APC (Age, Period, Cohort) - modellering av incidensdata
|
|
- Karolina Bengtsson
- för 6 år sedan
- Visningar:
Transkript
1 APC (Age, Period, Cohort) - modellering av incidensdata Metodseminarium, mars 2010 Jonas Björk E-post: Jonas.Bjork@skane.se (Version )
2 APC-modellering av incidensdata Incidensberäkningar Poisson regression Introduktion till APC-modellering
3 Traditionell indelning av epidemiologi Beskrivande (deskriptiv) Jämförelser av sjukdomsförekomst i olika regioner, länder, tidstrender etc. Analytisk APC - modellering Interventiv
4 Incidens Insjuknandefrekvens Incidens = Antal nya sjukdomsfall / Persontid under risk Värdemängd 0 - Enhet: Antal fall per persontid under risk, Ex. Antal fall per personår
5 Kohort 1 Kohort 2 Antal sjukdomsfall a b Personår T 1 T 2 Incidens I 1 = a / T 1 I 2 = b / T 2 Incidens I1 I2 95% konfidensintervall I1 ± 1,96 I2 ± 1,96 T T 1 2 Incidensdifferens ID = I1 I2 I1 I2 95% konfidensintervall ID ± 1,96 + T T 1 2 Enkla incidensberäkningar och jämförelser kan göras med hjälp av Excel-arket EPISHEET Incidenskvot IK = q1/ q2 Incidenskvot på log-skalan ln( IK) = ln( I1/ I2) = ln( I1) ln( I2) 95% konfidensintervall 1 1 ln( IK) ± 1,96 + a b OBS! Formlerna för beräkning av konfidensintervall förutsätter att antal sjukdomsfall är minst 5 och "stort" antal personår i båda kohorterna
6 Incidensjämförelser - Exempel Exempel: I en klassisk uppföljning av hälsoeffekter av rökning i en kohort av manliga läkare i Storbritannien studerades bl.a. sambandet med mortalitet i hjärtkärlsjukdom (Doll & Hill 1996): Rökare Icke-rökare Antal fall Personår under risk Incidens (95% KI ) per personår Incidensdifferens (95% KI) per personår 443 ( ) 258 ( ) 185 ( ) Referens Incidenskvot (95% KI a ) 1,7 (1,4 2,1) Referens
7 Poisson regression Modellering av incidensdata - Exempel Åldersgrupp (år) Rökare Ickerökare Dödsfall Personår (%) Incidens Dödsfall Personår Incidens Incidenskvot (95% KI) (36,8) (47,9) 11 5,7 (1,4-24) (30,4) (27,2) 112 2,1 (1,2-3,9) (20,1) (14,6) 490 1,5 (1,0-2,2) (8,9) (6,6) ,4 (0,91-2,0) (3,7) (3,7) ,90 (0,61-1,4) Totalt (100) (100) 258 1,7 (1,4-2,1)
8 Poisson regression Modellering av incidensdata Exempel (forts.) Poisson regression - Modell för diskreta utfallsvariabler, t.ex. antal sjukdomsfall, som används för att uppskatta incidenskvoter i kohortundersökningar lny = lnt + α + β1 Rökning + β 2 ÅLDER2 + β3 ÅLDER3 + β 4 ÅLDER4 + β5 ÅLDER5 ln Y = naturliga logaritmen av antal sjukdomsfall, T = Persontid under risk Ger multiplikativ modell på originalskalan: Y = T e α e β1rökning β2ålder2 β3ålder3 β4 ÅLDER4 β5ålder5 e e e e Poisson regression finns exempelvis i SPSS (PASW), SAS och R
9 Poisson regression Modellering av incidensdata Exempel (forts.) Parameter Incidenskvot 95% KI Enkel modell Konstant α = -5,96 0,0026 0,0021-0,0031 Rökning Rökare β 1= 0,54 1,7 1,4-2,1 Icke-rökare Referens 1,0 - Multipel modell Konstant α = -7,92 0, , ,00053 Rökning Rökare β 1= 0,36 1,4 1,2-1,8 Icke-rökare Referens 1,0 - Ålder (år) β 5= 3, β 4= 3, β 3= 2, , β 2= 1,48 4,4 3,0-6, Referens 1,0 - Y = T e α e β1rökning β2 ÅLDER2 β3ålder3 β4ålder4 β5ålder5 e e e e
10 Poisson regression Modellförutsättningar Modell för ln(y), dvs log-linjärt samband mellan kovariater (x 1, x 2,...) och antal fall (incidens) Antal fall Y givet kovariaterna ska följa en Poisson fördelning (McNamee 2005) Multiplikativ modell - relativa risker multipliceras
11 Poisson fördelningen f ( Y ) = e µ Y µ Y! Medelvärde = µ, Standardavvikelse SD = µ µ = 4 µ = 5 µ = 10 Ofta är den verkliga spridningen i antalet fall större än vad som anges av Poissonfördelningen (Overdispersion). Leder till att precisionen överskattas = Falskt för snäva konfidensintervall Allvarligt problem! Extra variation läggs ofta in i Poisson-modellen för att hantera overdispersion
12 APC-modellering med Poission regression Förklara variationen i incidens med hjälp av ålder, period och kohort (födelseår) Separationsproblem: COHORT + AGE = PERIOD (Holford 1991) lny = lnt + α + β Age + β Period + β A P C Cohort
13 Ålder lny Ref. APC-modellering Period Ref. Kohort Ref. Modelleringen görs ofta i årsklasser = lnt + α + φai Agei + φpi Periodi + Ex. 5-årsklasser för ålder och period 10-årsklasser för kohort φ Ci Cohort i
14 Separationsproblemet lny = lnt + α + β Age + β Period + β A P C Cohort Saknar unik lösning, linjära effekter kan ej separeras, däremot kan kurvaturer (avvikelser från linjär trend) uppskattas unikt Ytterligare begränsning behöver införas för unik lösning Ex. Använd två kohorter som referens (kohorteffekt = 0 för dessa). Godtyckligt! Programpaket påför ofta egna begränsningar Ordningen mellan kovariaterna kan spela roll för estimaten! Tvåfaktormodell löser inte problemet Age Period Cohort AC - drift modell AP - drift modell CP drift modell - - β A + β P β P + βc β A β C β P + βc β A + β P βc β A -
15 Ytterligare begränsning införd Ex. Bröstcancer-mortalitet i USA och Kanada (Tarone et al 1997)
16 Ytterligare begränsning införd Ex. Bröstcancer-mortalitet i USA och Kanada (forts.) (Tarone et al 1997)
17 Tvåfaktormodell Age + Period Bra modell om något inträffar som påverkar alla, oavsett ålder Epidemi Vaccination Intervention Ändrad registrering (artefakt) Age + Cohort Bra modell om livsstilsmönster etc. som grundläggs tidigt ändras, t.ex. rökvanor eller yrkesval (Clayton & Schifflers, Statistics in Medicine 1987a)
18 Tvåfaktormodell (Ålder+ Period) Exempel Tuberkulos i Sverige Parameter Estimates Parameter B Exp(B) = Incidence rate ratio 95% CI 95% CI Lower Upper Lower Upper (Intercept) -5,93-6,17-5,68 0,00 0,00 0,00 [Sex=1] 0,02-0,07 0,10 1,02 0,94 1,11 [Sex=0] [Age=16] ,93 0,54 1,31 2,52 1,72 3,70 [Age=15] ,89 0,55 1,24 2,44 1,73 3,45 [Age=14] ,95 0,63 1,27 2,58 1,88 3,54 [Age=13] ,95 0,65 1,26 2,59 1,91 3,51 [Age=12] ,91 0,61 1,21 2,49 1,84 3,36 [Age=11] ,87 0,57 1,17 2,39 1,78 3,21 [Age=10] ,88 0,59 1,17 2,40 1,80 3,21 [Age=9] ,99 0,71 1,27 2,68 2,03 3,55 [Age=8] ,13 0,86 1,40 3,10 2,36 4,06 [Age=7] ,25 0,99 1,51 3,49 2,68 4,55 [Age=6] ,36 1,10 1,62 3,91 3,02 5,07 [Age=5] ,42 1,16 1,68 4,13 3,20 5,34 [Age=4] ,00 0,73 1,27 2,72 2,08 3,56 [Age=3] ,13-0,46 0,20 0,88 0,63 1,23 [Age=2] ,45-0,82-0,08 0,64 0,44 0,93 [Age=1] [Period=18] ,25-8,38-4,12 0,00 0,00 0,02 [Period=17] ,48-8,38-4,57 0,00 0,00 0,01 [Period=16] ,07-7,63-4,51 0,00 0,00 0,01 [Period=15] ,64-6,90-4,38 0,00 0,00 0,01 [Period=14] ,05-6,00-4,10 0,01 0,00 0,02 [Period=13] ,61-5,38-3,84 0,01 0,00 0,02 [Period=12] ,35-5,04-3,67 0,01 0,01 0,03 [Period=11] ,91-4,46-3,35 0,02 0,01 0,03 [Period=10] ,17-3,57-2,78 0,04 0,03 0,06 [Period=9] ,63-2,94-2,31 0,07 0,05 0,10 [Period=8] ,23-2,50-1,97 0,11 0,08 0,14 [Period=7] ,68-1,89-1,47 0,19 0,15 0,23 [Period=6] ,20-1,38-1,02 0,30 0,25 0,36 [Period=5] ,83-0,99-0,67 0,44 0,37 0,51 [Period=4] ,64-0,79-0,49 0,53 0,46 0,61 [Period=3] ,32-0,46-0,18 0,73 0,63 0,83 [Period=2] ,13-0,26 0,00 0,88 0,77 1,00 [Period=1] (Scale) 411,8022 Vaccination infördes på 1940-talet, slopades 1975
19 APC - Modellbyggarstrategi Linjära trendmodeller (Clayton & Schifflers, Statistics in Medicine 1987b; Holford, Annu Rev Publ Health 1991)
20 APC Modellbyggarstrategi (forts.) (Clayton & Schifflers, Statistics in Medicine 1987b)
21 APC-modellbygge - Exempel Period Age Hip Fracture Incidence per (Rosengren et al, inskickad för publicering)
22 APC-modellbygge Exempel (forts.) Relative Period Effect Relative Cohort Effect 0, , , ,05 0-0,05-0,1-0,15 Relative Period Effect (Ln) Relative Cohort Effect (ln) All Women Men All Women Men , Calendar Period Birth Cohort (Rosengren et al, inskickad för publicering)
23 APC-modellbygge Exempel (forts.) Adding drift parameters, reflecting linear period/cohort trends, improved the fit of the model considerably (χ2=214, df=1, both p<0.0001). The fit improved further when allowing for curvature (departure from linearity) in the trends (χ2=165 for sex+age+cohort, df=13 and χ2=108 for sex+age+period, df=2, both p<0.0001). This suggests that both linearity and curvature are present in period/cohort effects. Additional improvement in fit was seen when cohort effects were added to the sex+age+period model (χ2=144, df=13, p<0.0001) and when period effects were added to the sex+age+cohort model (χ2=86, df=2, p<0.0001). The latter finding suggests that independent curvature in both period and cohort trends is present in the data. (Rosengren et al, inskickad för publicering)
24 APC-modellbygge Exempel (forts.) Separationsproblemet... β(age) = d, β(cohort) = d, β(period) = d, where d is the common drift parameter that cannot be estimated. Thus, the sum of the cohort and period linear drifts can be estimated as β(cohort) + β(period) = = This sum is considerably smaller than the age drift; in particular any period drift can be estimated to be considerably smaller than the age drift: β(age) β(period) = No further guidance in the relative size of the cohort and period linear drifts can be obtained from the data. (Rosengren et al, inskickad för publicering)
Studiedesign och effektmått
Studiedesign och effektmått Kohortstudier och randomiserade studier Disposition Mått på association Studiedesign Randomiserade kliniska/kontrollerade prövningar Kohortstudier Mått på sjukdomsförekomst
Prediktera. Statistik för modellval och prediktion. Trend? - Syrehalt beroende på kovariater. Sambands- och trendanalys
Statistik för modellval och prediktion att beskriva, förklara och förutsäga Georg Lindgren Prediktera Matematisk statistik, Lunds universitet stik för modellval och prediktion p.1/28 Statistik för modellval
Regressions- och Tidsserieanalys - F7
Regressions- och Tidsserieanalys - F7 Tidsserieregression, kap 6.1-6.4 Linda Wänström Linköpings universitet November 25 Wänström (Linköpings universitet) F7 November 25 1 / 28 Tidsserieregressionsanalys
EPIDEMIOLOGI. Läran om sjukdomsförekomst i en befolkning (Ahlbom, Norell)
EPIDEMIOLOGI Läran om sjukdomsförekomst i en befolkning (Ahlbom, Norell) Läran om utbredningen av och orsakerna till hälsorelaterade tillstånd eller förhållanden i specifika populationer och tillämpningen
Till ampad statistik (A5) Förläsning 13: Logistisk regression
Till ampad statistik (A5) Förläsning 13: Logistisk regression Ronnie Pingel Statistiska institutionen Senast uppdaterad: 2016-03-08 Exempel 1: NTU2015 Exempel 2: En jobbannons Exempel 3 1 1 Klofstad, C.
MVE051/MSG Föreläsning 14
MVE051/MSG810 2016 Föreläsning 14 Petter Mostad Chalmers December 14, 2016 Beroende och oberoende variabler Hittills i kursen har vi tittat på modeller där alla observationer representeras av stokastiska
This exam consists of four problems. The maximum sum of points is 20. The marks 3, 4 and 5 require a minimum
Examiner Linus Carlsson 016-01-07 3 hours In English Exam (TEN) Probability theory and statistical inference MAA137 Aids: Collection of Formulas, Concepts and Tables Pocket calculator This exam consists
Läsanvisningar - Medicinsk statistik - Läkarprogrammet T10
Läsanvisningar - Medicinsk statistik - Läkarprogrammet T10 Läsanvisningarna baseras på boken Björk J. Praktisk statistik för medicin och hälsa, Liber Förlag (2011), som är gemensam kursbok för statistikavsnitten
Multipel Regressionsmodellen
Multipel Regressionsmodellen Koefficienterna i multipel regression skattas från ett stickprov enligt: Multipel Regressionsmodell med k förklarande variabler: Skattad (predicerad) Värde på y y ˆ = b + b
Epidemiologi (II) Läkarprogrammet Termin 5, VT Lars Rylander. Avdelningen för arbets- och miljömedicin, Lund
Epidemiologi (II) Läkarprogrammet Termin 5, VT 2015 Lars Rylander Avdelningen för arbets och miljömedicin, Lund Epost: Lars.Rylander@med.lu.se Tel: 046 222 1631 Exempel: Sjukdomsmått 1990 2000 2010 Antal
Kurskod: TAMS24 / Provkod: TEN (8:00-12:00) English Version
Kurskod: TAMS24 / Provkod: TEN 25-8-7 (8: - 2:) Examinator/Examiner: Xiangfeng Yang (Tel: 7 2234765). Please answer in ENGLISH if you can. a. You are permitted to bring: a calculator; formel -och tabellsamling
Föreläsning 12: Linjär regression
Föreläsning 12: Linjär regression Matematisk statistik Chalmers University of Technology Oktober 4, 2017 Exempel Vi vill undersöka hur ett ämnes specifika värmeskapacitet (ämnets förmåga att magasinera
Residualanalys. Finansiell statistik, vt-05. Normalfördelade? Normalfördelade? För modellen
Residualanalys För modellen Johan Koskinen, Statistiska institutionen, Stockholms universitet Finansiell statistik, vt-5 F7 regressionsanalys antog vi att ε, ε,..., ε är oberoende likafördelade N(,σ Då
Viktiga dimensioner vid val av test (och även val av deskriptiv statistik) Biostatistik II - Hypotesprövning i teori och praktik.
Viktiga dimensioner vid val av test (och även val av deskriptiv statistik) Biostatistik II - Hypotesprövning i teori och praktik Urvalsstorlek Mätnivå/skaltyp Fördelning av data Studiedesign Frida Eek
Föreläsning 2. Kap 3,7-3,8 4,1-4,6 5,2 5,3
Föreläsning Kap 3,7-3,8 4,1-4,6 5, 5,3 1 Kap 3,7 och 3,8 Hur bra är modellen som vi har anpassat? Vi bedömer modellen med hjälp av ett antal kriterier: visuell bedömning, om möjligt F-test, signifikanstest
732G71 Statistik B. Föreläsning 7. Bertil Wegmann. IDA, Linköpings universitet. Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 29
732G71 Statistik B Föreläsning 7 Bertil Wegmann IDA, Linköpings universitet Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 29 Detaljhandelns försäljning (fasta priser, kalenderkorrigerat) Bertil Wegmann
Epidemiologi I. Läkarprogrammet Termin 5, VT Lars Rylander. Avdelningen för arbets- och miljömedicin, Lund Enheten för miljöepidemiologi
Epidemiologi I Läkarprogrammet Termin 5, VT 2016 Lars Rylander Avdelningen för arbets- och miljömedicin, Lund Enheten för miljöepidemiologi E-post: Lars.Rylander@med.lu.se Tel: 046 222 1631 Epidemiologi
Tentamen MVE301 Sannolikhet, statistik och risk
Tentamen MVE301 Sannolikhet, statistik och risk 2018-10-12 kl. 8:30-13:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Olof Elias, telefon: 031-7725325 Hjälpmedel: Valfri
Grundläggande Biostatistik. Joacim Rocklöv, Lektor Epidemiologi och global hälsa Umeå Universitet
Grundläggande Biostatistik Joacim Rocklöv, Lektor Epidemiologi och global hälsa Umeå Universitet Formell analys Informell data analys Design and mätning Problem Formell analys Informell data analys Hur
Statistiska Institutionen Gebrenegus Ghilagaber (docent)
Statistiska Institutionen Gebrenegus Ghilagaber (docent) Lösningsförslag till skriftlig tentamen i FINANSIELL STATISTIK, grundnivå, 7,5 hp, VT09. Onsdagen 3 juni 2009-1 Sannolkhetslära Mobiltelefoner tillverkas
FORMELSAMLING HT-18 MATEMATISK STATISTIK FÖR B, K, N, BME OCH KEMISTER; FMSF70 & MASB02. Sannolikhetsteori. Beskrivning av data
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK FORMELSAMLING HT-18 MATEMATISK STATISTIK FÖR B, K, N, BME OCH KEMISTER; FMSF70 & MASB02 Sannolikhetsteori Följande gäller för sannolikheter:
FMSF55: Matematisk statistik för C och M OH-bilder på föreläsning 9,
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF55: Matematisk statistik för C och M OH-bilder på föreläsning 9, 8-5-4 EXEMPEL: Hur mycket kunder förlorar vi om vi höjer biljettpriset?
Mälardalens Högskola. Formelsamling. Statistik, grundkurs
Mälardalens Högskola Formelsamling Statistik, grundkurs Höstterminen 2015 Deskriptiv statistik Populationens medelvärde (population mean): μ = X N Urvalets medelvärde (sample mean): X = X n Där N är storleken
Tentamen MVE302 Sannolikhet och statistik
Tentamen MVE302 Sannolikhet och statistik 2019-06-05 kl. 8:30-12:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Oskar Allerbo, telefon: 031-7725325 Hjälpmedel: Valfri miniräknare.
Bild 1. Bild 2 Sammanfattning Statistik I. Bild 3 Hypotesprövning. Medicinsk statistik II
Bild 1 Medicinsk statistik II Läkarprogrammet T5 HT 2014 Anna Jöud Arbets- och miljömedicin, Lunds universitet ERC Syd, Skånes Universitetssjukhus anna.joud@med.lu.se Bild 2 Sammanfattning Statistik I
Studiedesign MÅSTE MAN BLI FORSKARE BARA FÖR ATT MAN VILL BLI LÄKARE? 2/13/2011. Disposition. Experiment. Bakgrund. Observationsstudier
Studiedesign eller, hur vet vi egentligen det vi vet? MÅSTE MAN BLI FORSKARE BARA FÖR ATT MAN VILL BLI LÄKARE? Disposition Bakgrund Experiment Observationsstudier Studiedesign Experiment Observationsstudier
Matematisk statistik för B, K, N, BME och Kemister
Matematisk statistik för B, K, N, BME och Kemister Föreläsning 9 Joakim Lübeck (Johan Lindström 25 september 217 Johan Lindström - johanl@maths.lth.se FMSF7/MASB2 F9 1/23 Repetition Inferens för diskret
Enkel linjär regression. Enkel linjär regression. Enkel linjär regression
Enkel linjär regression Exempel.7 i boken (sida 31). Hur mycket dragkraft behövs för att en halvledare skall lossna från sin sockel vid olika längder på halvledarens ben och höjder på sockeln. De halvledare
2. Finns samband mellan individbundna faktorer och kontextuella faktorer och skolresultat?
1 Teknisk bilaga till rapport 2018:10 Det är i det lokala man finner komplexiteten - Betydelsen av migrationsbakgrund och socioekonomiska faktorer för skolmisslyckanden 1 Bakgrund Denna rapport är en teknisk
F11. Kvantitativa prognostekniker
F11 Kvantitativa prognostekniker samt repetition av kursen Kvantitativa prognostekniker Vi har gjort flera prognoser under kursen Prognoser baseras på antagandet att historien upprepar sig Trenden följer
En rät linje ett enkelt samband. En rät linje + slumpbrus. Observationspar (X i,y i ) MSG Staffan Nilsson, Chalmers 1.
En rät linje ett enkelt samband Y β 1 Lutning (slope) β 0 Skärning (intercept) 1 Y= β 0 + β 1 X X En rät linje + slumpbrus Y Y= β 0 + β 1 X + brus brus ~ N(0,σ) X Observationspar (X i,y i ) Y Ökar/minskar
Kroppstemperaturen hos människa anses i regel vara 37,0 C/ 98,6 F. För att beräkna och rita grafer har programmet Minitab använts.
Syfte: Bestämma normal kroppstemperatur med tillgång till data från försök. Avgöra eventuell skillnad mellan män och kvinnor. Utforska ett eventuellt samband mellan kroppstemperatur och hjärtfrekvens.
Tentamen MVE301 Sannolikhet, statistik och risk
Tentamen MVE301 Sannolikhet, statistik och risk 2018-05-31 kl. 8:30-13:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Ivar Simonsson, telefon: 031-7725325 Hjälpmedel: Valfri
FORMELSAMLING MATEMATISK STATISTIK FÖR W; FMSF75 UPPDATERAD Sannolikhetsteori. Beskrivning av data. Läges-, spridnings- och beroendemått
LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK FORMELSAMLING MATEMATISK STATISTIK FÖR W; FMSF75 UPPDATERAD 208-08-26 Sannolikhetsteori Följande gäller för sannolikheter: 0 P(A P(Ω = P(A
Instuderingsfrågor till avsnittet om statistik, kursen Statistik och Metod, Psykologprogrammet på KI, T8
1 Instuderingsfrågor till avsnittet om statistik, kursen Statistik och Metod, Psykologprogrammet på KI, T8 Dessa instuderingsfrågor är främst tänkta att stämma överens med innehållet i föreläsningarna,
Metod och teori. Statistik för naturvetare Umeå universitet
Statistik för naturvetare -6-8 Metod och teori Uppgift Uppgiften är att undersöka hur hjärtfrekvensen hos en person påverkas av dennes kroppstemperatur. Detta görs genom enkel linjär regression. Låt signifikansnivån
För logitmodellen ges G (=F) av den logistiska funktionen: (= exp(z)/(1+ exp(z))
Logitmodellen För logitmodellen ges G (=F) av den logistiska funktionen: F(z) = e z /(1 + e z ) (= exp(z)/(1+ exp(z)) Funktionen motsvarar den kumulativa fördelningsfunktionen för en standardiserad logistiskt
Föreläsning 11: Mer om jämförelser och inferens
Föreläsning 11: Mer om jämförelser och inferens Matematisk statistik David Bolin Chalmers University of Technology Maj 12, 2014 Oberoende stickprov Vi antar att vi har två oberoende stickprov n 1 observationer
Tentamen i matematisk statistik
Sid 1 (7) i matematisk statistik Statistik och kvalitetsteknik 7,5 hp Tillåtna hjälpmedel: Miniräknare. Studenterna får behålla tentamensuppgifterna. Skrivtid: 9.00-12.00 ger maximalt 24 poäng. Betygsgränser:
10.1 Enkel linjär regression
Exempel: Hur mycket dragkraft behövs för att en halvledare skall lossna från sin sockel vid olika längder på halvledarens ben. De halvledare vi betraktar är av samma storlek (bortsett benlängden). 70 Scatterplot
English Version. Number of sold cakes Number of days
Kurskod: TAMS24 (Statistisk teori / Provkod: TEN 206-0-04 (kl. 8-2 Examinator/Examiner: Xiangfeng Yang (Tel: 070 089666. Please answer in ENGLISH if you can. a. You are permitted to bring: a calculator;
TENTAMEN I REGRESSIONSANALYS OCH TIDSSERIEANALYS
STOCKHOLMS UNIVERSITET Statistiska institutionen Marcus Berg VT2014 TENTAMEN I REGRESSIONSANALYS OCH TIDSSERIEANALYS Fredag 23 maj 2014 kl. 12-17 Skrivtid: 5 timmar Godkända hjälpmedel: Kalkylator utan
Matematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10. Laboration. Regressionsanalys (Sambandsanalys)
Matematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10 Laboration Regressionsanalys (Sambandsanalys) Grupp A: 2010-11-24, 13.15 15.00 Grupp B: 2010-11-24, 15.15 17.00 Grupp C: 2010-11-25,
STOCKHOLMS UNIVERSITET HT 2008 Statistiska institutionen Linda Wänström. Omtentamen i Regressionsanalys
STOCKHOLMS UNIVERSITET HT 2008 Statistiska institutionen Linda Wänström Omtentamen i Regressionsanalys 2009-01-08 Skrivtid: 9.00-14.00 Godkända hjälpmedel: Miniräknare utan lagrade formler. Tentamen består
Korrelation kausalitet. ˆ Y =bx +a KAPITEL 6: LINEAR REGRESSION: PREDICTION
KAPITEL 6: LINEAR REGRESSION: PREDICTION Prediktion att estimera "poäng" på en variabel (Y), kriteriet, på basis av kunskap om "poäng" på en annan variabel (X), prediktorn. Prediktion heter med ett annat
Regressions- och Tidsserieanalys - F3
Regressions- och Tidsserieanalys - F3 Multipel regressionsanalys kap 4.8-4.10 Linda Wänström Linköpings universitet 7 maj Wänström (Linköpings universitet) F3 7 maj 1 / 26 Lite som vi inte hann med när
Matematisk statistik för B, K, N, BME och Kemister
Matematisk statistik för B, K, N, BME och Kemister Föreläsning 8 Johan Lindström 20 september 2017 Johan Lindström - johanl@maths.lth.se FMS086/MASB02 F8 1/20 : Poisson & Binomial för diskret data Johan
Medicinsk statistik II
Medicinsk statistik II Läkarprogrammet T5 HT 2014 Susann Ullén FoU-centrum Skåne Skånes Universitetssjukhus Hypotesprövning Man sätter upp en nollhypotes (H0) och en mothypotes (H1) H0: Ingen effekt H1:
Tentamen MVE301 Sannolikhet, statistik och risk
Tentamen MVE31 Sannolikhet, statistik och risk 218-1-12 kl. 8:3-13:3 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Olof Elias, telefon: 31-7725325 Hjälpmedel: Valfri miniräknare.
Laboration 2. i 5B1512, Grundkurs i matematisk statistik för ekonomer
Laboration 2 i 5B52, Grundkurs i matematisk statistik för ekonomer Namn: Elevnummer: Laborationen syftar till ett ge information och träning i Excels rutiner för statistisk slutledning, konfidensintervall,
Tentamen MVE302 Sannolikhet och statistik
Tentamen MVE32 Sannolikhet och statistik 219-6-5 kl. 8:3-12:3 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Oskar Allerbo, telefon: 31-7725325 Hjälpmedel: Valfri miniräknare.
English Version. + 1 n 2. n 1
Kurskod: TAMS24 (Statistisk teori) / Provkod: TEN 205-0-23 (kl. 4-8) Examinator/Examiner: Xiangfeng Yang (Tel: 070 2234765). Please answer in ENGLISH if you can. a. You are permitted to bring: a calculator;
Hypotesprövning. Andrew Hooker. Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University
Hypotesprövning Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Hypotesprövning Liksom konfidensintervall ett hjälpmedel för att
FÖRELÄSNINGSMATERIAL. diff SE. SE x x. Grundläggande statistik 2: KORRELATION OCH HYPOTESTESTNING. Påbyggnadskurs T1. Odontologisk profylaktik
Grundläggande statistik Påbyggnadskurs T1 Odontologisk profylaktik FÖRELÄSNINGSMATERIAL : KORRELATION OCH HYPOTESTESTNING t diff SE x 1 diff SE x x 1 x. Analytisk statistik Regression & Korrelation Oberoende
Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 31 May 2016, 8:00-12:00. English Version
Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 31 May 2016, 8:00-12:00 Examiner: Xiangfeng Yang (Tel: 070 0896661). Please answer in ENGLISH if you can. a. Allowed to use: a calculator, Formelsamling
Standard Normal Quantiles. Vilken av följande slutsatser kan man dra från qq-plotten?
-2.5cm TENTAMEN: Statistisk modellering för I3, TMS160, lördagen den 11 december 2004 kl 8:30-11:30 på M. Jour: John Gustavsson, mob 0705-330375 Hjälpmedel: Utdelad formelsamling med tabeller, BETA, på
Hur skriver man statistikavsnittet i en ansökan?
Hur skriver man statistikavsnittet i en ansökan? Val av metod och stickprovsdimensionering Registercentrum Norr http://www.registercentrumnorr.vll.se/ statistik.rcnorr@vll.se 11 Oktober, 2018 1 / 52 Det
Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 17 August 2015, 8:00-12:00. English Version
Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 17 August 2015, 8:00-12:00 Examiner: Xiangfeng Yang (Tel: 070 2234765). Please answer in ENGLISH if you can. a. Allowed to use: a calculator, Formelsamling
Statistiska metoder för säkerhetsanalys
F10: Intensiteter och Poissonmodeller Frågeställningar Konstant V.v.=Var Cyklister Poissonmodeller för frekvensdata Vi gör oberoende observationer av de (absoluta) frekvenserna n 1, n 2,..., n k från den
STATISTISK POWER OCH STICKPROVSDIMENSIONERING
STATISTISK POWER OCH STICKPROVSDIMENSIONERING Teori UPPLÄGG Gemensam diskussion Individuella frågor Efter detta pass hoppas jag att: ni ska veta vad man ska tänka på vilka verktyg som finns vilket stöd
Fordonsavgaser och uppkomst av lungsjukdom/astma. Lars Modig Doktorand Yrkes- och miljömedicin
Fordonsavgaser och uppkomst av lungsjukdom/astma Lars Modig Doktorand Yrkes- och miljömedicin Hälsokonsekvenser av avgaser/pm förekommande i HIA Mortalitet (långtidseffekter) Sjukhusinläggningar etc (akut
Matematisk statistik KTH. Formelsamling i matematisk statistik
Matematisk statistik KTH Formelsamling i matematisk statistik Vårterminen 2017 1 Kombinatorik ) n n! = k k! n k)!. Tolkning: mängd med n element. ) n = antalet delmängder av storlek k ur en k 2 Stokastiska
Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012
Föreläsning 1 Repetition av sannolikhetsteori Patrik Zetterberg 6 december 2012 1 / 28 Viktiga statistiska begrepp För att kunna förstå mer avancerade koncept under kursens gång är det viktigt att vi förstår
Innehåll: 3.4 Parametriskt eller ej 3.5 Life Table 3.6 Kaplan Meier 4. Cox Regression 4.1 Hazard Function 4.2 Estimering (PL)
Innehåll: 1. Risk & Odds 1.1 Risk Ratio 1.2 Odds Ratio 2. Logistisk Regression 2.1 Ln Odds 2.2 SPSS Output 2.3 Estimering (ML) 2.4 Multipel 3. Survival Analys 3.1 vs. Logistisk 3.2 Censurerade data 3.3
Parade och oparade test
Parade och oparade test Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Hypotesprövning: möjliga jämförelser Jämförelser mot ett
Lö sningsfö rslag till tentamen i matematisk statistik Statistik öch kvalitetsteknik 7,5 hp
Sid (7) Lö sningsfö rslag till tentamen i matematisk statistik Statistik öch kvalitetsteknik 7,5 hp Uppgift Nedanstående beräkningar från Minitab är gjorda för en Poissonfördelning med väntevärde λ = 4.
STATISTISK ANALYS AV KOMPLEXA DATA
STATISTISK ANALYS AV KOMPLEXA DATA HIERARKISKA DATA Linda Wänström Linköpings universitet 25 November Wänström (Linköpings universitet) HIERARKISKA DATA 25 November 1 / 53 Regressionsmodell för icke-hierarkiska
Med åldrandet följer skörhet: hur kan vi undvika det? Laura Fratiglioni
Med åldrandet följer skörhet: hur kan vi undvika det? Laura Fratiglioni SNAC-Kungsholmen Åldersgrupp 60 B F1 F2 Åldersgrupp 66 B F1 F2 F3 Åldersgrupp 72 B F1 F2 F3 F4 Åldersgrupp 78 B F1 F2 F3 F4 F5 Äldre
F18 MULTIPEL LINJÄR REGRESSION, FORTS. (NCT
Stat. teori gk, ht 006, JW F18 MULTIPEL LINJÄR REGRESSION, FORTS. (NCT 1.1, 13.1-13.6, 13.8-13.9) Modell för multipel linjär regression Modellantaganden: 1) x-värdena är fixa. ) Varje y i (i = 1,, n) är
1/23 REGRESSIONSANALYS. Statistiska institutionen, Stockholms universitet
1/23 REGRESSIONSANALYS F4 Linda Wänström Statistiska institutionen, Stockholms universitet 2/23 Multipel regressionsanalys Multipel regressionsanalys kan ses som en utvidgning av enkel linjär regressionsanalys.
Att mäta hälsa och sjukdom. Kvantitativa metoder II: teori och tillämpning Folkhälsovetenskap 4, termin 6 Hanna Hultin hanna.hultin@ki.
Att mäta hälsa och sjukdom Kvantitativa metoder II: teori och tillämpning Folkhälsovetenskap 4, termin 6 Hanna Hultin hanna.hultin@ki.se Disposition Introduktion Vad är epidemiologi? Varför behövs epidemiologin?
1. Lära sig plotta en beroende variabel mot en oberoende variabel. 2. Lära sig skatta en enkel linjär regressionsmodell
Datorövning 1 Regressions- och tidsserieanalys Syfte 1. Lära sig plotta en beroende variabel mot en oberoende variabel 2. Lära sig skatta en enkel linjär regressionsmodell 3. Lära sig beräkna en skattning
Fatigue Properties in Additive manufactured Titanium & Inconell
Fatigue Properties in Additive manufactured Titanium & Inconell UTMIS, Jönköping, 6/2-2018 PÄR JOHANNESSON, TORSTEN SJÖGREN Research Institutes of Sweden RISE Safety and Transport Mechanics Research 2015
SF1901: SANNOLIKHETSLÄRA OCH STATISTIK. MER OM χ 2 -TEST OCH LIKNANDE. Jan Grandell & Timo Koski
SF1901: SANNOLIKHETSLÄRA OCH STATISTIK FÖRELÄSNING 13. MER OM χ 2 -TEST OCH LIKNANDE Jan Grandell & Timo Koski 25.02.2015 Jan Grandell & Timo Koski () Matematisk statistik 25.02.2015 1 / 33 INNEHÅLL χ
Thomas Önskog 28/
Föreläsning 0 Thomas Önskog 8/ 07 Konfidensintervall På förra föreläsningen undersökte vi hur vi från ett stickprov x,, x n från en fördelning med okända parametrar kan uppskatta parametrarnas värden Detta
Övningshäfte till kursen Regressionsanalys och tidsserieanalys
Övningshäfte till kursen Regressionsanalys och tidsserieanalys Linda Wänström April 8, 2011 1 Enkel linjär regressionsanalys (baserad på uppgift 2.3 i Andersson, Jorner, Ågren (2009)) Antag att följande
Höftledsdysplasi hos dansk-svensk gårdshund
Höftledsdysplasi hos dansk-svensk gårdshund Sjö A Sjö B Förekomst av parasitdrabbad öring i olika sjöar Sjö C Jämföra medelvärden hos kopplade stickprov Tio elitlöpare springer samma sträcka i en för dem
ST-fredag i Biostatistik & Epidemiologi När ska jag använda vilket test?
ST-fredag i Biostatistik & Epidemiologi När ska jag använda vilket test? Mikael Eriksson Specialistläkare CIVA Karolinska Universitetssjukhuset, Solna Grund för hypotestestning 1. Definiera noll- och alternativhypotes,
Skrivning i ekonometri lördagen den 25 augusti 2007
LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL STA10:3 Skrivning i ekonometri lördagen den 5 augusti 007 1. Vi vill undersöka hur variationen i ölförsäljningen i ett bryggeri i en stad i USA
Grundläggande matematisk statistik
Grundläggande matematisk statistik Linjär Regression Uwe Menzel, 2018 uwe.menzel@slu.se; uwe.menzel@matstat.de www.matstat.de Linjär Regression y i y 5 y 3 mätvärden x i, y i y 1 x 1 x 2 x 3 x 4 x 6 x
Tidsserier, forts från F16 F17. Tidsserier Säsongrensning
Tidsserier Säsongrensning F7 Tidsserier forts från F6 Vi har en variabel som varierar över tiden Ex folkmängd omsättning antal anställda (beroende variabeln/undersökningsvariabeln) Vi studerar den varje
Föreläsning 13: Multipel Regression
Föreläsning 13: Multipel Regression Matematisk statistik Chalmers University of Technology Oktober 9, 2017 Enkel linjär regression Vi har gjort mätningar av en responsvariabel Y för fixerade värden på
2. Lära sig skatta en multipel linjär regressionsmodell samt plotta variablerna. 4. Lära sig skatta en linjär regressionsmodell med interaktionstermer
Datorövning 2 Regressions- och tidsserieanalys Syfte 1. Lära sig skapa en korrelationsmatris 2. Lära sig skatta en multipel linjär regressionsmodell samt plotta variablerna mot varandra 3. Lära sig beräkna
Skrivning i ekonometri torsdagen den 8 februari 2007
LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL STA2:3 Skrivning i ekonometri torsdagen den 8 februari 27. Vi vill undersöka hur variationen i lön för 2 belgiska löntagare = WAGE (timlön i euro)
Matematisk statistik 9 hp, HT-16 Föreläsning 15: Multipel linjär regression
Matematisk statistik 9 hp, HT-16 Föreläsning 15: Multipel linjär regression Anna Lindgren 28+29 november, 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F15: multipel regression 1/22 Linjär regression
Skattar vi alltid vad vi tror? Om individuell risk och populationsrisk
Skattar vi alltid vad vi tror? Om individuell risk och populationsrisk Idag: AstraZeneca i Lund I morgon: Statistik-konsulterna Innehåll Risker på individ- och populationsnivå Preliminaria Logrank test/cox
LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL. Skrivning i ekonometri onsdagen den 1 juni 2011
LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL STAB2 Skrivning i ekonometri onsdagen den 1 juni 211 1. Vi vill undersöka hur variationen i försäljningspriset för ett hus (i en liten stad i USA
Formel- och tabellsamling i matematisk statistik
Formel- och tabellsamling i matematisk statistik 1. Sannolikhetsteori för lärarprogrammet Sannolikhetsformler P (A ) = 1 P (A) P (A B) = P (A) + P (B) P (A B) P (A B) = P (A B) P (B) P (A B) = P (A B)P
F13 Regression och problemlösning
1/18 F13 Regression och problemlösning Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 4/3 2013 2/18 Regression Vi studerar hur en variabel y beror på en variabel x. Vår modell
Laboration 2. Övningsuppgifter. Syfte: Syftet med den här laborationen är att träna på att utföra multipel regressionsanalys MÄLARDALENS HÖGSKOLA
MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik Statistik och kvantitativa undersökningar, A 15 p Höstterminen 2016 Laboration 2 Övningsuppgifter Baserade på dataseten: Discrim_lab.xlsx
Tentamen Statistik och dataanalys 1, 5p Institutionen för matematik, natur- och datavetenskap, Högskolan i Gävle
Tentamen Statistik och dataanalys 1, 5p Institutionen för matematik, natur- och datavetenskap, Högskolan i Gävle Lärare: Mikael Elenius, 2006-08-25, kl:9-14 Betygsgränser: 65 poäng Väl Godkänt, 50 poäng
Matematisk statistik för D, I, Π och Fysiker
Matematisk statistik för D, I, Π och Fysiker Föreläsning 15 Johan Lindström 4 december 218 Johan Lindström - johanl@maths.lth.se FMSF45/MASB3 F15 1/28 Repetition Linjär regression Modell Parameterskattningar
STOCKHOLMS UNIVERSITET FYSIKUM
STOCKHOLMS UNIVERSITET FYSIKUM Tentamensskrivning i Fysikexperiment, 7,5 hp, för FK2002 Onsdagen den 15 december 2010 kl. 9-14. Skrivningen består av två delar A och B. Del A innehåller enkla frågor och
tentaplugg.nu av studenter för studenter
tentaplugg.nu av studenter för studenter Kurskod Kursnamn SM Matematisk statistik Datum LP - Material Laboration Kursexaminator Adam Betygsgränser Tentamenspoäng Övrig kommentar Försättsblad inlämningsuppgift
Föreläsning 15, FMSF45 Multipel linjär regression
Föreläsning 15, FMSF45 Multipel linjär regression Stas Volkov 2017-11-28 Stanislav Volkov s.volkov@maths.lth.se FMSF45 F15 1/23 Linjär regression Vi har n st par av mätvärden (x i, y i ), i = 1,..., n
Medicinsk statistik II
Medicinsk statistik II Läkarprogrammet termin 5 VT 2013 Susanna Lövdahl, Msc, doktorand Klinisk koagulationsforskning, Lunds universitet E-post: susanna.lovdahl@med.lu.se Dagens föreläsning Fördjupning
oberoende av varandra så observationerna är
Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF55: Matematisk statistik för C och M OH-bilder på föreläsning 1, 1-5-7 REGRESSION (repetition) Vi har mätningarna ( 1, 1 ),..., ( n, n
Formler och tabeller till kursen MSG830
Formler och tabeller till kursen MSG830 Deskriptiva mått För ett datamängd x 1,, x n denieras medelvärde standardavvikelse standardfelet (SEM) Sannolikheter x = 1 n n i=1 = x 1 + + x n n s = 1 n (x i x)
Kapitel 15: INTERAKTIONER, STANDARDISERADE SKALOR OCH ICKE-LINJÄRA EFFEKTER
Kapitel 15: INTERAKTIONER, STANDARDISERADE SKALOR OCH ICKE-LINJÄRA EFFEKTER När vi mäter en effekt i data så vill vi ofta se om denna skiljer sig mellan olika delgrupper. Vi kanske testar effekten av ett
Tentamen i matematisk statistik
Sid (7) i matematisk statistik Statistik och kvalitetsteknik 7,5 hp Tillåtna hjälpmedel: Miniräknare. Studenterna får behålla tentamensuppgifterna. Skrivtid: 4.00-7.00 ger maximalt 24 poäng. Betygsgränser: