Lösningsförslag till övningar
|
|
- Mats Lundgren
- för 6 år sedan
- Visningar:
Transkript
1 MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik Statistik Lösningsförslag till övningar Statistik och kvantitativa undersökningar 15 HP Höstterminen
2 Innehåll Deskriptiv statistik och index... 3 Sannolikhetslära... 6 Undersökningsdesign, konfidensintervall och bortfall Hypotesprövning Regression Icke parametriska metoder
3 Deskriptiv statistik och index 1. Kontinuerliga: Ålder, Kroppslängd, Hastighet, Intelligenskvot Diskreta: Antal barn, Antal dörrar hos en bil (Ålder kan eventuellt betraktas som diskret eftersom man oftast inte uppger sin exakta ålder. Det är sällan någon säger att han är 25 år 5 månader 10 dagar sju timmar och åtta minuter gammal. Mätresultaten för ålder är därför ofta diskreta.) 2. Kvantitativ: Ålder, kroppsvikt, Kvalitativ: Kön, Hemvist, Bilmärke, Lydig-olydig, Förnamn Spritmissbruk kan mätas på båda sätten. Kvantitativt kan man t ex ange förbrukningen av alkoholhaltiga drycker per år. Kvalitativt kan man dela in folk i tex absolutister, måttlighetsförbrukare och alkoholberoende. 3. På flera av variablerna kan mäta i flera skaltyper. Gruppstorlek mäts t ex i en ordinalskala om man delar in grupperna i smågrupper, mellanstora grupper och stora grupper. Mäter man däremot antal personer per grupp så blir det en kvotskala. Förslag på svar: Nominalskala: Hårfärg, Nationalitet, Stad - land, Straffad - icke straffad Ordinalskala: Gruppstorlek, Grad av demokratisk ledarstil, Kryddningen av en maträtt, Alkoholvanor Intervallskala: Temperatur Kvotskala: Kroppsvikt, C-vitaminhalt i apelsiner, Hastigheten hos en bil, gruppstorlek, Regnmängd, Arbetslöshet 4. Ålder, hur länge har du haft din nuvarande position och antal rum är kvotskala. Kön, vilken avdelning samt alla ja och nej frågor är nominalskala. Grad av relevans och grad av instämmande frågorna är ordinalskala. 5 A. 30,25 % av de 400 dvs st är kvinnliga arbetare B. Av de 66,75 % manliga anställda är 20,25 % tjänstemän. 30,3 % av de manliga anställda är tjänstemän. 3
4 6. A. Ålder Kön < 35 år > 35 år totalt män 25 33,3 30 kvinnor 75 66,7 70 Totalt B. Ålder Kön < 35 år > 35 år totalt män 33,3 66,7 100 kvinnor 42,9 57,1 100 Totalt C. Ålder Kön < 35 år > 35 år totalt män kvinnor totalt Medelvärde: 15,09 Median: 15 Varians: 8,29 Standardavvikelse: 2,88 Pearson measure of skewness: 0,095 Första kvartilen 13 Andra kvartilen 15 Tredje kvartilen 17 Kvartilavståndet 4 Variationsvidden 10 Min 10 Max 20 4
5 8. a) Lådagram b) medianen är ca 42. Medelvärde kan inte utläsas ur lådagram, kvartilavstånden är ca 7 (45-38) c) det finns inga extremvärden, dessa skulle illustrerats med stjärnor. d) Högsta värde är ca 50 minsta ca Äldre bussar tenderar att ha högre årliga reparationskostnader 10. Om vi använder 1997 som basår: personbilar motorcyklar L År I t 1, t K 85, t a) b) a) Den nominella löneindexet anger den procentuella ökningen av nominella lönen. Den nominella lönen hade ökat med 23 procent. b) För att beräkna reallönen ska vi deflatera med KPI. Reallöneindex var 104,23 vilket innebär att reallönen hade stigit med 4 %. 5
6 Sannolikhetslära 8! A) 8C !5! ! B) 8C !3! 5!3! C) 5C 3 3 C2 30 3!2!21!! (Begreppsförklaring: skrivs även eller. Dessa uttryck är lika med och anger antal kombinationer av r element valda bland n element.) 2. A) P(ruter) = 13/52 = ¼ B) P(röd kung) = 2/52 = 1/26 C) P(kung eller dam) = 8/52 = 2/13 D) P(ej kung eller dam): 1-2/13 = 11/13 alternativt 44/52 =11/13 3. A) Att få sexor i två kast efter varandra. 4. 0,2 rött 0,4 0,7 0,2 0,056 0,4 rött 0,7 0,3 rött Ej rött 0,8 0,2 Ej rött 0,4 0,7 0,8 0,224 rött 0,4 0,3 0,2 0,024 0,8 Ej rött 0,4 0,3 0,8 0,096 0,2 rött 0,6 0,7 0,2 0,084 0,6 0, 7 Ej rött 0,3 rött Ej rött 0,8 0,2 Ej rött rött 0,6 0,7 0,8 0,336 0,6 0,3 0,2 0,036 0,8 Ej rött 0,6 0,3 0,8 0,144 Låt A betyda att ljus A visar rött etc B) P(A och B och ~C) = P(A) P(B) P(~C) = = C) P(A eller B eller C) = 1 - P(~A och ~B och ~C) = = 1 - P(~A) P(~B) P(~C) = = = D) Detta är samma sak som att exakt ett ljus visar rött. Det finns tre olika alternativ som uppfyller detta. Vi får då addera de tre sannolikheterna. P(sökt) = P(~A och ~B och C) + P(~A och B och ~C) + P(A och ~B och ~C) = = = = =
7 5 a) 0,1 rött 0,4 0,1 0,04 0,4 rött 0,9 grönt 0,4 0,9 0,36 0,6 grönt 0,2 rött 0,6 0,2 0,12 0,8 grönt 0,6 0,8 0,48 b) Det finns tre sätt att få minst ett rött. Antingen rött-grönt, grönt-rött eller rött-rött. Det innebär att det bara är grönt-grönt som inte uppfyller detta. Vi kan använde komplementregeln: (Ett annat alternativ är att använda adderingsregeln och lägga ihop de tre utfallen som uppfyller händelsen.) 6 Ett bra första steg kan vara att skriva ner sannolikhetsfördelningen: Total dricks per dag: Antal dagar sannolikhet 200 0,40 (200/500) 100 0,20 (100/500) 75 0,15 (75/500) 75 0,15 (75/500) 200 eller mer 50 0,10 (50/500) totalt a) 0,10 b) Ja ett visst värde kan bara hamna i en av kategorierna c) Ja eftersom man inte kan få negativ dricks måsta alla värden hamna i någon av kategorierna d) 1 e) f) 7
8 7 Män Kvinnor Totalt Högskoleutbildning 0,78*0,20 = 0,156 0,9*0,80 = 0,72 0,876 Ej 0,044 0,08 0,124 högskoleutbildning totalt 0,20 0,80 1 Män Kvinnor Totalt Högskoleutbildning 0,78 0,90 0,876 Ej 0,22 0,10 0,124 högskoleutbildning totalt Män Kvinnor Totalt Högskoleutbildning 0,156/0,876=0,178 0,822 1 Ej 0,044/0,124=0,355 0,645 1 högskoleutbildning totalt 0,2 0,8 1 b) 0,08 c) 0,124 d) 0,10 e) Nej eftersom sannolikheten att ha en högskoleutbildning är högre hos kvinnor än hos män är variablerna beroende. 8 a) Binomialfödelning, varje händelse har två utfall, vi räknar antalet ja och det är samma sannolikhet för ja varje gång. b) Bästa gissningen är att 1 låntagare kommer att misslyckas c) d) e) f) 9 a) 7 7 P 2 4 C ! 7 7 P 2 1 2! 4 2! P P 2 6 0,7 0,3 0,
9 b) P P P a) b) c) d) 7 C2 3C2 C 2! 10 7! 7 2! 2! 3 4! 4 10! ! 2! 7! 3! 2!5! 2!1! 10! 10 4! 4!6! , 30 e) Eftersom alla sockerpaket väger mer eller lika med 11,96 kommer alla paket väga mer än a. b. c. d. 9
10 Vi söker den gräns där det är 20 procents sannolikhet att dra en anställd med högre lön. För att hitta den behöver vi hitta ett värde på z där sannolikheten att få ett större värde är 20 %. För det z-värdet gäller att: P(0 till z) = 0,3 Enligt tabellen är P(0<z<0,84) = 0,2995 och P(0<z<0,85) = 0,3023. Vi utgår ifrån z värdet 0,84 eftersom det ligger närmast 0,3 20 procent av de anställda har en lön som överstiger så den som tjänar minst av de 20 procent som tjänar mest bör ha en lön på ca a. P(X > 2 500) = P(z > 1,12) = 0,5 - P(0 < z < 1,12) = 0,5-0,3686 = 0, procent spenderar mer än b. P(X > 3 000) = P(z > 2,24) = 0,5 - P(0< z <2,24) = 0,5 0,4875 = 0,0125 P(2 500 < X < 3 000) = 0,1314 0,0125 = 0, procent spenderar mellan och c. P(X <1 000) = P(z < -2,21) = P(z > 2,21) = 0,5 - P(0 < z < 2,21) = 0,5-0,4864 = 0,0136 1,3 procent spenderar mindre än dollar. 10
11 Undersökningsdesign, konfidensintervall och bortfall 1 Första steget är att beräkna medelvärde och standardavvikelse för urvalsmedelvärdena om en stor mängd urval om 9 observationer dras från denna fördelning: och a) z = / 9 b) z 1 12 / 9 c) Här kan man exempelvis använda sig av komplementregeln som säger att: 2 a) Sannolikheten är ca 0,16 b) Sannolikheten är ca 0,01 (Det är nog en ganska stor sannolikhet att de fem ostarna kommer från samma leverans och är då kanske tillverkade ungefär samtidigt. Därmed är det nog inte ett slumpmässigt urval av alla företags ostar.) 11
12 3 3,01 kg frihetsgrader: 35 konfidensnivå: 95% t = 2,030 Med 95% sannolikhet täcker detta interval det sanna värdet. 4 frihetsgrader: 49 konfidensnivå: 95% t = 2,01 Konfidensintervallet ligger mellan 24,2 och 27,8 Eftersom 28 ligger utanför konfidensintervallet är det inte så troligt att det sanna värdet är 28. Sannolikheten för det är mindre än 5 %. (Fördelningen av arbetslöshetstider är förmodligen en exponentialfördelning eftersom det är frågan om tidsperioder. Men när vi drar ett urval och beräknar urvalsmedelvärdet kommer fördelningen av alla möjliga utvalsmedelvärden att vara en normalfördelning eftersom vi har så många observationer. Därmed kan vi använda inferensformlerna.) 12
13 5 a) Vi använder andelen i urvalet som punktestimat, dvs 75% b) konfidensnivå 99% 6 c) Hon har mycket goda chanser att bli vald. Med 99 procents sannolikhet kommer hon att få en andel mellan 69 och 81 procent och det räcker ju med 50 % för att bli vald. Avrunda uppåt till a) Maximal andel bilägare i A: A (max) b) Minimal andel bilägare i A: A (min) c) Maximal andel bilägare i B: B (max) d) Minimal andel bilägare i B: B (min) e) Eftersom man gjort totalundersökning (fastän med bortfall) förekommer ingen samplingvariation. Differensen B - A har följaktligen Max.-värde: B(max) - A(min) = = Min.-värde: B(min) - A(max) = = Differensen B - A ligger således i intervallet
14 8. Antal svarande är Bortfallet är = 4950 I svarsgruppen är 1275 positiva till arbetet. Under de olika antagandena får vi nu: A) p B) 1275 p C) p D) p Om vi enbart räknat andelen på de som besvarade enkäten hade andelen blivit Konfidensintervallet ligger mellan 0,168 och 0,207 Punktestimat av antalet i hela urvalet som jagat /100 = = 520 Vilket ger en andel på 520 / 2000 = 26% 10 a) Validitet är den grad med vilken en mätning mäter det begrepp som man avser att mäta b) Reliabilitet, hur noga en mätning är. c) Operationalisering är den process där man gör ett begrepp mätbart så att man kan skapa en variabel. I en enkätundersökning innebär det att formulera en eller flera frågor samt att koda svaren till dessa. Om man konstruerar flera frågor är en del av operationaliseringen också att bestämma hur de olika frågorna ska vägas samman. 11 se diskussion kring liknande frågor i Bryman och Bell kapitel 10 14
15 Hypotesprövning 1 Hypoteser (Det vi vill bevisa ska vi ha i mothypotesen eftersom vi försöker förkasta nollhypotesen.) Signifikansnivå 10 % Teststatistika: Frihetsgrader Kritiskt värde: 1,66 Beslutsregel: om värdet på teststatistikan är större än 1,66 eller mindre än -1,66 förkastas nollhypotesen. Eftersom 1,82 är större än 1,66 kan nollhypotesen förkastas. Därmed kan vi dra slutsatsen att försäljningstiden har ändrat och inte längre är lika med 90 dagar. 2 Hypoteser: Signifikansnivå 5 % Teststatistika: Antal frihetsgrader : 24 Kritiskt värde: 2,064 Beslutsregel: om värdet på teststatistikan är större än 2,064 eller mindre än -2,064 förkastas nollhypotesen.. Eftersom -1,125 är större än -2,064 och mindre än 2,064 kan nollhypotesen inte förkastas. Därmed kan vi inte dra några slutssatser från denna undersökning. Donalds undersökningsmetod är det inget fel på men han kan inte dra den slutsats han gör. 15
16 3 Vi har två populationer, nedan använder jag m för kunder med mjukvaruproblem och h för kunder med hårdvaruproblem. Signifikansnivå 5 % Kritiskt värde:1,667 Beslutsregel: Vi förkastar H 0 om teststatistikans värde är större än 1,667 Vi förkastar H 0 eftersom 2,72 är större än 1,667. Vi kan dra slutsatsen att det tar längre tid att hjälpa kunder med mjukvaruproblem. 4 a) H 0 : Medellönen för centrar, forwards och guards är lika höga. H 1 : Minst en av spelarkategorierna har en medellön som avviker från de andras. b) Eftersom p-värdet är större än vår signifikansnivå kan vi inte förkasta nollhypotesen. Därmed kan vi inte dra några slutsatser. c) Populationerna ska vara oberoende, normalfördelade och ha samma standardavvikelse. I det här fallet verkar centrarna ha en större standardavvikelse än de andra två populationerna. d) Konfidensintervallet för centrarnas lön ligger mellan 1213 och 2060 Konfidensintervallet för forwards lön ligger mellan 1310 och 1660 Konfidensintervallet för guards lön ligger mellan 1123 och 1433 e) Eftersom det går att finna värden som ingår i alla tre konfidensintervallen kan vi inte heller från konfidensintervallen dra någon slutsats om att medelvärdena skulle skilja sig åt i de tre populationerna. 16
17 5 a) Hypoteser: Teststatistika: Frihetsgrader täljare: 41 Frihetsgrader nämnare:47 Kritiskt värde: ca 2.05 (använd tabellen för 1 % signifikansnivå, vid dubbelsidigt test används tabellen för halva signifikansnivån.) Beslutsregel: Nollhypotesen förkastas om teststatistikans värde överstiger 2,05 eller är mindre än 2,05. Beräkna teststatistikan, ta alltid den större variansen i täljaren. (Annars fungerar i tabellen i boken, R behöver inte bry sig om bokens tabell så som ni ser i R utskriften nedan har den i det här fallet den lägre variansen i täljaren.) Nollhypotesen förkastas då teststatistikans värde överstiger det kritiska värdet. Slutsats. Män och kvinnor har inte samma varians. b) Hypoteser: Teststatistika: Kritiskt värde: 2,66 Beslutsregel: Vi förkastar H 0 om teststatistikan överstiger 2,66 eller är lägre än -2,66 17
18 Eftersom teststatistikans värde överstiger det kritiska värdet kan vi förkasta nollhypotesen. Vi kan därmed dra slutsatsen att medelvärdet för män avviker från medelvärdet för kvinnor i hela populationen. Män ägnar mer tid åt styrketräning än kvinnor. Nedan visas en R utskrift på denna test. Jag bockade för att jag inte ville anta att varianserna är lika. Om man bockar för att man vill anta att varianserna är samma fr män och kvinnor får man följande resultat. Men vi visade ju tidigare att män och kvinnor har olika varians så i det här fallet är det naturligtvis ett sämre test. 18
19 6 I urvalet är medelvärdena ganska lika för män och kvinnor men männen har en större varians. Det är större skillnader mellan olika män än mellan olika kvinnor i hur mycket tid man de lägger på konditionsträning. F- testet för att jämföra varianserna har ett p-värde på 0,0001. Vi kan således förkasta nollhypotesen om att varianserna är lika för män och kvinnor. Eftersom vi visat att variansen skiljer sig åt bör vi använda Welch test, p-värdet är 0,3246. Det är inte signifikant så vi kan inte förkasta nollhypotesen att män och kvinnor ägnar lika mycket tid åt konditionsträning. Därmed kan vi inte dra några slutsatser angående medelvärdena. 7 Vi använder t-test för beroende urval Teststatistika: Frihetsgrader: 89 Kritiskt värde: 2,63 Beslutsregel: Nollhypotesen förkastas om teststatistikans värde är större än 2,63 eller mindre än -2,63. Då teststatistikans värde överstiger det kritiska värdet kan nollhypotesen förkastas. Vi kan därmed dra slutsatsen att personerna i populationen inte ägnar lika mycket tid åt styrketräning som åt konditionsträning. De ägnar mest tid åt konditionsträning. 19
20 8 a) Om man inte lyckas förkasta nollhypotesen kan man inte dra några slutsatser alls. Han kan därmed inte dra slutsatsen att kognitiv beteendeterapi är verkningslös. Det är möjligt att det finns en effekt även om han inte lyckats bevisa det. Den teststatistika han använder är för två oberoende urval. Om man ska använda den ska antalet frihetsgrader beräknas med följande formel: Men han missar då att utnyttja det faktum att observationerna är relaterade till varandra. b) Här bör han istället använda t-test för beroende urval. c) Börja med att beräkna differensen för varje patient: Anders Eva Lotta Per Lars Ove Stina Anna Nils Klas medel std före ,6 10,2 efter ,6 10, ,77 Hypoteser: Teststatistika: Frihetsgrader: 9 Kritiskt värde: 2,26 Beslutsregel: Vi förkastar H 0 om teststatistiken värde är större än 2,26 eller mindre än -2,26. Då teststatistikans värde överstiger det kritiska värdet kan nollhypotesen förkastas. Vi kan därmed dra slutsatsen att blodtrycket inte är lika före och efter behandlingen. Vi kan således dra slutsatsen att kognitiv beteendeterapi har en effekt på blodtrycket. Här skulle man också kunna tänka sig att göra en enkelsidig test om man anser sig kunna utesluta att behandlingen ökar blodtrycket. I så fall är det kritiska värdet 1,83. 20
21 Regression 1 a) falsk b) sann c) falsk d) falsk e) sann f) falsk 2 Detta är den justerade förklaringsgraden, eller den justerade determinationskoefficienten. Den anger den andel av variansen i Y som inte finns kvar i residualerna, dvs den andel av variansen som vår regressionsmodell har förklarat. 3 A. Koefficienten för har värdet och anger att om utbildningstiden ökas med 1 år så minskar TV-tittandet i genomsnitt med timmar per dag förutsatt oförändrad ålder. B. Insättning av värdet 74 på och 11 på ger y ˆ dvs i genomsnitt 2.1 timmar per dag. 4 A neg B pos C neg D pos (neg?) 5 A) Interceptet är 48, det ska inte tolkas eftersom det förmodligen inte finns några skolor som satsar noll dollar per student och där lärarna inte får lön. Koefficienten för lärarlöner är signifikant eftersom p värdet (0, ) är lägre än 5 %. Om vi antar att det inte finns något samband från genomströmning till lärarlöner blir tolkningen att om man höjer lärarnas löner med 1000 dollar skulle genomströmningen öka med 0.69 procentenheter vid oförändrade värden på övriga oberoende variabler. Koefficienten för expenditure är signifikant eftersom p värdet (0, ) är lägre än 5 %. Om vi antar att det inte finns något samband från skolresultat till resurstilldelning blir tolkningen att om vi satsar ytterligare en dollar per elev reduceras andelen som klarar provet med 0,006 procentenheter vid oförändrade värden på övriga oberoende variabler. Koefficienten för bidrag är signifikant eftersom p värdet (0, ) är lägre än 5 %. Om vi antar att det inte finns något samband från genomströmning till hur mycket bidrag skolorna får innebär det att om en skola får ytterligare 1 dollar i bidrag kar genomströmningen på matteprovet med 0,004 procentenheter vid oförändrade värden på övriga oberoende variabler. B) Om politikerna ger mer resurser till skolor med låga resultat, för att förbättra resultaten där, finns ett samband från provresultat till expenditure. Detta är nog troligare än att skolresultaten skulle försämras om skolorna får mer resurser. Det är också troligt att det finns ett samband mellan provresultat och hur mycket bidrag skolorna får från välgörenhetsorganisationer. Ofta får man stipendier utifrån hur goda resultat man har uppnått. Detta är därmed ett exempel på en dåligt utförd regressionsanalys. 21
22 Förklaringarna till regressionskoefficienterna för exp och found är förmodligen att politiker tenderar att ge mer resurser till skolor med sämre resultat och att stipendier tenderar att delas ut till elever med goda resultat. Därmed kan vi inte göra de tolkningar vi gjorde i A- uppgiften. För lärarlönerna är det väl inte lika uppenbart att de skulle kunna påverkas av elevernas resultat. Det skulle i så fall vara om skolorna tillämpade någon slags lönesättningssystem där lärarna får extra betalt utifrån resultaten på proven. C) Förklaringsgraden Den justerade förklaringsgraden D) Den estimerade regressionsekvationen är: Sätt in värdena på de oberoende variablerna: Bästa gissningen för genomströmningen är drygt 56 % 6 a) Här har vi en bra modell som vi kan vara nöjda med. Residualerna verkar vara skapligt normal-fördelande med samma varians oavsett värde på x. De är jämnt utspridda men de flesta är nära noll. b) Här ökar variansen för höga värden på x. Detta problem kallas heteroskedasticitet. c) Här verkar det inte vara ett linjärt samband eftersom vi kan se ett mönster i residualerna. Låga och höga värden på x har negativa residualer, medan de är positiva för medelstora värden på x. Rekommendationen här skulle vara att lägga in x 2 som förklarande variabel. 22
23 7 a) Modell 1 Här är antalet våldsbrott beroende variabel Interceptet tolkas ej eftersom det inte finns någon delstat som har värdet noll på alla oberoende variabler. Koefficienten för blackpro är signifikant eftersom p värdet är mindre än 0,05. Tolkas som att om andelen svarta i befolkningen ökar med en procentenhet ökar antalet våldsbrott med 0,1 per invånare vid oförändrade värden på övriga oberoende variabler. Koefficienten för incpc är inte signifikant eftersom p värdet är större än 0,05. Och tolkas därför inte. Koefficienten för metropro är signifikant eftersom p värdet är mindre än 0,05. Tolkas som att om andelen i befolkningen som bor i storstäder ökar med en procentenhet ökar antalet våldsbrott med 0,04 per invånare vid oförändrade värden på övriga oberoende variabler. Koefficienten för polpc är signifikant eftersom p värdet är mindre än 0,05. Tolkas som att om antal poliser per invånare ökar med en polis ökar antalet våldsbrott med 0,024 per invånare vid oförändrade värden på övriga oberoende variabler. Koefficienten för unempro är signifikant eftersom p värdet är mindre än 0,05. Tolkas som att om andelen arbetslösa i befolkningen ökar med en procentenhet ökar antalet våldsbrott med 0.53 per invånare vid oförändrade värden på övriga oberoende variabler. Modell 2 Här är antalet stölder beroende variabel Interceptet tolkas ej eftersom det inte finns någon delstat som har värdet noll på alla oberoende variabler. Koefficienten för blackpro är inte signifikant eftersom p värdet är större än 0,05. Och tolkas därför inte. Koefficienten för incpc är signifikant eftersom p värdet är mindre än 0,05. Tolkas som att om befolkningens medelinkomst ökar med en dollar sjunker antalet stölder med 0,001 per invånare vid oförändrade värden på övriga oberoende variabler. Koefficienten för metropro är signifikant eftersom p värdet är mindre än 0,05. Tolkas som att om andelen i befolkningen som bor i storstäder ökar med en procentenhet ökar antalet stölder med 0,22 per invånare vid oförändrade värden på övriga oberoende variabler. Koefficienten för polpc är signifikant eftersom p värdet är mindre än 0,05. Tolkas som att om antal poliser per invånare ökar med en polis ökar antalet stölder med 0,09 per invånare vid oförändrade värden på övriga oberoende variabler. Koefficienten för unem är inte signifikant eftersom p värdet är större än 0,05. Och tolkas därför inte 23
24 b) Här kan man exempelvis diskutera om våldsbrotten ökar kanske den vita befolkningen flyttar från delstaten, i så fall skulle sambandet gå från antalet våldsbrott till andel svarta Om våldsbrotten är höga kanske det är mindre attraktivt att starta företageande och anställa folk, då skulle andelen våldbrott påverka arbetslösheten Om våldbrotten ökar kanske man anställer fler poliser, då skulle antalet våldsbrott påverka antalet poliser. c) Förklaringsgraden Den justerade förklaringsgraden Förklaringsgraderna anger den andel av variationen i brottsstatistiken som förklaras av regressionsmodellen d) e) 8 Modell 1 Interceptet är 876; tolkas ej eftersom det antagligen inte finns några länder där genomsnittlig alkoholkonsumtion från vin är noll, vilket skulle innebära att ingen i hela landet dricker vin. Koefficienten för alkohol är -16,3, eftersom det inte är markerat med stjärna är det dock inte signifikant och tolkas ej. Vi kan inte påvisa något samband mellan allmän dödlighet och vinkonsumtion. Modell 2 Interceptet är 239; tolkas ej eftersom det antagligen inte finns några länder där genomsnittlig alkoholkonsumtion från vin är noll, vilket skulle innebära att ingen i hela landet dricker vin. Koefficienten för alkohol är -19,7, den är markerad med stjärna så här är koefficienten signifikant. Tolkningen är att om alkoholkonsumtion från vin ökar med 1 liter per år så minskar antal döda i hjärtsjukdomar med 19 per invånare. 24
25 Model 3 Interceptet är 10,9 ; tolkas ej eftersom det antagligen inte finns några länder där genomsnittlig alkoholkonsumtion från vin är noll, vilket skulle innebära att ingen i hela landet dricker vin. Koefficienten för alkohol är 3.6, den är markerad med stjärna så här är koefficienten signifikant. Tolkningen är att om alkoholkonsumtion från vin ökar med 1 liter per år så ökar antalet döda i leversjukdomar med 3,6 dödsfall per invånare. En sammanfattande slutsats är således att vindrickande inte påverkar dödligheten generellt. (Åtminstone har vi inte lyckats visa någon sådan effekt.) Vin är bra för hjärtat men dåligt för levern så det minskar antalet döda i hjärtsjukdomar men ökar antalet döda i leversjukdomar. b) I modell 1 förklaras 13 procent av variansen i dödstal av modellen. I modell 2 förklaras 41 procent av variansen i dödstal i hjärtsjukdomar av modellen. I modell 3 förklaras 52 procent av variansen i dödstal i leversjukdomar av modellen. c) d) e) f) 9 a) I modell 2 tar vi även hänsyn till prisskillnader mellan olika restaurangkedjor. b) Intercepten tolkas ej eftersom det inte finns områden där medianinkomsten är noll. I modell 1 är koefficienten för medianinkomst signifikant eftersom p-värdet är mindre än 0,05. Det skulle tolkas som att när medianinkomsten stiger med en dollar sänker man priset på en huvudrätt med 5 miljondels dollar vid oförändrade värden på övriga oberoende variabler. Någon slags omvänd prisdiskriminering. Det innebär att en höjning av medianinkomsten med 1000 dollar ger en prissänkning på 0,005 dollar eller en halv cent. I modell 2 är inkomst inte längre signifikant och vi tolkar då inte den koefficienten. Dummyvariablerna är däremot signifikanta och tolkningen av dem är att de anger prisskillnaden mellan den vanligaste huvudrätten i respektive restaurangkedja och den vanligaste huvudrätten på Burger Kiing restauranger. Eftersom vi inte har med någon dummyvariabel för Burger King är det dem vi jämför med. 25
26 c) Det verkar som att restaurangkedjorna har lokaliserat sig till olika typer av områden. King Fried Chicken har den dyraste huvudrätten. Det skulle kunna vara så att de i huvudsak lokaliserat sig i områden med låga inkomster. Vi kan verifiera det genom att titta i korrelationsmatrisen. I kolumnen för income ser vi att korrelationen är negativ med KFC men positiv med RR. Vilket innebär att KFC finns i områden med låg inkomst och RR i område med hög inkomst. (Tolkningen av regressionskoefficienterna gäller ju givet oförändrade värden på övriga variabler. I modell 2 när vi har med dummyvariablerna blir tolkningen prisökningen på en restaurang av samma kedja när medianinkomsten stiger med en enhet. Och då har vi alltså ingen prisökning. I modell 1 där vi inte har med dummyvariablerna jämförs restauranger som tillhör olika kedjor) d) Normalfördelade residualer: Detta antagande stämmer dåligt i modell 1 men ganska bra i modell 2 (I modell 1 ser det snarare ut som om residualerna kommer från olika normalfördelningar kanske beroende på restaurangkedja?) Heteroskedasticitet verkar inte vara något problem i någon av modellerna eftersom spridningen inte ökar eller minskar med ökad inkomst. Vi har inga bågmönster så antagandet av linjärt samband verkar funka i båda modellerna. I modell 1 har vi ett litet lustigt lutande mönster, eftersom det försvinner när vi har med restaurangdummies verkar det vara kopplat till det. e) Förklaringsgraden beräknas enligt: Detta är alltså den andel av variationen som förklaras av regressionen när vi mäter variationen som kvadratsummor. Om vi också tar hänsyn till frihetsgraderna får vi den justerade förklaringsgraden: Detta är den andel av variansen som förklaras av regressionen. Förklaringsgraden ökar betydligt när vi tar med restaurangkedjedummies så skillnader mellan olika restaurangkedjor är en stor del i förklaringen av prisskillnaderna. Vilket är ganska naturligt eftersom de inte har exat samma maträtter. King Fried Chicken har kyckling och Burger King hamburgare. f) Modell 1 säger att det finns en omvänd prisdiskriminering, modell två att det inte finns någon prisdiskriminering. Modell två har betydligt högre förklaringsgrad och alla restaurangkedjedummies är signifikanta. (samtliga restaurangkedjedummies skulle varit signifikanta om vi använt 10 % signifikansnivå). Dessutom är antagandet om normalfördelade residualer bättre uppfyllt i modell 2. Det mesta talar därför för att modell 2 är att föredra. (Skulle vi enbart ha en modell för att förklara prisskillnader borde vi kanske ta bort variabeln inkomst men eftersom syftet var att studera just den variabeln behöver vi ha den med för att visa att den inte är signifikant) g) Vårt punktestimat för denna prisskillnad är regressionskoefficienten för WE alltså 0,225. Eftersom frihetsgraderna är 368 får vi samma värde ur t fördelningen som ur z fördelningen, vid konfidensgraden 99 % blir t lika med 2,576 Standardavvikelsen är enligt regressionsresultatet 0,042 Vårt konfidensintervall blir därmed: Prisskillnaden är med 99 procents säkerhet i intervallet mellan 0,117 och 0,333. (Sannolikheten att få ett sådant här värde på koefficienten om det sanna värdet inte finns i detta intervall är mindre än 1 %.) 26
27 10 a) Modell 1 till 3 undersöker vilka faktorer som påverkar vilken lön man har nu. Den fjärde modellen vilka faktorer som påverkade den lön man hade när man började jobba på nuvarande företag. Skillnaden mellan modell 1 och 2 är att modell två också tar hänsyn till ingångslönen. Skillnaden mellan modell 1 och 3 är att modell 3 antar ett icke linjärt samband mellan år på nuvarande jobb och månadslönen. b) Modell 1: Interceptet, , skulle i det här fallet ange lönen för en kvinna helt utan erfarenhet och utan examen från high school. Koefficienten för erfarenhet på samma arbete är inte signifikant då den inte är markerad med stjärna och ska därför inte tolkas. Koefficienten för tidigare erfarenhet är signifikant eftersom den är markerad med stjärna. Vi tolkar det som att ytterligare ett års erfarenhet från tidigare arbetet ger 104 baht lägre månadslön vid oförändrade värden på övriga oberoende variabler. Koefficienten för man är signifikant eftersom den är markerad med stjärna. Tolkningen är att män i genomsnitt har 7574 baht högre månadslön än kvinnor vid oförändrade värden på övriga oberoende variabler. Utbildningsdummyvariablerna anger löneskillnaden för denna utbildningsnivå jämfört med en ingenjör som inte ens har high school givet oförändrade värden på övriga oberoende variabler. Av dessa är alla utom high school signifikanta. Modell 2: Interceptet tolkas inte eftersom det inte finns någon som har en ingångslön på noll kronor. Koefficienten för erfarenhet på samma arbete är signifikant eftersom den är markerad med stjärna. Vi tolkar det som att ytterligare ett års erfarenhet på samma arbetsplats ger 566 baht högre månadslön givet oförändrade värden på övriga oberoende variabler. Koefficienten för erfarenhet från tidigare arbete är signifikant den är markerad med stjärna. Vi tolkar det som att ytterligare ett års erfarenhet hos andra arbetsgivare sänker lönen med 236 baht givet oförändrade värden på övriga oberoende variabler. Koefficienten för ingångslön är signifikant eftersom den är markerad med stjärna. Vi tolkar det som att ytterligare en baht i ingångslön ger 1,7 baht högre månadslön. Den som har en hög startlön har hög lön även senare. Koefficienten för man är signifikant eftersom den är markerad med stjärna och säger att män i genomsnitt har högre lön än kvinnor vid oförändrade värden på övriga oberoende variabler. Utbildningsdummyvariablerna anger löneskillnaden för denna utbildningsnivå jämfört med en ingenjör som inte ens har high school givet oförändrade värden på övriga oberoende variabler. Av dessa är alla utom high scool och polytech signifikanta. c) Alla regressionskoefficienter utom år på nuvarande jobb har lägre värden i modell 2 än i modell 1. En trolig förklaring till det är att de också påverkade ingångslönen och att ingångslönens regressionskoefficient därmed fångar en del av den effekten. Vi kan verifiera det genom att se i modell 4 att de har en signifikant påverkan på ingångslönen. År på nuvarande jobb kunde naturligtvis inte gärna ha påverkat vilken lön man fick när man började och vi ser också att den inte är signifikant i modell 4. Därmed fångar inte ingångslönen effekten av år på nuvarande jobb i modell 2. d) Till en början har antalet år på samma arbetsplats en negativ inverkan på månadslönen men när man varit riktigt länge på samma plats blir effekten positiv. Möjligen ett något märkligt resultat. e) Modell 2 har en förklaringsgrad på drygt 80 procent vilket innebär att mer än 80 procent av variansen i lön kan förklaras av modell 2. Övriga modeller förklarar bara ca 70 procent av variansen i den beroende variabeln. 27
28 11 I områden med stor befolkning blir antalet brott liksom antal förvärvsarbetande mödrar högt jämfört med områden där befolkningen är liten. 12 Kausala riktningen - det är snarare så att ju längre en kvinna lever efter en operation desto fler barn kan hon föda. 13 A) I samtliga modeller är regressionskoefficienten för female negativ och signifikant vilket tyder på att kvinnor diskrimineras. B) Koefficienten för non white är inte signifikant i någon av modellerna. Vi kan inte förkasta hypotesen att icke vita får lika hög lön som vita. C) Skillnaden mellan modellerna ligger i antagande om funktionsform. Modell ett antar att det finns linjära samband från samtliga oberoende variabler. Modell 2 antar att det är ett kvadratiskt samband från Exper. Modell tre antar kvadratiska samband från samtliga oberoende variabler som inte är dummyvariabler, modell 4 antar kvadratiska samband från Educ och Exper och linjära samband från övriga oberoende variabler. Eftersom syftet är att studera lönediskriminering och vi får samma slutsats om lönediskriminering från samtliga modeller spelar det inte så stor roll vilken vi väljer. Fördelen med modell 1 är att den är enklast att förstå. Modell 3 har den största förklaringsgraden. Fördelen med modell 4 är att den har med samtliga kvadrerade variabler som är signifikanta men ingen som inte är det. Möjligen är det svårt att argumentera för modell två. Om vi tar med Expersq för att den är signifikant bör vi också ta med Educsq. D) I modell 1 är denna tolkning ganska enkel. Ytterligare ett års yrkeserfarenhet ger i genomsnitt 0,025 dollar mer per timme. I modell två blir det knepigare. Första årets yrkeserfarenhet ger 0,2 dollar mer per timme. (När exper=1 blir även exper 2 = 1 och vi kan summera koefficienterna för exper och expersq) När yrkeserfarenheten ökar minskar effekten av ytterligare ett års yrkeserfarenhet eftersom regressionskoefficienten för expersq är negativ. (För att få den marginella effekten av ytterligare ett års erfarenhet vid olika värden av erfarenhet kan man derivera regressionsekvationen med avseende på erfarenhet.) E) Enligt histogrammen är residualerna något snedfördelade för samtliga modeller men verkar ändå skapligt normalfördelade. I samtliga modeller verkar vi ha heteroskedasticitet för variabeln utbildning. I modell 1 borde vi se bananmönster för educ och exper men inte för tenure eftersom de kvadrerade termerna är signifikanta för educ och exper. Nu var ju p- värdet ganska lågt även för tenure så möjligen borde det vara bananmönster i alla tre plottarna. Enligt modell 3 positiv för educ men negativ för de andra båda. Därmed bör vi ha residualer som ser ut som en glad mun för educ men lessen mun för de båda andra. Vad gäller Educ är det ganska lätt att urskilja den glada munnen. Möjligen lite svårare att se den lessna munnen i de båda andra variablerna. Går vi till modell tre där vi korrigerat för icke linjaritet borde bågmänstrat ha försvunnit. Vilket det väl kanske i någon mån har gjort. Det är ganska svårt att se problemen med icke-linjäritet i residualplottarna så i praktiken är det oftast enklare att prova sig fram och testa om en kvadrerad variabel är signifikant. F) Eftersom frihetsgraderna är mer än 300 får vi samma värde ur t fördelningen som ur z fördelningen. Vid konfidensgraden 95 % blir t lika med 1,96 28
29 Från modell 1: Löneskillnaden ligger med 95 % sannolikhet mellan 1,3 och 2,3 dollar per timme. Från modell 2: Löneskillnaden ligger med 95 % sannolikhet mellan 1,3 och 2,3 dollar per timme. Från modell 3: Löneskillnaden ligger med 95 % sannolikhet mellan 1,2 och 2,2 dollar per timme. Från modell 4: Löneskillnaden ligger med 95 % sannolikhet mellan 1,2 och 2,2 dollar per timme. G) Förklaringsgraderna anger andelen av varians i löner som respektive modell kan förklara. Om man lägger till fler variabler kan man kanske få upp denna och därmed kunna göra bättre skattningar. Exempel på intressanta variabler att lägga till kan vara typ av befattning (chef, tjänsteman, arbetare) olika yrkeskategorier etc. Om antalet manliga chefer är större än antalet kvinnliga chefer, vilket nog var ganska sannolikt på 70-talet i USA, kan man ana att koefficienten för female inte skulle vara lika negativ i en modell som innehöll den typen av variabler. 29
30 H) Från modell 1 Från modell 2 Från modell 3 Från modell 4 I) Från modell 1 Från modell 2 Från modell 3 Från modell 4 J) Från modell 1 Från modell 2 Från modell 3 Från modell 4 30
31 14 a) Regressionskoefficienten för logaritmerat pris på ekologiska äpplen i regressionerna med logaritmerat pris på ekologiska äpplen som beroende variabel dvs modell 1,3 och 4 ger oss egenpriselasticiteten på ekologiska äpplen. I alla tre modeller är denna koefficient signifikant vilket innebär att vi kan dra slutsatsen att elasticiteten inte är noll. Den ligger i alla tre modellerna mellan -0,4 och -0,5 så där någonstans har vi bästa gissningen för egenpriselasticiteten. b) Regressionskoefficienten för logaritmerat pris på konventionella äpplen i regressionerna med logaritmerat pris på ekologiska äpplen som beroende variabel dvs modell 1,3 och 4 ger oss korspriselasticiteten på ekologiska äpplen. I alla tre modeller är denna koefficient ej signifikant vilket innebär att korspriselasticiteten skulle kunna vara lika med noll. Den ligger i alla tre modellerna mellan 0,3 och 0,4 så där någonstans har vi bästa gissningen för korspriselasticiteten. c) Regressionskoefficienten för logaritmerat pris på konventionella äpplen i regressionerna med logaritmerat pris på konventionella äpplen som beroende variabel dvs modell 2 och 5 ger oss egenpriselasticiteten på konventionella äpplen. I båda modellerna är denna koefficient ej signifikant vilket innebär att egenpriselasticiteten skulle kunna vara lika med noll. I modell 2 är den -0,35 och i modell 5-0,296 så där någonstans har vi bästa gissningen för egenpriselasticiteten. d) Regressionskoefficienten för logaritmerat pris på ekologiska äpplen i regressionerna med logaritmerat pris på konventionella äpplen som beroende variabel dvs modell 2 och 5 ger oss korspriselasticiteten på konventionella äpplen. I båda modellerna är denna koefficient ej signifikant vilket innebär att korspriselasticiteten skulle kunna vara lika med noll. I modell 2 är den 0,254 och i modell 5 0,221 så där någonstans har vi bästa gissningen för korspriselasticiteten. e) Att enbart lägga till familjestorlek gjorde ingen större skillnad för att förklara äppelinköpen. Först när vi tar med antalet familjemedlemmar i olika åldersgrupper får vi någon vidare ökning av förklaringsgraden. Men den är fortfarande låg. För ekologiska äpplen är det bara antalet personer över 64 år som har en signifikant påverkan på familjens äppelinköp. I modellen för konventionella äpplen har även barn mellan 5 och 17 år en signifikant påverkan. f) De justerade förklaringsgraderna anger den andel av variansen i äppelinköp som förklaras av modellen. Förklaringsgraderna är väldigt låga i alla modellerna. I modell 5 som har den största förklaringsgraden är den ändå bara 4 % av variansen som förklaras av modellen. Hur mycket äpplen olika hushåll köper beror säkert på en mängd andra faktorer. Speciellt om man tycker om äpplen eller inte. 31
32 15 16 a) a) a = 15.1, har ingen rimlig tolkning eftersom priserna aldrig är noll och tolkas därför inte. b 1 = -4.15, förväntad förändring av försäljningen i miljoner kr vid en ökning av priset på den egna produkten med 1 kr/l då genomsnittspriset på konkurrerande produkter ej ändras b 2 = 2.24, förväntad förändring av försäljningen i miljoner kr vid en ökning av konkurrenternas genomsnittspris med 1 kr/l då det egna priset är oförändrat b) Modell 1; b = -3.55, mäter effekten av egna priset på försäljningen men innehåller inverkan från alla variabler som ej ingår i modellen bl a konkurrenternas genomsnittspris. Att denna är lägre än i modell 3 kan bero på att konkurrenterna tenderar att sänka priset samtidigt som vi gör det, vilket innebär att effekten av vår prisförändring blir mindre. Modell 3; b = -4.15, mäter effekten av egna priset på försäljningen då inverkan från konkurrenternas genomsnittspris eliminerats genom att denna variabel nu ingår i modellen c) -kvot = 6.64 innebär att regressionskoefficienten för variabeln konkurrerande produkters genomsnittspris avviker så mycket från värdet noll att denna skillnad ej kan anses bero enbart på slumpen dvs den variabel som koefficienten står ihop med har med stor sannolikhet betydelse för den beroende variabelns utveckling. Egentligen behöver vi känna antalet frihetsgrader för att kunna tolka t-värdet men här är det så pass stort att koefficienten är signifikant oavsett antalet frihetsgrader. Apgarskalan är en ordinalskala. Avståndet mellan två observationer har ingen meningsfull tolkning. Man kan säga att det är bättre att ha livlig rörelse än att ha stela armar men inte hur mycket bättre det är. b) Modell 1 Interceptet är 7,7 och tolkas som genomsnittliga apgarvärdet när modern inte har rökt och aldrig besökt barnmorska. (förmodligen har så gott som alla mödrar besökt barnmorska så möjligen ska vi inte tolka interceptet. Koefficienten för cigs är signifikant eftersom p-värdet är lägre än 0,10. Koefficienten är -0,015 vilket tolkas som att om en mamma röker ytterligare 1 cigarett per dag under graviditeten kommer apgar värdet att sjunka med 0,015 vid oförändrade värden på övriga oberoende variabler. Koefficienten för monpre är inte signifikant eftersom p-värdet är högre än 0,10. Vi tolkar därför inte den. VI har inte lyckats påvisa något samband mellan antalet månader som modern haft kontakt med barnmorska före förlossningen och apgar värdet. 32
33 Koefficienterna för npvis och npvissq är signifikanta eftersom p-värdena är lägre än 0,10. Vi har ett icke linjärt samband och vi tolkar det som att antalet besök hos barnmorska påverkar apgar värdet positivt men att effekten per besök avtar ju fler besök som mamman gjort. Modell 2 Interceptet är 8,3 och tolkas som genomsnittliga apgarvärdet när modern inte har rökt och aldrig besökt barnmorska. (förmodligen har så gott som alla mödrar besökt barnmorska så möjligen ska vi inte tolka interceptet. Koefficienten för cigs är signifikant eftersom p-värdet är lägre än 0,10. Koefficienten är -0,017 vilket tolkas som att om en mamma röker ytterligare 1 cigarett per adg under graviditeten kommer apgar värdet att sjunka med 0,017 vid oförändrade värden på övriga oberoende variabler. Koefficienten för monpre är inte signifikant eftersom p-värdet är högre än 0,10. Vi tolkar därför inte den. VI har inte lyckats påvisa något samband mellan antalet månader som modern haft kontakt med barnmorska före förlossningen och apgar värdet. Koefficienten för npvis är signifikant eftersom p-värdet är lägre än 0,10. Koefficientens värde är 0,018. Tolkningen är att ytterligare ett besök hos barnmorska höjer apgarvärdet med 0,018 vid oförändrade värden på övriga oberoende variabler. c) Den beroende variabeln i OLS regressiones måste vara mätt på intervall eller kvotskala. I det här fallet har vi en ordinalskala vilket innebär att vi inte kan lita på våra p-värden eller tolkningar av koefficienterna. Analysen ger ändå en indikation på om sambanden är positiva eller negativa men vi kan inte vara helt säkra på signifikansen. Det är ett relativt vanligt misstag i praktiken att man använder regressionsanalys även på ordinalskalor. d) Endast ca en och en halv procent av variansen i apgarvärde förklaras av de undersökta variablerna. Apgarvärdet påverkas således i huvudsak av andra faktorer. e) Eftersom frihetsgraderna är mer än 300 får vi samma värde ur t fördelningen som ur z fördelningen. Vid konfidensgraden 95 % blir t lika med 1,96 Med 95 procents sannolikhet ligger det sanna värdet för denna regressionskoefficient mellan 0,003 och 0,033 33
34 Icke parametriska metoder 1 a) Eftersom enbart en av variablerna mäts på kvotskala, Apgarskalan är ju en ordinalskala, bör man inte beräkna Pearsons korrelationskoefficient utan enbart Spearmans. Spearmans r är signifikant skild från noll. Vi kan dra slutsatsen att det finns en positiv korrelation mellan antal besök hos barnmorska och Apgar värdet. Dock är korrelationen ganska svag. Enbart 0,09. b) Precis som i a uppgiften är det Spearmans korrelationskoefficient vi ska använda. Eftersom p-värdet är lägre än 10 procent kan vi dra slutsatsen att det finns en svag positiv korrelation. c) Eftersom vi har ordinalskala kan vi inte lita på ANOVA analysen utan det är Kruska Wallis Test som vi ska använda. Vi kan se att alla tre grupperna har ungefär samma medel rangtal. P värdet är 0,096 så vi kan förkasta nollhypotesen om att alla grupperna är lika. I Kruska Wallis testen redovisas ju medianen och eftersom alla har samma median är det svårt att avgöra vilken grupp som avviker men från ANOVA analysen ser vi att de unga har ett lägre medelvärde så vi får väl anta att det är dem som avviker. d) Återigen är det Spearmans korrelation som gäller. Vi kan se ett signifikant negativt linjärt samband mellan rökning och Apgarvärde men vi kan inte dra några slutsatser om samband mellan alkohol och Apgarvärde. 2 Hypoteser Signifikansnivå 1 % Teststatistika: Kritiskt värde: 2,576 Beslutsregel: om värdet på teststatistikan överstiger det kritiska värdet 2,576 eller understiger - 2,576 förkastas nollhypotesen. Eftersom 2,0 inte överstiger 2,576 kan nollhypotesen ej förkastas. Vi kan därmed inte dra några slutsatser. 34
35 3 Placeboeffekten är stor eftersom hela 87 procent av de som får den gamla medicinen men tror att det är den nya anser sig få en bättre effekt. För att se om det också finns en kemisk effekt behöver vi undersöka om skillnaden mellan 87 och 90 procent är signifikant. Signifikansnivå 5 % kritiskt värde på z =1,645 Beslutsregel: Nollhypotesen förkastas om teststatistikans värde överstiger 1,645 Nollhypotesen kan inte förkastas, därmed kan vi inte dra någon slutsats om huruvida den nya medicinen är effektivare eller ej. -värdet är 0,1539 => 4 Teststatistika: Kritiskt värde: 1,645 Beslutsregel. Om teststatistikans värde överstiger 1,645 förkastas nollhypotesen. Eftersom tesstatistiken är mindre än det kritiska värdet kan inte nollhypotesen förkastas. Därmed kan vi inte dra några slutsatser från vårt hypotestest. 35
36 5 a) om vi betecknar fickorna som population 1 och pojkarna som population 2: b) Beslutsregel. Om z är större än 1,645 förkastas nollhypotesen c) d) Eftersom någon slutsats. kan nollhypotesen inte förkastas, därmed kan vi inte dra 36
37 6 Om sannolikheterna för alla 6 utfallen ör lika dvs 1/6 skulle den förväntade frekvensen för varje utfall vara lika i ett stort antal kast. Teststatistikan är chi square med 5 frihetsgrader. Kritiskt värde: 9,236 Beslutsregel: Vi förkastar H 0 om utfall Observerad Förväntad frekvens frekvens under H , , , , , ,8 7,6 Eftersom kan vi inte förkasta H 0 och därmed inte dra några slutsatser. Det är möjligt att tärningen är okej. 7 a) I första tabellen ser vi att en kvinna har angett förbättra styrka som skäl för sin träning. I tabellen för expected counts anges att det borde varit 9 kvinnor som angett detta skäl om variablerna kön och skäl för träning var oberoende. 5,9 i Row Percentage tolkas som att fem procent av de som har förbättra styrka som skäl för sin träning är kvinnor. 2.1 i Column Percentage tolkas som att 2 procent av kvinnorna har förbättra styrka som skäl för sin träning. 1.1 i percentage of total innebär att 1.1 procent av alla respondetner i urvalet är kvinnor med förbättra styrka som skäl för sin träning. b) Att p-värdet (0,000046) är så lågt innebär att vi kan förkasta nollhypotesen om att variablerna är oberoende. Det finns ett samband mellan kön och skäl för sin träning. Dock uppfyller vi inte helt kraven på chi 2 analys då förväntad frekvens är lägre än 5 i 25 % av cellerna. Man skulle kunna överväga att slå ihop avkoppling med något annat utfall för att undvika det problemet. Men i det här fallet finns kanske inte riktigt något naturligt alternativ att slå ihop det med? Vi är ju dock ganska nära fem i bådade cellerna så problemet borde inte vara jättestort och p-värdet är ju väldigt lågt så förmodligen kan vi dra denna slutsats ändå. Ur tabellen column percentage kan vi utläsa att könsskillnaderna består i att en betydligt lägre andel av kvinnorna än av männen har styrka som skäl för sin träning medan en större andel av kvinnorna än av männen har bantning eller avkoppling som skäl. (Men ungefär lika stor andel av kvinnorna som av männen har förbättrad kondition som skäl.) 37
38 c) 0,533 d) 0,178 e) om vi betecknar kvinnorna som population 1 och männen som population 2: Teststatistika: Beslutsregel. Om z är större än 1,96 eller mindre än -1,96 förkastas nollhypotesen Eftersom kan nollhypotesen förkastas, därmed kan vi dra att andelen kvinnor som har bantning som motiv avviker från andelen män som har bantning som motiv. f) om vi betecknar kvinnorna som population 1 och männen som population 2: Teststatistika: Beslutsregel. Om z är större än 1,96 eller mindre än -1,96 förkastas nollhypotesen Eftersom kan nollhypotesen inte förkastas, därmed kan vi inte dra någon slutsats från testet. 38
Lösningsförslag till övningar
MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik Statistik Lösningsförslag till övningar Statistik och kvantitativa undersökningar 15 HP Vårterminen 2018 1 Innehåll Deskriptiv statistik och
Läs merLösningsförslag till övningar
MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik Statistik Lösningsförslag till övningar Statistik och kvantitativa undersökningar 15 HP Höstterminen 2015 1 Innehåll Deskriptiv statistik
Läs merLösningsförslag till övningar
MÄLARDALENS HÖGSKOLA Akademin för hållbar samhälls- och teknikutveckling Statistik Lösningsförslag till övningar Statistik och kvantitativa undersökningar 15 HP Höstterminen 014 1 Innehåll Deskriptiv statistik
Läs merLösningsförslag till tentamen på. Statistik och kvantitativa undersökningar STA100, 15 hp. Fredagen den 13 e mars 2015
MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik Statistik Lösningsförslag till tentamen på Statistik och kvantitativa undersökningar STA100, 15 hp Fredagen den 13 e mars 015 1 a 13 och 14
Läs merTentamen på Statistik och kvantitativa undersökningar STA001, 15 hp. Exempeltenta 4
MÄLARDALENS HÖGSKOLA Akademin för hållbar samhälls- och teknikutveckling Statistik Tentamen på Statistik och kvantitativa undersökningar STA001, 15 hp Tillåtna hjälpmedel: Miniräknare (Formelsamling bifogas
Läs merTentamen på. Statistik och kvantitativa undersökningar STA001, 15 hp. Exempeltenta 5. Poäng. Totalt 40. Betygsgränser: G 20 VG 30
MÄLARDALENS HÖGSKOLA Akademin för hållbar samhälls- och teknikutveckling Statistik Tentamen på Statistik och kvantitativa undersökningar STA001, 15 hp Exempeltenta 5 Tillåtna hjälpmedel: Miniräknare (Formelsamling
Läs merRepetitionsföreläsning
Population / Urval / Inferens Repetitionsföreläsning Ett företag som tillverkar byxor gör ett experiment för att kontrollera kvalitén. Man väljer slumpmässigt ut 100 par som man utsätter för hård nötning
Läs mer1. a) F4 (känsla av meningslöshet) F5 (okontrollerade känlsoyttringar)
1. a) F1(Sysselsättning) F2 (Ålder) F3 (Kön) F4 (känsla av meningslöshet) F5 (okontrollerade känlsoyttringar) nominalskala kvotskala nominalskala ordinalskala ordinalskala b) En möjlighet är att beräkna
Läs merFråga nr a b c d 2 D
Fråga nr a b c d 1 B 2 D 3 C 4 B 5 B 6 A 7 a) Första kvartilen: 33 b) Medelvärde: 39,29 c) Standardavvikelse: 7,80 d) Pearson measure of skewness 1,07 Beräkningar: L q1 = (7 + 1) 1 4 = 2 29-10 105,8841
Läs merordinalskala kvotskala F65A nominalskala F65B kvotskala nominalskala (motivering krävs för full poäng)
1 F1 ordinalskala F2 kvotskala F65A nominalskala F65B kvotskala F81 nominalskala (motivering krävs för full poäng) b) Variabler som används är F2 och F65b. Eftersom det är kvotskala på båda kan vi använda
Läs merTentamen på. Statistik och kvantitativa undersökningar STA001, 15 hp. Exempeltenta 2
MÄLARDALENS HÖGSKOLA Akademin för hållbar samhälls- och teknikutveckling Statistik Tentamen på Statistik och kvantitativa undersökningar STA001, 15 hp Exempeltenta 2 Tillåtna hjälpmedel: Miniräknare (Formelsamling
Läs merTentamen på. Statistik och kvantitativa undersökningar STA001, 15 hp. Exempeltenta 2
MÄLARDALENS HÖGSKOLA Akademin för hållbar samhälls- och teknikutveckling Statistik Tentamen på Statistik och kvantitativa undersökningar STA001, 15 hp Exempeltenta 2 Tillåtna hjälpmedel: Miniräknare (Formelsamling
Läs merimport totalt, mkr index 85,23 100,00 107,36 103,76
1. a) F1 Kvotskala (riktiga siffror. Skillnaden mellan 3 och 5 månader är lika som skillnaden mellan 5 och 7 månader. 0 betyder att man inte haft kontakt med innovations Stockholm.) F2 Nominalskala (ingen
Läs merTentamen på. Statistik och kvantitativa undersökningar STA101, 15 hp. Torsdagen den 23 e mars Ten 1, 9 hp
MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik Statistik Tentamen på Statistik och kvantitativa undersökningar STA101, 15 hp Torsdagen den 23 e mars 2017 Ten 1, 9 hp Tillåtna hjälpmedel:
Läs merTentamen på. Statistik och kvantitativa undersökningar STA101, 15 hp. Fredagen den 9 e juni Ten 1, 9 hp
MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik Statistik Tentamen på Statistik och kvantitativa undersökningar STA101, 15 hp Fredagen den 9 e juni 2017 Ten 1, 9 hp Tillåtna hjälpmedel:
Läs merBild 1. Bild 2 Sammanfattning Statistik I. Bild 3 Hypotesprövning. Medicinsk statistik II
Bild 1 Medicinsk statistik II Läkarprogrammet T5 HT 2014 Anna Jöud Arbets- och miljömedicin, Lunds universitet ERC Syd, Skånes Universitetssjukhus anna.joud@med.lu.se Bild 2 Sammanfattning Statistik I
Läs merAtt välja statistisk metod
Att välja statistisk metod en översikt anpassad till kursen: Statistik och kvantitativa undersökningar 15 HP Vårterminen 2018 Lars Bohlin Innehåll Val av statistisk metod.... 2 1. Undersökning av en variabel...
Läs mer1b) Om denna överstiger det kritiska värdet förkastas nollhypotesen. 1c)
1a) F1 och F3 nominalskala, enbart olika saker F kvotskala, Riktiga siffror, 0 betyder att man inte finns och avståndet mellan två värden är exakt definierat F4 och F5 ordinalskala, vi kan ordna svaren
Läs merTentamen på. Statistik och kvantitativa undersökningar STA001, 15 hp. Exempeltenta 1
MÄLARDALENS HÖGSKOLA Akademin för hållbar samhälls- och teknikutveckling Statistik Tentamen på Statistik och kvantitativa undersökningar STA001, 15 hp Exempeltenta 1 Tillåtna hjälpmedel: Miniräknare (Formelsamling
Läs merTentamen på. Statistik och kvantitativa undersökningar STA101, 15 hp. Torsdagen den 24 e mars Ten 1, 9 hp
MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik Statistik Tentamen på Statistik och kvantitativa undersökningar STA101, 15 hp Torsdagen den 24 e mars 2016 Ten 1, 9 hp Tillåtna hjälpmedel:
Läs merLaboration 2. Omprovsuppgift MÄLARDALENS HÖGSKOLA. Akademin för ekonomi, samhälle och teknik
MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik Statistik och kvantitativa undersökningar, A 15 Hp Vårterminen 2017 Laboration 2 Omprovsuppgift Regressionsanalys, baserat på Sveriges kommuner
Läs merRepetitionsföreläsning
Population / Urval / Inferens Repetitionsföreläsning Ett företag som tillverkar byxor gör ett experiment för att kontrollera kvalitén. Man väljer slumpmässigt ut 100 par som man utsätter för hård nötning
Läs merMedicinsk statistik II
Medicinsk statistik II Läkarprogrammet termin 5 VT 2013 Susanna Lövdahl, Msc, doktorand Klinisk koagulationsforskning, Lunds universitet E-post: susanna.lovdahl@med.lu.se Dagens föreläsning Fördjupning
Läs merLaboration 3. Övningsuppgifter. Syfte: Syftet med den här laborationen är att träna på att analysera enkätundersökningar. MÄLARDALENS HÖGSKOLA
MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik Statistik och kvantitativa undersökningar, A 15 p Höstterminen 2016 Laboration 3 Övningsuppgifter Baserade på datasetet energibolag.rdata
Läs merTentamen på. Statistik och kvantitativa undersökningar STA100, 15 hp. Fredagen den 16 e januari 2015
MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik Statistik Tentamen på Statistik och kvantitativa undersökningar STA100, 15 hp Fredagen den 16 e januari 2015 Tillåtna hjälpmedel: Miniräknare
Läs merKapitel 12: TEST GÄLLANDE EN GRUPP KOEFFICIENTER - ANOVA
Kapitel 12: TEST GÄLLANDE EN GRUPP KOEFFICIENTER - ANOVA 12.1 ANOVA I EN MULTIPEL REGRESSION Exempel: Tjänar man mer som egenföretagare? Nedan visas ett utdrag ur ett dataset som innehåller information
Läs merTentamen på. Statistik och kvantitativa undersökningar STA101, 15 hp. Tisdagen den 10 e januari Ten 1, 9 hp
MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik Statistik Tentamen på Statistik och kvantitativa undersökningar STA101, 15 hp Tisdagen den 10 e januari 2017 Ten 1, 9 hp Tillåtna hjälpmedel:
Läs merMÄLARDALENS HÖGSKOLA. Akademin för ekonomi, samhälle och teknik. Statistik. Övningar. Statistik och kvantitativa undersökningar 15 HP
MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik Statistik Övningar Statistik och kvantitativa undersökningar 15 HP Höstterminen 2015 1 Innehåll Deskriptiv statistik och index... 3 Sannolikhetslära...
Läs merTentamen på. Statistik och kvantitativa undersökningar STA101, 15 hp. Fredagen den 4 e mars Ten 1, 9 hp
MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik Statistik Tentamen på Statistik och kvantitativa undersökningar STA101, 15 hp Fredagen den 4 e mars 2016 Ten 1, 9 hp Tillåtna hjälpmedel:
Läs merEXAMINATION KVANTITATIV METOD vt-11 (110204)
ÖREBRO UNIVERSITET Hälsoakademin Idrott B Vetenskaplig metod EXAMINATION KVANTITATIV METOD vt-11 (110204) Examinationen består av 11 frågor, flera med tillhörande följdfrågor. Besvara alla frågor i direkt
Läs merSänkningen av parasitnivåerna i blodet
4.1 Oberoende (x-axeln) Kön Kön Längd Ålder Dos Dos C max Parasitnivå i blodet Beroende (y-axeln) Längd Vikt Vikt Vikt C max Sänkningen av parasitnivåerna i blodet Sänkningen av parasitnivåerna i blodet
Läs merMÄLARDALENS HÖGSKOLA. Akademin för ekonomi, samhälle och teknik. Statistik. Övningar. Statistik och kvantitativa undersökningar 15 HP
MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik Statistik Övningar Statistik och kvantitativa undersökningar 15 HP Höstterminen 2016 1 Innehåll Deskriptiv statistik och index... 3 Sannolikhetslära...
Läs merLaboration 2. Övningsuppgifter. Syfte: Syftet med den här laborationen är att träna på att utföra multipel regressionsanalys MÄLARDALENS HÖGSKOLA
MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik Statistik och kvantitativa undersökningar, A 15 p Höstterminen 2016 Laboration 2 Övningsuppgifter Baserade på dataseten: Discrim_lab.xlsx
Läs merAnalytisk statistik. Mattias Nilsson Benfatto, PhD.
Analytisk statistik Mattias Nilsson Benfatto, PhD Mattias.nilsson@ki.se Beskrivande statistik kort repetition Centralmått Spridningsmått Normalfördelning Konfidensintervall Korrelation Analytisk statistik
Läs merMÄLARDALENS HÖGSKOLA. Akademin för ekonomi, samhälle och teknik. Statistik. Övningar. Statistik och kvantitativa undersökningar 15 HP
MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik Statistik Övningar Statistik och kvantitativa undersökningar 15 HP Vårterminen 2018 1 Innehåll Deskriptiv statistik och index... 3 Sannolikhetslära...
Läs mer, s a. , s b. personer från Alingsås och n b
Skillnader i medelvärden, väntevärden, mellan två populationer I kapitel 8 testades hypoteser typ : µ=µ 0 där µ 0 var något visst intresserant värde Då användes testfunktionen där µ hämtas från, s är populationsstandardavvikelsen
Läs merF18 MULTIPEL LINJÄR REGRESSION, FORTS. (NCT
Stat. teori gk, ht 006, JW F18 MULTIPEL LINJÄR REGRESSION, FORTS. (NCT 1.1, 13.1-13.6, 13.8-13.9) Modell för multipel linjär regression Modellantaganden: 1) x-värdena är fixa. ) Varje y i (i = 1,, n) är
Läs merTentamen på. Statistik och kvantitativa undersökningar STA101, 15 hp. Tisdagen den 12 e januari Ten 1, 9 hp
MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik Statistik Tentamen på Statistik och kvantitativa undersökningar STA101, 15 hp Tisdagen den 12 e januari 2016 Ten 1, 9 hp Tillåtna hjälpmedel:
Läs merMÄLARDALENS HÖGSKOLA. Akademin för ekonomi, samhälle och teknik. Statistik. Övningar. Statistik och kvantitativa undersökningar 15 HP
MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik Statistik Övningar Statistik och kvantitativa undersökningar 15 HP Vårterminen 2019 1 Innehåll Deskriptiv statistik och index... 3 Sannolikhetslära...
Läs merTentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl
Karlstads universitet Avdelningen för nationalekonomi och statistik Tentamen i Statistik, STA A10 och STA A13 (9 poäng) Måndag 14 maj 2007, Kl 08.15-13.15 Tillåtna hjälpmedel: Bifogad formelsamling, approximationsschema
Läs merEXAMINATION KVANTITATIV METOD vt-11 (110319)
ÖREBRO UNIVERSITET Hälsoakademin Idrott B Vetenskaplig metod EXAMINATION KVANTITATIV METOD vt-11 (110319) Examinationen består av 10 frågor, flera med tillhörande följdfrågor. Besvara alla frågor i direkt
Läs merMälardalens Högskola. Formelsamling. Statistik, grundkurs
Mälardalens Högskola Formelsamling Statistik, grundkurs Höstterminen 2015 Deskriptiv statistik Populationens medelvärde (population mean): μ = X N Urvalets medelvärde (sample mean): X = X n Där N är storleken
Läs merTentamentsskrivning: Matematisk Statistik med Metoder MVE490 1
Tentamentsskrivning: Matematisk Statistik med Metoder MVE490 1 Tentamentsskrivning i Matematisk Statistik med Metoder MVE490 Tid: den 16 augusti, 2017 Examinatorer: Kerstin Wiklander och Erik Broman. Jour:
Läs merTentamen på. Statistik och kvantitativa undersökningar STA100, 15 HP. Ten1 9 HP. 19 e augusti 2015
MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik Statistik Tentamen på Statistik och kvantitativa undersökningar STA100, 15 HP Ten1 9 HP 19 e augusti 2015 Tillåtna hjälpmedel: Miniräknare
Läs merDeskriptiv statistik. Andrew Hooker. Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University
Deskriptiv statistik Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Deskriptiv statistik Tabeller Figurer Sammanfattande mått Vilken
Läs merMÄLARDALENS HÖGSKOLA. Akademin för hållbar samhälls- och teknikutveckling. Statistik. Övningar. Statistik och kvantitativa undersökningar 15 HP
MÄLARDALENS HÖGSKOLA Akademin för hållbar samhälls- och teknikutveckling Statistik Övningar Statistik och kvantitativa undersökningar 15 HP Höstterminen 2014 1 Innehåll Deskriptiv statistik och index...
Läs merTentamen på. Statistik och kvantitativa undersökningar STA100, 15 hp. Fredagen den 13 e mars Ten 1, 9 hp
MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik Statistik Tentamen på Statistik och kvantitativa undersökningar STA100, 15 hp Fredagen den 13 e mars 2015 Ten 1, 9 hp Tillåtna hjälpmedel:
Läs merÖVNINGSUPPGIFTER KAPITEL 9
ÖVNINGSUPPGIFTER KAPITEL 9 STOKASTISKA VARIABLER 1. Ange om följande stokastiska variabler är diskreta eller kontinuerliga: a. X = En slumpmässigt utvald person ur populationen är arbetslös, där x antar
Läs merAnalytisk statistik. Tony Pansell, optiker Universitetslektor
Analytisk statistik Tony Pansell, optiker Universitetslektor Analytisk statistik Att dra slutsatser från det insamlade materialet. Två metoder: 1. att generalisera från en mindre grupp mot en större grupp
Läs merStatistik och epidemiologi T5
Statistik och epidemiologi T5 Anna Axmon Biostatistiker Yrkes- och miljömedicin Biostatistik kursmål Dra slutsatser utifrån basala statistiska begrepp och analyser och själva kunna använda sådana metoder.
Läs merF19, (Multipel linjär regression forts) och F20, Chi-två test.
Partiella t-test F19, (Multipel linjär regression forts) och F20, Chi-två test. Christian Tallberg Statistiska institutionen Stockholms universitet Då man testar om en enskild variabel X i skall vara med
Läs merTentamen i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder.
Tentamen 2014-12-05 i statistik (delkurs C) på kursen MAR103: Marina Undersökningar - redskap och metoder. Tillåtna hjälpmedel: Miniräknare och utdelad formelsamling med tabeller. C1. (6 poäng) Ange för
Läs merFöreläsning 8. NDAB02 Statistik; teori och tillämpning i biologi
Föreläsning 8 Statistik; teori och tillämpning i biologi 1 Dagens föreläsning o Enkel linjär regression (kap 17.1 17.5) o Skatta regressionslinje (kap 17.2) o Signifikant lutning? (kap 17.3, 17.5a) o Förklaringsgrad
Läs merResidualanalys. Finansiell statistik, vt-05. Normalfördelade? Normalfördelade? För modellen
Residualanalys För modellen Johan Koskinen, Statistiska institutionen, Stockholms universitet Finansiell statistik, vt-5 F7 regressionsanalys antog vi att ε, ε,..., ε är oberoende likafördelade N(,σ Då
Läs merTentamen på. Statistik och kvantitativa undersökningar STA101, 15 hp. Torsdagen den 22 mars TEN1, 9 hp
MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik Statistik Tentamen på Statistik och kvantitativa undersökningar STA101, 15 hp Torsdagen den 22 mars 2018 TEN1, 9 hp Tillåtna hjälpmedel: Miniräknare
Läs merFöreläsning 8. Kapitel 9 och 10 sid Samband mellan kvalitativa och kvantitativa variabler
Föreläsning 8 Kapitel 9 och 10 sid 230-284 Samband mellan kvalitativa och kvantitativa variabler 2 Agenda Samband mellan kvalitativa variabler Chitvåtest för analys av frekvenstabell och korstabell Samband
Läs merF14 HYPOTESPRÖVNING (NCT 10.2, , 11.5) Hypotesprövning för en proportion. Med hjälp av data från ett stickprov vill vi pröva
Stat. teori gk, ht 006, JW F14 HYPOTESPRÖVNING (NCT 10., 10.4-10.5, 11.5) Hypotesprövning för en proportion Med hjälp av data från ett stickprov vill vi pröva H 0 : P = P 0 mot någon av H 1 : P P 0 ; H
Läs merStatistik och epidemiologi T5
Statistik och epidemiologi T5 Anna Axmon Biostatistiker Yrkes- och miljömedicin Dagens föreläsning Fördjupning av hypotesprövning Repetition av p-värde och konfidensintervall Tester för ytterligare situationer
Läs merOBS! Vi har nya rutiner.
KOD: Kurskod: PC1203 och PC1244 Kursnamn: Kognitiv psykologi och metod och Kognitiv psykologi och utvecklingspsykologi Provmoment: Metod Ansvarig lärare: Linda Hassing Tentamensdatum: 2012-11-17 Tillåtna
Läs merKapitel 4: SAMBANDET MELLAN VARIABLER: REGRESSIONSLINJEN
Kapitel 4: SAMBANDET MELLAN VARIABLER: REGRESSIONSLINJEN Spridningsdiagrammen nedan representerar samma korrelationskoefficient, r = 0,8. 80 80 60 60 40 40 20 20 0 0 20 40 0 0 20 40 Det finns dock två
Läs merGamla tentor (forts) ( x. x ) ) 2 x1
016-10-10 Gamla tentor - 016 1 1 (forts) ( x ) x1 x ) ( 1 x 1 016-10-10. En liten klinisk ministudie genomförs för att undersöka huruvida kostomläggning och ett träningsprogram lyckas sänka blodsockernivån
Läs merAnalys av medelvärden. Jenny Selander , plan 3, Norrbacka, ingång via den Samhällsmedicinska kliniken
Analys av medelvärden Jenny Selander jenny.selander@ki.se 524 800 29, plan 3, Norrbacka, ingång via den Samhällsmedicinska kliniken Jenny Selander, Kvant. metoder, FHV T1 december 20111 Innehåll Normalfördelningen
Läs merSkolprestationer på kommunnivå med hänsyn tagen till socioekonomi
1(6) PCA/MIH Johan Löfgren 2016-11-10 Skolprestationer på kommunnivå med hänsyn tagen till socioekonomi 1 Inledning Sveriges kommuner och landsting (SKL) presenterar varje år statistik över elevprestationer
Läs merFöreläsning 5. NDAB02 Statistik; teori och tillämpning i biologi
Föreläsning 5 Statistik; teori och tillämpning i biologi 1 Dagens föreläsning o Andelar (kap 24) o Binomialfördelning (kap 24.1) o Test och konfidensintervall för en andel (kap 24.5, 24.6, 24.8) o Test
Läs merTillämpad statistik (A5), HT15 Föreläsning 11: Multipel linjär regression 2
Tillämpad statistik (A5), HT15 Föreläsning 11: Multipel linjär regression 2 Ronnie Pingel Statistiska institutionen Senast uppdaterad: 2015-11-23 Faktum är att vi i praktiken nästan alltid har en blandning
Läs merKapitel 17: HETEROSKEDASTICITET, ROBUSTA STANDARDFEL OCH VIKTNING
Kapitel 17: HETEROSKEDASTICITET, ROBUSTA STANDARDFEL OCH VIKTNING När vi gör en regressionsanalys så bygger denna på vissa antaganden: Vi antar att vi dragit ett slumpmässigt sampel från en population
Läs merRättningstiden är i normalfall 15 arbetsdagar, till detta tillkommer upp till 5 arbetsdagar för administration, annars är det detta datum som gäller:
Matematisk Statistik Provmoment: Ladokkod: Tentamen ges för: Tentamen 6.5 hp AT1MS1 DTEIN16h 7,5 högskolepoäng TentamensKod: Tentamensdatum: 1 juni 2017 Tid: 14-18 Hjälpmedel: Miniräknare Totalt antal
Läs merMedicinsk statistik II
Medicinsk statistik II Läkarprogrammet T5 HT 2014 Susann Ullén FoU-centrum Skåne Skånes Universitetssjukhus Hypotesprövning Man sätter upp en nollhypotes (H0) och en mothypotes (H1) H0: Ingen effekt H1:
Läs merKapitel 15: INTERAKTIONER, STANDARDISERADE SKALOR OCH ICKE-LINJÄRA EFFEKTER
Kapitel 15: INTERAKTIONER, STANDARDISERADE SKALOR OCH ICKE-LINJÄRA EFFEKTER När vi mäter en effekt i data så vill vi ofta se om denna skiljer sig mellan olika delgrupper. Vi kanske testar effekten av ett
Läs merInStat Exempel 4 Korrelation och Regression
InStat Exempel 4 Korrelation och Regression Vi ska analysera ett datamaterial som innehåller information om kön, längd och vikt för 2000 personer. Materialet är jämnt fördelat mellan könen (1000 män och
Läs merπ = proportionen plustecken i populationen. Det numeriska värdet på π är okänt.
Stat. teori gk, vt 006, JW F0 ICKE-PARAMETRISKA TEST (NCT 13.1, 13.3-13.4) Or dlista till NCT Nonparametric Sign test Rank Teckentest Icke-parametrisk Teckentest Rang Teckentestet är formellt ingenting
Läs merInnehåll. Frekvenstabell. II. Beskrivande statistik, sid 53 i E
Innehåll I. Grundläggande begrepp II. Deskriptiv statistik (sid 53 i E) III. Statistisk inferens Hypotesprövnig Statistiska analyser Parametriska analyser Icke-parametriska analyser 1 II. Beskrivande statistik,
Läs merKursens upplägg. Roller. Läs studiehandledningen!! Examinatorn - extern granskare (se särskilt dokument)
Kursens upplägg v40 - inledande föreläsningar och börja skriva PM 19/12 - deadline PM till examinatorn 15/1- PM examinationer, grupp 1 18/1 - Forskningsetik, riktlinjer uppsatsarbetet 10/3 - deadline uppsats
Läs merProvmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling. Tentamensdatum: 28 maj 2018 Tid: 9-13
Matematisk Statistik 7,5 högskolepoäng Provmoment: Tentamen 6,5 hp Ladokkod: A144TG Tentamen ges för: TGMAI17h, Maskiningenjör - Produktutveckling Tentamensdatum: 28 maj 2018 Tid: 9-13 Hjälpmedel: Miniräknare
Läs merAnalytisk statistik. 1. Estimering. Statistisk interferens. Statistisk interferens
Analytisk statistik Tony Pansell, Leg optiker Docent, Universitetslektor Analytisk statistik Att dra slutsatser från den insamlade datan. Två metoder:. att generalisera från en mindre grupp mot en större
Läs merSTOCKHOLMS UNIVERSITET Statistiska institutionen Michael Carlson (examinator) VT2017 TENTAMEN I GRUNDLÄGGANDE STATISTIK FÖR EKONOMER 2017-04-20 LÖSNINGSFÖRSLAG Första version, med reservation för tryck-
Läs merMultipel Regressionsmodellen
Multipel Regressionsmodellen Koefficienterna i multipel regression skattas från ett stickprov enligt: Multipel Regressionsmodell med k förklarande variabler: Skattad (predicerad) Värde på y y ˆ = b + b
Läs merHur skriver man statistikavsnittet i en ansökan?
Hur skriver man statistikavsnittet i en ansökan? Val av metod och stickprovsdimensionering Registercentrum Norr http://www.registercentrumnorr.vll.se/ statistik.rcnorr@vll.se 11 Oktober, 2018 1 / 52 Det
Läs merSTA101, Statistik och kvantitativa undersökningar, A 15 p Vårterminen 2017
MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik STA101, Statistik och kvantitativa undersökningar, A 15 p Vårterminen 2017 Räknestuga 2 Förberedelser: Lyssna på föreläsningarna F4, F5 och
Läs merBetrakta kopparutbytet från malm från en viss gruva. För att kontrollera detta tar man ut n =16 prover och mäter kopparhalten i dessa.
Betrakta kopparutbytet från malm från en viss gruva. Anta att budgeten för utbytet är beräknad på att kopparhalten ligger på 70 %. För att kontrollera detta tar man ut n =16 prover och mäter kopparhalten
Läs merSpridningsdiagram (scatterplot) Fler exempel. Korrelation (forts.) Korrelation. Enkel linjär regression. Enkel linjär regression (forts.
Spridningsdiagram (scatterplot) En scatterplot som visar par av observationer: reklamkostnader på -aeln and försäljning på -aeln ScatterplotofAdvertising Ependitures ()andsales () 4 Fler eempel Notera:
Läs merFöreläsning 3. NDAB02 Statistik; teori och tillämpning i biologi
Föreläsning 3 Statistik; teori och tillämpning i biologi 1 Dagens föreläsning o Inferens om två populationer (kap 8.1 8.) o Parvisa observationer (kap 9.1 9.) o p-värde (kap 6.3) o Feltyper, styrka, stickprovsstorlek
Läs merÖVNINGSUPPGIFTER KAPITEL 9
ÖVNINGSUPPGIFTER KAPITEL 9 STOKASTISKA VARIABLER 1. Ange om följande stokastiska variabler är diskreta eller kontinuerliga: a. X = En slumpmässigt utvald person ur populationen är arbetslös, där x antar
Läs merGiltig legitimation/pass är obligatoriskt att ha med sig. Tentamensvakt kontrollerar detta. Tentamensresultaten anslås med hjälp av kodnummer.
KOD: Kurskod: PC1244 Kursnamn: Kognitiv psykologi och utvecklingspsykologi Provmoment: Metod Ansvarig lärare: Sandra Buratti Tentamensdatum: 2014-09-26 Tillåtna hjälpmedel: Miniräknare Tentan består av
Läs merFöreläsning 5. Kapitel 6, sid Inferens om en population
Föreläsning 5 Kapitel 6, sid 153-185 Inferens om en population 2 Agenda Statistisk inferens om populationsmedelvärde Statistisk inferens om populationsandel Punktskattning Konfidensintervall Hypotesprövning
Läs mer2. Test av hypotes rörande medianen i en population.
Stat. teori gk, ht 006, JW F0 ICKE-PARAMETRISKA TEST (NCT 15.1, 15.3-15.4) Ordlista till NCT Nonparametric Sign test Rank Icke-parametrisk Teckentest Rang Teckentest Teckentestet är formellt ingenting
Läs merHypotesprövning. Andrew Hooker. Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University
Hypotesprövning Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Hypotesprövning Liksom konfidensintervall ett hjälpmedel för att
Läs merLäs noggrant informationen nedan innan du börjar skriva tentamen
Tentamen i Statistik 1: Undersökningsmetodik Ämneskod S0004M Totala antalet uppgifter: Totala antalet poäng Lärare: 5 25 Mykola Shykula, Inge Söderkvist, Eva Lövf Tentamensdatum 2016-03-21 Skrivtid 09.00-14.00
Läs merFÖRELÄSNINGSMATERIAL. diff SE. SE x x. Grundläggande statistik 2: KORRELATION OCH HYPOTESTESTNING. Påbyggnadskurs T1. Odontologisk profylaktik
Grundläggande statistik Påbyggnadskurs T1 Odontologisk profylaktik FÖRELÄSNINGSMATERIAL : KORRELATION OCH HYPOTESTESTNING t diff SE x 1 diff SE x x 1 x. Analytisk statistik Regression & Korrelation Oberoende
Läs merSTA101, Statistik och kvantitativa undersökningar, A 15 p Vårterminen 2017
MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik STA101, Statistik och kvantitativa undersökningar, A 15 p Vårterminen 2017 Räknestuga 2 Förberedelser: Lyssna på föreläsningarna F4, F5 och
Läs merObligatorisk uppgift, del 1
Obligatorisk uppgift, del 1 Uppgiften består av tre sannolikhetsproblem, som skall lösas med hjälp av miniräknare och tabellsamling. 1. Vid tillverkning av en produkt är felfrekvensen 0,02, dvs sannolikheten
Läs merStandardfel (Standard error, SE) SD eller SE. Intervallskattning MSG Staffan Nilsson, Chalmers 1
Standardfel (Standard error, SE) Anta vi har ett stickprov X 1,,X n där varje X i has medel = µ och std.dev = σ. Då är Det sista kalls standardfel (eng:standard error of mean (SEM) eller (SE) och skattas
Läs mer34% 34% 13.5% 68% 13.5% 2.35% 95% 2.35% 0.15% 99.7% 0.15% -3 SD -2 SD -1 SD M +1 SD +2 SD +3 SD
6.4 Att dra slutsatser på basis av statistisk analys en kort inledning - Man har ett stickprov, men man vill med hjälp av det få veta något om hela populationen => för att kunna dra slutsatser som gäller
Läs merF3 Introduktion Stickprov
Utrotningshotad tandnoting i arktiska vatten Inferens om väntevärde baserat på medelvärde och standardavvikelse Matematik och statistik för biologer, 10 hp Tandnoting är en torskliknande fisk som lever
Läs merGiltig legitimation/pass är obligatoriskt att ha med sig. Tentamensvakt kontrollerar detta. Tentamensresultaten anslås med hjälp av kodnummer.
KOD: Kurskod: PC1244 Kursnamn: Metod Provmoment: Metod Ansvarig lärare: Sandra Buratti Tentamensdatum: 2014-11-08 Tillåtna hjälpmedel: Miniräknare Tentan består av 13 frågor, totalt 40 poäng. Det krävs
Läs merTabell- och formelsamling. A4 Grundläggande Statistik A8 Statistik för ekonomer
Tabell- och formelsamling A4 Grundläggande Statistik A8 Statistik för ekonomer Observera att inga anteckningar får finnas i formelsamlingen vid tentamenstillfället Thommy Perlinger 17 september 2015 Innehåll
Läs merLTH: Fastighetsekonomi 23-24 sep 2008. Enkel och multipel linjär regressionsanalys HYPOTESPRÖVNING
LTH: Fastighetsekonomi 23-24 sep 2008 Enkel och multipel linjär regressionsanalys HYPOTESPRÖVNING Hypotesprövning (statistisk inferensteori) Statistisk hypotesprövning innebär att man med hjälp av slumpmässiga
Läs merAgenda. Statistik Termin 11, Läkarprogrammet, VT14. Forskningsprocessen. Agenda (forts.) Data - skalnivåer. Den heliga treenigheten
Agenda Statistik Termin 11, Läkarprogrammet, VT14 I: Grundläggande begrepp och beskrivande statistik II: Exempel på typisk forskning III. Frågestund Martin Cernvall martin.cernvall@pubcare.uu.se Grundläggande
Läs merFöreläsning 2. Kap 3,7-3,8 4,1-4,6 5,2 5,3
Föreläsning Kap 3,7-3,8 4,1-4,6 5, 5,3 1 Kap 3,7 och 3,8 Hur bra är modellen som vi har anpassat? Vi bedömer modellen med hjälp av ett antal kriterier: visuell bedömning, om möjligt F-test, signifikanstest
Läs merHur man tolkar statistiska resultat
Hur man tolkar statistiska resultat Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Varför använder vi oss av statistiska tester?
Läs mer