ljudmemory... 8 4. Skrikmätaren...
Läs merDigital signalbehandling Digitalt Ljud
Signalbehandling Digital signalbehandling Digitalt Ljud Bengt Mandersson Hur låter signalbehandling Institutionen för elektro- och informationsteknik 2008-10-06 Elektronik - digital signalbehandling 1
Läs merMätningar med avancerade metoder
Svante Granqvist 2008-11-12 13:41 Laboration i DT2420/DT242V Högtalarkonstruktion Mätningar på högtalare med avancerade metoder Med datorerna och signalprocessningens intåg har det utvecklats nya effektivare
Läs merLaborationsinstruktion för Ultraljudsensorer
Laborationsinstruktion för Ultraljudsensorer Tadeusz Stepinski januari 003 Namn Handledarens kommentarer Årskurs/Inskrivningsår Godkänd den . Inledning Att ett material är piezoelektriskt betyder att det
Läs merMäta ljudnivåer och beräkna vägt reduktionstal för skiljevägg i byggnad
UMEÅ UNIVERSITET Tillämpad fysik och elektronik Laborationer i byggnadsakustik Osama Hassan 2010-09-07 Byggnadsakustik: Luftljudisolering Mäta ljudnivåer och beräkna vägt reduktionstal för skiljevägg i
Läs merLab lanserade R.A. Moog Inc. en ny synt: Minimoog. Den var designad av Bill Hemsath och Robert Moog och kom att revolutionera musikhistorien.
Lab 1 1970 lanserade R.A. Moog Inc. en ny synt: Minimoog. Den var designad av Bill Hemsath och Robert Moog och kom att revolutionera musikhistorien. Minimoogen var egentligen en ganska enkel synt. Den
Läs mer3. Metoder för mätning av hörförmåga
3. Metoder för mätning av hörförmåga Sammanfattning Förekomst och grad av hörselnedsättning kan mätas med flera olika metoder. I kliniskt arbete används oftast tonaudiogram. Andra metoder är taluppfattningstest
Läs merLokal pedagogisk plan
Syfte med arbetsområdet: Undervisningen ska ge eleverna möjligheter att använda och utveckla kunskaper och redskap för att formulera egna och granska andras argument i sammanhang där kunskaper i fysik
Läs merLjudteknik. Digital representation. Vad är ljud?
Ljudteknik Digital representation Vad är ljud? 1 3 grundstenar för ljud» Alstring» Överföring» Mottagning Örat Hörseln» Lufttrycksvariationer ger mekaniska vibrationer i trumhinnan» Hörselbenet växlar
Läs mer