APC (Age, Period, Cohort) - modellering av incidensdata

Storlek: px
Starta visningen från sidan:

Download "APC (Age, Period, Cohort) - modellering av incidensdata"

Transkript

1 APC (Age, Period, Cohort) - modellering av incidensdata Metodseminarium, mars 2010 Jonas Björk E-post: Jonas.Bjork@skane.se (Version )

2 APC-modellering av incidensdata Incidensberäkningar Poisson regression Introduktion till APC-modellering

3 Traditionell indelning av epidemiologi Beskrivande (deskriptiv) Jämförelser av sjukdomsförekomst i olika regioner, länder, tidstrender etc. Analytisk APC - modellering Interventiv

4 Incidens Insjuknandefrekvens Incidens = Antal nya sjukdomsfall / Persontid under risk Värdemängd 0 - Enhet: Antal fall per persontid under risk, Ex. Antal fall per personår

5 Kohort 1 Kohort 2 Antal sjukdomsfall a b Personår T 1 T 2 Incidens I 1 = a / T 1 I 2 = b / T 2 Incidens I1 I2 95% konfidensintervall I1 ± 1,96 I2 ± 1,96 T T 1 2 Incidensdifferens ID = I1 I2 I1 I2 95% konfidensintervall ID ± 1,96 + T T 1 2 Enkla incidensberäkningar och jämförelser kan göras med hjälp av Excel-arket EPISHEET Incidenskvot IK = q1/ q2 Incidenskvot på log-skalan ln( IK) = ln( I1/ I2) = ln( I1) ln( I2) 95% konfidensintervall 1 1 ln( IK) ± 1,96 + a b OBS! Formlerna för beräkning av konfidensintervall förutsätter att antal sjukdomsfall är minst 5 och "stort" antal personår i båda kohorterna

6 Incidensjämförelser - Exempel Exempel: I en klassisk uppföljning av hälsoeffekter av rökning i en kohort av manliga läkare i Storbritannien studerades bl.a. sambandet med mortalitet i hjärtkärlsjukdom (Doll & Hill 1996): Rökare Icke-rökare Antal fall Personår under risk Incidens (95% KI ) per personår Incidensdifferens (95% KI) per personår 443 ( ) 258 ( ) 185 ( ) Referens Incidenskvot (95% KI a ) 1,7 (1,4 2,1) Referens

7 Poisson regression Modellering av incidensdata - Exempel Åldersgrupp (år) Rökare Ickerökare Dödsfall Personår (%) Incidens Dödsfall Personår Incidens Incidenskvot (95% KI) (36,8) (47,9) 11 5,7 (1,4-24) (30,4) (27,2) 112 2,1 (1,2-3,9) (20,1) (14,6) 490 1,5 (1,0-2,2) (8,9) (6,6) ,4 (0,91-2,0) (3,7) (3,7) ,90 (0,61-1,4) Totalt (100) (100) 258 1,7 (1,4-2,1)

8 Poisson regression Modellering av incidensdata Exempel (forts.) Poisson regression - Modell för diskreta utfallsvariabler, t.ex. antal sjukdomsfall, som används för att uppskatta incidenskvoter i kohortundersökningar lny = lnt + α + β1 Rökning + β 2 ÅLDER2 + β3 ÅLDER3 + β 4 ÅLDER4 + β5 ÅLDER5 ln Y = naturliga logaritmen av antal sjukdomsfall, T = Persontid under risk Ger multiplikativ modell på originalskalan: Y = T e α e β1rökning β2ålder2 β3ålder3 β4 ÅLDER4 β5ålder5 e e e e Poisson regression finns exempelvis i SPSS (PASW), SAS och R

9 Poisson regression Modellering av incidensdata Exempel (forts.) Parameter Incidenskvot 95% KI Enkel modell Konstant α = -5,96 0,0026 0,0021-0,0031 Rökning Rökare β 1= 0,54 1,7 1,4-2,1 Icke-rökare Referens 1,0 - Multipel modell Konstant α = -7,92 0, , ,00053 Rökning Rökare β 1= 0,36 1,4 1,2-1,8 Icke-rökare Referens 1,0 - Ålder (år) β 5= 3, β 4= 3, β 3= 2, , β 2= 1,48 4,4 3,0-6, Referens 1,0 - Y = T e α e β1rökning β2 ÅLDER2 β3ålder3 β4ålder4 β5ålder5 e e e e

10 Poisson regression Modellförutsättningar Modell för ln(y), dvs log-linjärt samband mellan kovariater (x 1, x 2,...) och antal fall (incidens) Antal fall Y givet kovariaterna ska följa en Poisson fördelning (McNamee 2005) Multiplikativ modell - relativa risker multipliceras

11 Poisson fördelningen f ( Y ) = e µ Y µ Y! Medelvärde = µ, Standardavvikelse SD = µ µ = 4 µ = 5 µ = 10 Ofta är den verkliga spridningen i antalet fall större än vad som anges av Poissonfördelningen (Overdispersion). Leder till att precisionen överskattas = Falskt för snäva konfidensintervall Allvarligt problem! Extra variation läggs ofta in i Poisson-modellen för att hantera overdispersion

12 APC-modellering med Poission regression Förklara variationen i incidens med hjälp av ålder, period och kohort (födelseår) Separationsproblem: COHORT + AGE = PERIOD (Holford 1991) lny = lnt + α + β Age + β Period + β A P C Cohort

13 Ålder lny Ref. APC-modellering Period Ref. Kohort Ref. Modelleringen görs ofta i årsklasser = lnt + α + φai Agei + φpi Periodi + Ex. 5-årsklasser för ålder och period 10-årsklasser för kohort φ Ci Cohort i

14 Separationsproblemet lny = lnt + α + β Age + β Period + β A P C Cohort Saknar unik lösning, linjära effekter kan ej separeras, däremot kan kurvaturer (avvikelser från linjär trend) uppskattas unikt Ytterligare begränsning behöver införas för unik lösning Ex. Använd två kohorter som referens (kohorteffekt = 0 för dessa). Godtyckligt! Programpaket påför ofta egna begränsningar Ordningen mellan kovariaterna kan spela roll för estimaten! Tvåfaktormodell löser inte problemet Age Period Cohort AC - drift modell AP - drift modell CP drift modell - - β A + β P β P + βc β A β C β P + βc β A + β P βc β A -

15 Ytterligare begränsning införd Ex. Bröstcancer-mortalitet i USA och Kanada (Tarone et al 1997)

16 Ytterligare begränsning införd Ex. Bröstcancer-mortalitet i USA och Kanada (forts.) (Tarone et al 1997)

17 Tvåfaktormodell Age + Period Bra modell om något inträffar som påverkar alla, oavsett ålder Epidemi Vaccination Intervention Ändrad registrering (artefakt) Age + Cohort Bra modell om livsstilsmönster etc. som grundläggs tidigt ändras, t.ex. rökvanor eller yrkesval (Clayton & Schifflers, Statistics in Medicine 1987a)

18 Tvåfaktormodell (Ålder+ Period) Exempel Tuberkulos i Sverige Parameter Estimates Parameter B Exp(B) = Incidence rate ratio 95% CI 95% CI Lower Upper Lower Upper (Intercept) -5,93-6,17-5,68 0,00 0,00 0,00 [Sex=1] 0,02-0,07 0,10 1,02 0,94 1,11 [Sex=0] [Age=16] ,93 0,54 1,31 2,52 1,72 3,70 [Age=15] ,89 0,55 1,24 2,44 1,73 3,45 [Age=14] ,95 0,63 1,27 2,58 1,88 3,54 [Age=13] ,95 0,65 1,26 2,59 1,91 3,51 [Age=12] ,91 0,61 1,21 2,49 1,84 3,36 [Age=11] ,87 0,57 1,17 2,39 1,78 3,21 [Age=10] ,88 0,59 1,17 2,40 1,80 3,21 [Age=9] ,99 0,71 1,27 2,68 2,03 3,55 [Age=8] ,13 0,86 1,40 3,10 2,36 4,06 [Age=7] ,25 0,99 1,51 3,49 2,68 4,55 [Age=6] ,36 1,10 1,62 3,91 3,02 5,07 [Age=5] ,42 1,16 1,68 4,13 3,20 5,34 [Age=4] ,00 0,73 1,27 2,72 2,08 3,56 [Age=3] ,13-0,46 0,20 0,88 0,63 1,23 [Age=2] ,45-0,82-0,08 0,64 0,44 0,93 [Age=1] [Period=18] ,25-8,38-4,12 0,00 0,00 0,02 [Period=17] ,48-8,38-4,57 0,00 0,00 0,01 [Period=16] ,07-7,63-4,51 0,00 0,00 0,01 [Period=15] ,64-6,90-4,38 0,00 0,00 0,01 [Period=14] ,05-6,00-4,10 0,01 0,00 0,02 [Period=13] ,61-5,38-3,84 0,01 0,00 0,02 [Period=12] ,35-5,04-3,67 0,01 0,01 0,03 [Period=11] ,91-4,46-3,35 0,02 0,01 0,03 [Period=10] ,17-3,57-2,78 0,04 0,03 0,06 [Period=9] ,63-2,94-2,31 0,07 0,05 0,10 [Period=8] ,23-2,50-1,97 0,11 0,08 0,14 [Period=7] ,68-1,89-1,47 0,19 0,15 0,23 [Period=6] ,20-1,38-1,02 0,30 0,25 0,36 [Period=5] ,83-0,99-0,67 0,44 0,37 0,51 [Period=4] ,64-0,79-0,49 0,53 0,46 0,61 [Period=3] ,32-0,46-0,18 0,73 0,63 0,83 [Period=2] ,13-0,26 0,00 0,88 0,77 1,00 [Period=1] (Scale) 411,8022 Vaccination infördes på 1940-talet, slopades 1975

19 APC - Modellbyggarstrategi Linjära trendmodeller (Clayton & Schifflers, Statistics in Medicine 1987b; Holford, Annu Rev Publ Health 1991)

20 APC Modellbyggarstrategi (forts.) (Clayton & Schifflers, Statistics in Medicine 1987b)

21 APC-modellbygge - Exempel Period Age Hip Fracture Incidence per (Rosengren et al, inskickad för publicering)

22 APC-modellbygge Exempel (forts.) Relative Period Effect Relative Cohort Effect 0, , , ,05 0-0,05-0,1-0,15 Relative Period Effect (Ln) Relative Cohort Effect (ln) All Women Men All Women Men , Calendar Period Birth Cohort (Rosengren et al, inskickad för publicering)

23 APC-modellbygge Exempel (forts.) Adding drift parameters, reflecting linear period/cohort trends, improved the fit of the model considerably (χ2=214, df=1, both p<0.0001). The fit improved further when allowing for curvature (departure from linearity) in the trends (χ2=165 for sex+age+cohort, df=13 and χ2=108 for sex+age+period, df=2, both p<0.0001). This suggests that both linearity and curvature are present in period/cohort effects. Additional improvement in fit was seen when cohort effects were added to the sex+age+period model (χ2=144, df=13, p<0.0001) and when period effects were added to the sex+age+cohort model (χ2=86, df=2, p<0.0001). The latter finding suggests that independent curvature in both period and cohort trends is present in the data. (Rosengren et al, inskickad för publicering)

24 APC-modellbygge Exempel (forts.) Separationsproblemet... β(age) = d, β(cohort) = d, β(period) = d, where d is the common drift parameter that cannot be estimated. Thus, the sum of the cohort and period linear drifts can be estimated as β(cohort) + β(period) = = This sum is considerably smaller than the age drift; in particular any period drift can be estimated to be considerably smaller than the age drift: β(age) β(period) = No further guidance in the relative size of the cohort and period linear drifts can be obtained from the data. (Rosengren et al, inskickad för publicering)

Studiedesign och effektmått

Studiedesign och effektmått Studiedesign och effektmått Kohortstudier och randomiserade studier Disposition Mått på association Studiedesign Randomiserade kliniska/kontrollerade prövningar Kohortstudier Mått på sjukdomsförekomst

Läs mer

Prediktera. Statistik för modellval och prediktion. Trend? - Syrehalt beroende på kovariater. Sambands- och trendanalys

Prediktera. Statistik för modellval och prediktion. Trend? - Syrehalt beroende på kovariater. Sambands- och trendanalys Statistik för modellval och prediktion att beskriva, förklara och förutsäga Georg Lindgren Prediktera Matematisk statistik, Lunds universitet stik för modellval och prediktion p.1/28 Statistik för modellval

Läs mer

Regressions- och Tidsserieanalys - F7

Regressions- och Tidsserieanalys - F7 Regressions- och Tidsserieanalys - F7 Tidsserieregression, kap 6.1-6.4 Linda Wänström Linköpings universitet November 25 Wänström (Linköpings universitet) F7 November 25 1 / 28 Tidsserieregressionsanalys

Läs mer

EPIDEMIOLOGI. Läran om sjukdomsförekomst i en befolkning (Ahlbom, Norell)

EPIDEMIOLOGI. Läran om sjukdomsförekomst i en befolkning (Ahlbom, Norell) EPIDEMIOLOGI Läran om sjukdomsförekomst i en befolkning (Ahlbom, Norell) Läran om utbredningen av och orsakerna till hälsorelaterade tillstånd eller förhållanden i specifika populationer och tillämpningen

Läs mer

Till ampad statistik (A5) Förläsning 13: Logistisk regression

Till ampad statistik (A5) Förläsning 13: Logistisk regression Till ampad statistik (A5) Förläsning 13: Logistisk regression Ronnie Pingel Statistiska institutionen Senast uppdaterad: 2016-03-08 Exempel 1: NTU2015 Exempel 2: En jobbannons Exempel 3 1 1 Klofstad, C.

Läs mer

MVE051/MSG Föreläsning 14

MVE051/MSG Föreläsning 14 MVE051/MSG810 2016 Föreläsning 14 Petter Mostad Chalmers December 14, 2016 Beroende och oberoende variabler Hittills i kursen har vi tittat på modeller där alla observationer representeras av stokastiska

Läs mer

This exam consists of four problems. The maximum sum of points is 20. The marks 3, 4 and 5 require a minimum

This exam consists of four problems. The maximum sum of points is 20. The marks 3, 4 and 5 require a minimum Examiner Linus Carlsson 016-01-07 3 hours In English Exam (TEN) Probability theory and statistical inference MAA137 Aids: Collection of Formulas, Concepts and Tables Pocket calculator This exam consists

Läs mer

Läsanvisningar - Medicinsk statistik - Läkarprogrammet T10

Läsanvisningar - Medicinsk statistik - Läkarprogrammet T10 Läsanvisningar - Medicinsk statistik - Läkarprogrammet T10 Läsanvisningarna baseras på boken Björk J. Praktisk statistik för medicin och hälsa, Liber Förlag (2011), som är gemensam kursbok för statistikavsnitten

Läs mer

Multipel Regressionsmodellen

Multipel Regressionsmodellen Multipel Regressionsmodellen Koefficienterna i multipel regression skattas från ett stickprov enligt: Multipel Regressionsmodell med k förklarande variabler: Skattad (predicerad) Värde på y y ˆ = b + b

Läs mer

Epidemiologi (II) Läkarprogrammet Termin 5, VT Lars Rylander. Avdelningen för arbets- och miljömedicin, Lund

Epidemiologi (II) Läkarprogrammet Termin 5, VT Lars Rylander. Avdelningen för arbets- och miljömedicin, Lund Epidemiologi (II) Läkarprogrammet Termin 5, VT 2015 Lars Rylander Avdelningen för arbets och miljömedicin, Lund Epost: Lars.Rylander@med.lu.se Tel: 046 222 1631 Exempel: Sjukdomsmått 1990 2000 2010 Antal

Läs mer

Kurskod: TAMS24 / Provkod: TEN (8:00-12:00) English Version

Kurskod: TAMS24 / Provkod: TEN (8:00-12:00) English Version Kurskod: TAMS24 / Provkod: TEN 25-8-7 (8: - 2:) Examinator/Examiner: Xiangfeng Yang (Tel: 7 2234765). Please answer in ENGLISH if you can. a. You are permitted to bring: a calculator; formel -och tabellsamling

Läs mer

Föreläsning 12: Linjär regression

Föreläsning 12: Linjär regression Föreläsning 12: Linjär regression Matematisk statistik Chalmers University of Technology Oktober 4, 2017 Exempel Vi vill undersöka hur ett ämnes specifika värmeskapacitet (ämnets förmåga att magasinera

Läs mer

Residualanalys. Finansiell statistik, vt-05. Normalfördelade? Normalfördelade? För modellen

Residualanalys. Finansiell statistik, vt-05. Normalfördelade? Normalfördelade? För modellen Residualanalys För modellen Johan Koskinen, Statistiska institutionen, Stockholms universitet Finansiell statistik, vt-5 F7 regressionsanalys antog vi att ε, ε,..., ε är oberoende likafördelade N(,σ Då

Läs mer

Viktiga dimensioner vid val av test (och även val av deskriptiv statistik) Biostatistik II - Hypotesprövning i teori och praktik.

Viktiga dimensioner vid val av test (och även val av deskriptiv statistik) Biostatistik II - Hypotesprövning i teori och praktik. Viktiga dimensioner vid val av test (och även val av deskriptiv statistik) Biostatistik II - Hypotesprövning i teori och praktik Urvalsstorlek Mätnivå/skaltyp Fördelning av data Studiedesign Frida Eek

Läs mer

Föreläsning 2. Kap 3,7-3,8 4,1-4,6 5,2 5,3

Föreläsning 2. Kap 3,7-3,8 4,1-4,6 5,2 5,3 Föreläsning Kap 3,7-3,8 4,1-4,6 5, 5,3 1 Kap 3,7 och 3,8 Hur bra är modellen som vi har anpassat? Vi bedömer modellen med hjälp av ett antal kriterier: visuell bedömning, om möjligt F-test, signifikanstest

Läs mer

732G71 Statistik B. Föreläsning 7. Bertil Wegmann. IDA, Linköpings universitet. Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 29

732G71 Statistik B. Föreläsning 7. Bertil Wegmann. IDA, Linköpings universitet. Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 29 732G71 Statistik B Föreläsning 7 Bertil Wegmann IDA, Linköpings universitet Bertil Wegmann (IDA, LiU) 732G71, Statistik B 1 / 29 Detaljhandelns försäljning (fasta priser, kalenderkorrigerat) Bertil Wegmann

Läs mer

Epidemiologi I. Läkarprogrammet Termin 5, VT Lars Rylander. Avdelningen för arbets- och miljömedicin, Lund Enheten för miljöepidemiologi

Epidemiologi I. Läkarprogrammet Termin 5, VT Lars Rylander. Avdelningen för arbets- och miljömedicin, Lund Enheten för miljöepidemiologi Epidemiologi I Läkarprogrammet Termin 5, VT 2016 Lars Rylander Avdelningen för arbets- och miljömedicin, Lund Enheten för miljöepidemiologi E-post: Lars.Rylander@med.lu.se Tel: 046 222 1631 Epidemiologi

Läs mer

Tentamen MVE301 Sannolikhet, statistik och risk

Tentamen MVE301 Sannolikhet, statistik och risk Tentamen MVE301 Sannolikhet, statistik och risk 2018-10-12 kl. 8:30-13:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Olof Elias, telefon: 031-7725325 Hjälpmedel: Valfri

Läs mer

Grundläggande Biostatistik. Joacim Rocklöv, Lektor Epidemiologi och global hälsa Umeå Universitet

Grundläggande Biostatistik. Joacim Rocklöv, Lektor Epidemiologi och global hälsa Umeå Universitet Grundläggande Biostatistik Joacim Rocklöv, Lektor Epidemiologi och global hälsa Umeå Universitet Formell analys Informell data analys Design and mätning Problem Formell analys Informell data analys Hur

Läs mer

Statistiska Institutionen Gebrenegus Ghilagaber (docent)

Statistiska Institutionen Gebrenegus Ghilagaber (docent) Statistiska Institutionen Gebrenegus Ghilagaber (docent) Lösningsförslag till skriftlig tentamen i FINANSIELL STATISTIK, grundnivå, 7,5 hp, VT09. Onsdagen 3 juni 2009-1 Sannolkhetslära Mobiltelefoner tillverkas

Läs mer

FORMELSAMLING HT-18 MATEMATISK STATISTIK FÖR B, K, N, BME OCH KEMISTER; FMSF70 & MASB02. Sannolikhetsteori. Beskrivning av data

FORMELSAMLING HT-18 MATEMATISK STATISTIK FÖR B, K, N, BME OCH KEMISTER; FMSF70 & MASB02. Sannolikhetsteori. Beskrivning av data LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK FORMELSAMLING HT-18 MATEMATISK STATISTIK FÖR B, K, N, BME OCH KEMISTER; FMSF70 & MASB02 Sannolikhetsteori Följande gäller för sannolikheter:

Läs mer

FMSF55: Matematisk statistik för C och M OH-bilder på föreläsning 9,

FMSF55: Matematisk statistik för C och M OH-bilder på föreläsning 9, Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF55: Matematisk statistik för C och M OH-bilder på föreläsning 9, 8-5-4 EXEMPEL: Hur mycket kunder förlorar vi om vi höjer biljettpriset?

Läs mer

Mälardalens Högskola. Formelsamling. Statistik, grundkurs

Mälardalens Högskola. Formelsamling. Statistik, grundkurs Mälardalens Högskola Formelsamling Statistik, grundkurs Höstterminen 2015 Deskriptiv statistik Populationens medelvärde (population mean): μ = X N Urvalets medelvärde (sample mean): X = X n Där N är storleken

Läs mer

Tentamen MVE302 Sannolikhet och statistik

Tentamen MVE302 Sannolikhet och statistik Tentamen MVE302 Sannolikhet och statistik 2019-06-05 kl. 8:30-12:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Oskar Allerbo, telefon: 031-7725325 Hjälpmedel: Valfri miniräknare.

Läs mer

Bild 1. Bild 2 Sammanfattning Statistik I. Bild 3 Hypotesprövning. Medicinsk statistik II

Bild 1. Bild 2 Sammanfattning Statistik I. Bild 3 Hypotesprövning. Medicinsk statistik II Bild 1 Medicinsk statistik II Läkarprogrammet T5 HT 2014 Anna Jöud Arbets- och miljömedicin, Lunds universitet ERC Syd, Skånes Universitetssjukhus anna.joud@med.lu.se Bild 2 Sammanfattning Statistik I

Läs mer

Studiedesign MÅSTE MAN BLI FORSKARE BARA FÖR ATT MAN VILL BLI LÄKARE? 2/13/2011. Disposition. Experiment. Bakgrund. Observationsstudier

Studiedesign MÅSTE MAN BLI FORSKARE BARA FÖR ATT MAN VILL BLI LÄKARE? 2/13/2011. Disposition. Experiment. Bakgrund. Observationsstudier Studiedesign eller, hur vet vi egentligen det vi vet? MÅSTE MAN BLI FORSKARE BARA FÖR ATT MAN VILL BLI LÄKARE? Disposition Bakgrund Experiment Observationsstudier Studiedesign Experiment Observationsstudier

Läs mer

Matematisk statistik för B, K, N, BME och Kemister

Matematisk statistik för B, K, N, BME och Kemister Matematisk statistik för B, K, N, BME och Kemister Föreläsning 9 Joakim Lübeck (Johan Lindström 25 september 217 Johan Lindström - johanl@maths.lth.se FMSF7/MASB2 F9 1/23 Repetition Inferens för diskret

Läs mer

Enkel linjär regression. Enkel linjär regression. Enkel linjär regression

Enkel linjär regression. Enkel linjär regression. Enkel linjär regression Enkel linjär regression Exempel.7 i boken (sida 31). Hur mycket dragkraft behövs för att en halvledare skall lossna från sin sockel vid olika längder på halvledarens ben och höjder på sockeln. De halvledare

Läs mer

2. Finns samband mellan individbundna faktorer och kontextuella faktorer och skolresultat?

2. Finns samband mellan individbundna faktorer och kontextuella faktorer och skolresultat? 1 Teknisk bilaga till rapport 2018:10 Det är i det lokala man finner komplexiteten - Betydelsen av migrationsbakgrund och socioekonomiska faktorer för skolmisslyckanden 1 Bakgrund Denna rapport är en teknisk

Läs mer

F11. Kvantitativa prognostekniker

F11. Kvantitativa prognostekniker F11 Kvantitativa prognostekniker samt repetition av kursen Kvantitativa prognostekniker Vi har gjort flera prognoser under kursen Prognoser baseras på antagandet att historien upprepar sig Trenden följer

Läs mer

En rät linje ett enkelt samband. En rät linje + slumpbrus. Observationspar (X i,y i ) MSG Staffan Nilsson, Chalmers 1.

En rät linje ett enkelt samband. En rät linje + slumpbrus. Observationspar (X i,y i ) MSG Staffan Nilsson, Chalmers 1. En rät linje ett enkelt samband Y β 1 Lutning (slope) β 0 Skärning (intercept) 1 Y= β 0 + β 1 X X En rät linje + slumpbrus Y Y= β 0 + β 1 X + brus brus ~ N(0,σ) X Observationspar (X i,y i ) Y Ökar/minskar

Läs mer

Kroppstemperaturen hos människa anses i regel vara 37,0 C/ 98,6 F. För att beräkna och rita grafer har programmet Minitab använts.

Kroppstemperaturen hos människa anses i regel vara 37,0 C/ 98,6 F. För att beräkna och rita grafer har programmet Minitab använts. Syfte: Bestämma normal kroppstemperatur med tillgång till data från försök. Avgöra eventuell skillnad mellan män och kvinnor. Utforska ett eventuellt samband mellan kroppstemperatur och hjärtfrekvens.

Läs mer

Tentamen MVE301 Sannolikhet, statistik och risk

Tentamen MVE301 Sannolikhet, statistik och risk Tentamen MVE301 Sannolikhet, statistik och risk 2018-05-31 kl. 8:30-13:30 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Ivar Simonsson, telefon: 031-7725325 Hjälpmedel: Valfri

Läs mer

FORMELSAMLING MATEMATISK STATISTIK FÖR W; FMSF75 UPPDATERAD Sannolikhetsteori. Beskrivning av data. Läges-, spridnings- och beroendemått

FORMELSAMLING MATEMATISK STATISTIK FÖR W; FMSF75 UPPDATERAD Sannolikhetsteori. Beskrivning av data. Läges-, spridnings- och beroendemått LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK FORMELSAMLING MATEMATISK STATISTIK FÖR W; FMSF75 UPPDATERAD 208-08-26 Sannolikhetsteori Följande gäller för sannolikheter: 0 P(A P(Ω = P(A

Läs mer

Instuderingsfrågor till avsnittet om statistik, kursen Statistik och Metod, Psykologprogrammet på KI, T8

Instuderingsfrågor till avsnittet om statistik, kursen Statistik och Metod, Psykologprogrammet på KI, T8 1 Instuderingsfrågor till avsnittet om statistik, kursen Statistik och Metod, Psykologprogrammet på KI, T8 Dessa instuderingsfrågor är främst tänkta att stämma överens med innehållet i föreläsningarna,

Läs mer

Metod och teori. Statistik för naturvetare Umeå universitet

Metod och teori. Statistik för naturvetare Umeå universitet Statistik för naturvetare -6-8 Metod och teori Uppgift Uppgiften är att undersöka hur hjärtfrekvensen hos en person påverkas av dennes kroppstemperatur. Detta görs genom enkel linjär regression. Låt signifikansnivån

Läs mer

För logitmodellen ges G (=F) av den logistiska funktionen: (= exp(z)/(1+ exp(z))

För logitmodellen ges G (=F) av den logistiska funktionen: (= exp(z)/(1+ exp(z)) Logitmodellen För logitmodellen ges G (=F) av den logistiska funktionen: F(z) = e z /(1 + e z ) (= exp(z)/(1+ exp(z)) Funktionen motsvarar den kumulativa fördelningsfunktionen för en standardiserad logistiskt

Läs mer

Föreläsning 11: Mer om jämförelser och inferens

Föreläsning 11: Mer om jämförelser och inferens Föreläsning 11: Mer om jämförelser och inferens Matematisk statistik David Bolin Chalmers University of Technology Maj 12, 2014 Oberoende stickprov Vi antar att vi har två oberoende stickprov n 1 observationer

Läs mer

Tentamen i matematisk statistik

Tentamen i matematisk statistik Sid 1 (7) i matematisk statistik Statistik och kvalitetsteknik 7,5 hp Tillåtna hjälpmedel: Miniräknare. Studenterna får behålla tentamensuppgifterna. Skrivtid: 9.00-12.00 ger maximalt 24 poäng. Betygsgränser:

Läs mer

10.1 Enkel linjär regression

10.1 Enkel linjär regression Exempel: Hur mycket dragkraft behövs för att en halvledare skall lossna från sin sockel vid olika längder på halvledarens ben. De halvledare vi betraktar är av samma storlek (bortsett benlängden). 70 Scatterplot

Läs mer

English Version. Number of sold cakes Number of days

English Version. Number of sold cakes Number of days Kurskod: TAMS24 (Statistisk teori / Provkod: TEN 206-0-04 (kl. 8-2 Examinator/Examiner: Xiangfeng Yang (Tel: 070 089666. Please answer in ENGLISH if you can. a. You are permitted to bring: a calculator;

Läs mer

TENTAMEN I REGRESSIONSANALYS OCH TIDSSERIEANALYS

TENTAMEN I REGRESSIONSANALYS OCH TIDSSERIEANALYS STOCKHOLMS UNIVERSITET Statistiska institutionen Marcus Berg VT2014 TENTAMEN I REGRESSIONSANALYS OCH TIDSSERIEANALYS Fredag 23 maj 2014 kl. 12-17 Skrivtid: 5 timmar Godkända hjälpmedel: Kalkylator utan

Läs mer

Matematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10. Laboration. Regressionsanalys (Sambandsanalys)

Matematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10. Laboration. Regressionsanalys (Sambandsanalys) Matematikcentrum 1(4) Matematisk Statistik Lunds Universitet MASB11 HT10 Laboration Regressionsanalys (Sambandsanalys) Grupp A: 2010-11-24, 13.15 15.00 Grupp B: 2010-11-24, 15.15 17.00 Grupp C: 2010-11-25,

Läs mer

STOCKHOLMS UNIVERSITET HT 2008 Statistiska institutionen Linda Wänström. Omtentamen i Regressionsanalys

STOCKHOLMS UNIVERSITET HT 2008 Statistiska institutionen Linda Wänström. Omtentamen i Regressionsanalys STOCKHOLMS UNIVERSITET HT 2008 Statistiska institutionen Linda Wänström Omtentamen i Regressionsanalys 2009-01-08 Skrivtid: 9.00-14.00 Godkända hjälpmedel: Miniräknare utan lagrade formler. Tentamen består

Läs mer

Korrelation kausalitet. ˆ Y =bx +a KAPITEL 6: LINEAR REGRESSION: PREDICTION

Korrelation kausalitet. ˆ Y =bx +a KAPITEL 6: LINEAR REGRESSION: PREDICTION KAPITEL 6: LINEAR REGRESSION: PREDICTION Prediktion att estimera "poäng" på en variabel (Y), kriteriet, på basis av kunskap om "poäng" på en annan variabel (X), prediktorn. Prediktion heter med ett annat

Läs mer

Regressions- och Tidsserieanalys - F3

Regressions- och Tidsserieanalys - F3 Regressions- och Tidsserieanalys - F3 Multipel regressionsanalys kap 4.8-4.10 Linda Wänström Linköpings universitet 7 maj Wänström (Linköpings universitet) F3 7 maj 1 / 26 Lite som vi inte hann med när

Läs mer

Matematisk statistik för B, K, N, BME och Kemister

Matematisk statistik för B, K, N, BME och Kemister Matematisk statistik för B, K, N, BME och Kemister Föreläsning 8 Johan Lindström 20 september 2017 Johan Lindström - johanl@maths.lth.se FMS086/MASB02 F8 1/20 : Poisson & Binomial för diskret data Johan

Läs mer

Medicinsk statistik II

Medicinsk statistik II Medicinsk statistik II Läkarprogrammet T5 HT 2014 Susann Ullén FoU-centrum Skåne Skånes Universitetssjukhus Hypotesprövning Man sätter upp en nollhypotes (H0) och en mothypotes (H1) H0: Ingen effekt H1:

Läs mer

Tentamen MVE301 Sannolikhet, statistik och risk

Tentamen MVE301 Sannolikhet, statistik och risk Tentamen MVE31 Sannolikhet, statistik och risk 218-1-12 kl. 8:3-13:3 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Olof Elias, telefon: 31-7725325 Hjälpmedel: Valfri miniräknare.

Läs mer

Laboration 2. i 5B1512, Grundkurs i matematisk statistik för ekonomer

Laboration 2. i 5B1512, Grundkurs i matematisk statistik för ekonomer Laboration 2 i 5B52, Grundkurs i matematisk statistik för ekonomer Namn: Elevnummer: Laborationen syftar till ett ge information och träning i Excels rutiner för statistisk slutledning, konfidensintervall,

Läs mer

Tentamen MVE302 Sannolikhet och statistik

Tentamen MVE302 Sannolikhet och statistik Tentamen MVE32 Sannolikhet och statistik 219-6-5 kl. 8:3-12:3 Examinator: Johan Jonasson, Matematiska vetenskaper, Chalmers Telefonvakt: Oskar Allerbo, telefon: 31-7725325 Hjälpmedel: Valfri miniräknare.

Läs mer

English Version. + 1 n 2. n 1

English Version. + 1 n 2. n 1 Kurskod: TAMS24 (Statistisk teori) / Provkod: TEN 205-0-23 (kl. 4-8) Examinator/Examiner: Xiangfeng Yang (Tel: 070 2234765). Please answer in ENGLISH if you can. a. You are permitted to bring: a calculator;

Läs mer

Hypotesprövning. Andrew Hooker. Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University

Hypotesprövning. Andrew Hooker. Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Hypotesprövning Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Hypotesprövning Liksom konfidensintervall ett hjälpmedel för att

Läs mer

FÖRELÄSNINGSMATERIAL. diff SE. SE x x. Grundläggande statistik 2: KORRELATION OCH HYPOTESTESTNING. Påbyggnadskurs T1. Odontologisk profylaktik

FÖRELÄSNINGSMATERIAL. diff SE. SE x x. Grundläggande statistik 2: KORRELATION OCH HYPOTESTESTNING. Påbyggnadskurs T1. Odontologisk profylaktik Grundläggande statistik Påbyggnadskurs T1 Odontologisk profylaktik FÖRELÄSNINGSMATERIAL : KORRELATION OCH HYPOTESTESTNING t diff SE x 1 diff SE x x 1 x. Analytisk statistik Regression & Korrelation Oberoende

Läs mer

Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 31 May 2016, 8:00-12:00. English Version

Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 31 May 2016, 8:00-12:00. English Version Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 31 May 2016, 8:00-12:00 Examiner: Xiangfeng Yang (Tel: 070 0896661). Please answer in ENGLISH if you can. a. Allowed to use: a calculator, Formelsamling

Läs mer

Standard Normal Quantiles. Vilken av följande slutsatser kan man dra från qq-plotten?

Standard Normal Quantiles. Vilken av följande slutsatser kan man dra från qq-plotten? -2.5cm TENTAMEN: Statistisk modellering för I3, TMS160, lördagen den 11 december 2004 kl 8:30-11:30 på M. Jour: John Gustavsson, mob 0705-330375 Hjälpmedel: Utdelad formelsamling med tabeller, BETA, på

Läs mer

Hur skriver man statistikavsnittet i en ansökan?

Hur skriver man statistikavsnittet i en ansökan? Hur skriver man statistikavsnittet i en ansökan? Val av metod och stickprovsdimensionering Registercentrum Norr http://www.registercentrumnorr.vll.se/ statistik.rcnorr@vll.se 11 Oktober, 2018 1 / 52 Det

Läs mer

Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 17 August 2015, 8:00-12:00. English Version

Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 17 August 2015, 8:00-12:00. English Version Kurskod: TAIU06 MATEMATISK STATISTIK Provkod: TENA 17 August 2015, 8:00-12:00 Examiner: Xiangfeng Yang (Tel: 070 2234765). Please answer in ENGLISH if you can. a. Allowed to use: a calculator, Formelsamling

Läs mer

Statistiska metoder för säkerhetsanalys

Statistiska metoder för säkerhetsanalys F10: Intensiteter och Poissonmodeller Frågeställningar Konstant V.v.=Var Cyklister Poissonmodeller för frekvensdata Vi gör oberoende observationer av de (absoluta) frekvenserna n 1, n 2,..., n k från den

Läs mer

STATISTISK POWER OCH STICKPROVSDIMENSIONERING

STATISTISK POWER OCH STICKPROVSDIMENSIONERING STATISTISK POWER OCH STICKPROVSDIMENSIONERING Teori UPPLÄGG Gemensam diskussion Individuella frågor Efter detta pass hoppas jag att: ni ska veta vad man ska tänka på vilka verktyg som finns vilket stöd

Läs mer

Fordonsavgaser och uppkomst av lungsjukdom/astma. Lars Modig Doktorand Yrkes- och miljömedicin

Fordonsavgaser och uppkomst av lungsjukdom/astma. Lars Modig Doktorand Yrkes- och miljömedicin Fordonsavgaser och uppkomst av lungsjukdom/astma Lars Modig Doktorand Yrkes- och miljömedicin Hälsokonsekvenser av avgaser/pm förekommande i HIA Mortalitet (långtidseffekter) Sjukhusinläggningar etc (akut

Läs mer

Matematisk statistik KTH. Formelsamling i matematisk statistik

Matematisk statistik KTH. Formelsamling i matematisk statistik Matematisk statistik KTH Formelsamling i matematisk statistik Vårterminen 2017 1 Kombinatorik ) n n! = k k! n k)!. Tolkning: mängd med n element. ) n = antalet delmängder av storlek k ur en k 2 Stokastiska

Läs mer

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012 Föreläsning 1 Repetition av sannolikhetsteori Patrik Zetterberg 6 december 2012 1 / 28 Viktiga statistiska begrepp För att kunna förstå mer avancerade koncept under kursens gång är det viktigt att vi förstår

Läs mer

Innehåll: 3.4 Parametriskt eller ej 3.5 Life Table 3.6 Kaplan Meier 4. Cox Regression 4.1 Hazard Function 4.2 Estimering (PL)

Innehåll: 3.4 Parametriskt eller ej 3.5 Life Table 3.6 Kaplan Meier 4. Cox Regression 4.1 Hazard Function 4.2 Estimering (PL) Innehåll: 1. Risk & Odds 1.1 Risk Ratio 1.2 Odds Ratio 2. Logistisk Regression 2.1 Ln Odds 2.2 SPSS Output 2.3 Estimering (ML) 2.4 Multipel 3. Survival Analys 3.1 vs. Logistisk 3.2 Censurerade data 3.3

Läs mer

Parade och oparade test

Parade och oparade test Parade och oparade test Andrew Hooker Division of Pharmacokinetics and Drug Therapy Department of Pharmaceutical Biosciences Uppsala University Hypotesprövning: möjliga jämförelser Jämförelser mot ett

Läs mer

Lö sningsfö rslag till tentamen i matematisk statistik Statistik öch kvalitetsteknik 7,5 hp

Lö sningsfö rslag till tentamen i matematisk statistik Statistik öch kvalitetsteknik 7,5 hp Sid (7) Lö sningsfö rslag till tentamen i matematisk statistik Statistik öch kvalitetsteknik 7,5 hp Uppgift Nedanstående beräkningar från Minitab är gjorda för en Poissonfördelning med väntevärde λ = 4.

Läs mer

STATISTISK ANALYS AV KOMPLEXA DATA

STATISTISK ANALYS AV KOMPLEXA DATA STATISTISK ANALYS AV KOMPLEXA DATA HIERARKISKA DATA Linda Wänström Linköpings universitet 25 November Wänström (Linköpings universitet) HIERARKISKA DATA 25 November 1 / 53 Regressionsmodell för icke-hierarkiska

Läs mer

Med åldrandet följer skörhet: hur kan vi undvika det? Laura Fratiglioni

Med åldrandet följer skörhet: hur kan vi undvika det? Laura Fratiglioni Med åldrandet följer skörhet: hur kan vi undvika det? Laura Fratiglioni SNAC-Kungsholmen Åldersgrupp 60 B F1 F2 Åldersgrupp 66 B F1 F2 F3 Åldersgrupp 72 B F1 F2 F3 F4 Åldersgrupp 78 B F1 F2 F3 F4 F5 Äldre

Läs mer

F18 MULTIPEL LINJÄR REGRESSION, FORTS. (NCT

F18 MULTIPEL LINJÄR REGRESSION, FORTS. (NCT Stat. teori gk, ht 006, JW F18 MULTIPEL LINJÄR REGRESSION, FORTS. (NCT 1.1, 13.1-13.6, 13.8-13.9) Modell för multipel linjär regression Modellantaganden: 1) x-värdena är fixa. ) Varje y i (i = 1,, n) är

Läs mer

1/23 REGRESSIONSANALYS. Statistiska institutionen, Stockholms universitet

1/23 REGRESSIONSANALYS. Statistiska institutionen, Stockholms universitet 1/23 REGRESSIONSANALYS F4 Linda Wänström Statistiska institutionen, Stockholms universitet 2/23 Multipel regressionsanalys Multipel regressionsanalys kan ses som en utvidgning av enkel linjär regressionsanalys.

Läs mer

Att mäta hälsa och sjukdom. Kvantitativa metoder II: teori och tillämpning Folkhälsovetenskap 4, termin 6 Hanna Hultin hanna.hultin@ki.

Att mäta hälsa och sjukdom. Kvantitativa metoder II: teori och tillämpning Folkhälsovetenskap 4, termin 6 Hanna Hultin hanna.hultin@ki. Att mäta hälsa och sjukdom Kvantitativa metoder II: teori och tillämpning Folkhälsovetenskap 4, termin 6 Hanna Hultin hanna.hultin@ki.se Disposition Introduktion Vad är epidemiologi? Varför behövs epidemiologin?

Läs mer

1. Lära sig plotta en beroende variabel mot en oberoende variabel. 2. Lära sig skatta en enkel linjär regressionsmodell

1. Lära sig plotta en beroende variabel mot en oberoende variabel. 2. Lära sig skatta en enkel linjär regressionsmodell Datorövning 1 Regressions- och tidsserieanalys Syfte 1. Lära sig plotta en beroende variabel mot en oberoende variabel 2. Lära sig skatta en enkel linjär regressionsmodell 3. Lära sig beräkna en skattning

Läs mer

Fatigue Properties in Additive manufactured Titanium & Inconell

Fatigue Properties in Additive manufactured Titanium & Inconell Fatigue Properties in Additive manufactured Titanium & Inconell UTMIS, Jönköping, 6/2-2018 PÄR JOHANNESSON, TORSTEN SJÖGREN Research Institutes of Sweden RISE Safety and Transport Mechanics Research 2015

Läs mer

SF1901: SANNOLIKHETSLÄRA OCH STATISTIK. MER OM χ 2 -TEST OCH LIKNANDE. Jan Grandell & Timo Koski

SF1901: SANNOLIKHETSLÄRA OCH STATISTIK. MER OM χ 2 -TEST OCH LIKNANDE. Jan Grandell & Timo Koski SF1901: SANNOLIKHETSLÄRA OCH STATISTIK FÖRELÄSNING 13. MER OM χ 2 -TEST OCH LIKNANDE Jan Grandell & Timo Koski 25.02.2015 Jan Grandell & Timo Koski () Matematisk statistik 25.02.2015 1 / 33 INNEHÅLL χ

Läs mer

Thomas Önskog 28/

Thomas Önskog 28/ Föreläsning 0 Thomas Önskog 8/ 07 Konfidensintervall På förra föreläsningen undersökte vi hur vi från ett stickprov x,, x n från en fördelning med okända parametrar kan uppskatta parametrarnas värden Detta

Läs mer

Övningshäfte till kursen Regressionsanalys och tidsserieanalys

Övningshäfte till kursen Regressionsanalys och tidsserieanalys Övningshäfte till kursen Regressionsanalys och tidsserieanalys Linda Wänström April 8, 2011 1 Enkel linjär regressionsanalys (baserad på uppgift 2.3 i Andersson, Jorner, Ågren (2009)) Antag att följande

Läs mer

Höftledsdysplasi hos dansk-svensk gårdshund

Höftledsdysplasi hos dansk-svensk gårdshund Höftledsdysplasi hos dansk-svensk gårdshund Sjö A Sjö B Förekomst av parasitdrabbad öring i olika sjöar Sjö C Jämföra medelvärden hos kopplade stickprov Tio elitlöpare springer samma sträcka i en för dem

Läs mer

ST-fredag i Biostatistik & Epidemiologi När ska jag använda vilket test?

ST-fredag i Biostatistik & Epidemiologi När ska jag använda vilket test? ST-fredag i Biostatistik & Epidemiologi När ska jag använda vilket test? Mikael Eriksson Specialistläkare CIVA Karolinska Universitetssjukhuset, Solna Grund för hypotestestning 1. Definiera noll- och alternativhypotes,

Läs mer

Skrivning i ekonometri lördagen den 25 augusti 2007

Skrivning i ekonometri lördagen den 25 augusti 2007 LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL STA10:3 Skrivning i ekonometri lördagen den 5 augusti 007 1. Vi vill undersöka hur variationen i ölförsäljningen i ett bryggeri i en stad i USA

Läs mer

Grundläggande matematisk statistik

Grundläggande matematisk statistik Grundläggande matematisk statistik Linjär Regression Uwe Menzel, 2018 uwe.menzel@slu.se; uwe.menzel@matstat.de www.matstat.de Linjär Regression y i y 5 y 3 mätvärden x i, y i y 1 x 1 x 2 x 3 x 4 x 6 x

Läs mer

Tidsserier, forts från F16 F17. Tidsserier Säsongrensning

Tidsserier, forts från F16 F17. Tidsserier Säsongrensning Tidsserier Säsongrensning F7 Tidsserier forts från F6 Vi har en variabel som varierar över tiden Ex folkmängd omsättning antal anställda (beroende variabeln/undersökningsvariabeln) Vi studerar den varje

Läs mer

Föreläsning 13: Multipel Regression

Föreläsning 13: Multipel Regression Föreläsning 13: Multipel Regression Matematisk statistik Chalmers University of Technology Oktober 9, 2017 Enkel linjär regression Vi har gjort mätningar av en responsvariabel Y för fixerade värden på

Läs mer

2. Lära sig skatta en multipel linjär regressionsmodell samt plotta variablerna. 4. Lära sig skatta en linjär regressionsmodell med interaktionstermer

2. Lära sig skatta en multipel linjär regressionsmodell samt plotta variablerna. 4. Lära sig skatta en linjär regressionsmodell med interaktionstermer Datorövning 2 Regressions- och tidsserieanalys Syfte 1. Lära sig skapa en korrelationsmatris 2. Lära sig skatta en multipel linjär regressionsmodell samt plotta variablerna mot varandra 3. Lära sig beräkna

Läs mer

Skrivning i ekonometri torsdagen den 8 februari 2007

Skrivning i ekonometri torsdagen den 8 februari 2007 LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL STA2:3 Skrivning i ekonometri torsdagen den 8 februari 27. Vi vill undersöka hur variationen i lön för 2 belgiska löntagare = WAGE (timlön i euro)

Läs mer

Matematisk statistik 9 hp, HT-16 Föreläsning 15: Multipel linjär regression

Matematisk statistik 9 hp, HT-16 Föreläsning 15: Multipel linjär regression Matematisk statistik 9 hp, HT-16 Föreläsning 15: Multipel linjär regression Anna Lindgren 28+29 november, 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F15: multipel regression 1/22 Linjär regression

Läs mer

Skattar vi alltid vad vi tror? Om individuell risk och populationsrisk

Skattar vi alltid vad vi tror? Om individuell risk och populationsrisk Skattar vi alltid vad vi tror? Om individuell risk och populationsrisk Idag: AstraZeneca i Lund I morgon: Statistik-konsulterna Innehåll Risker på individ- och populationsnivå Preliminaria Logrank test/cox

Läs mer

LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL. Skrivning i ekonometri onsdagen den 1 juni 2011

LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL. Skrivning i ekonometri onsdagen den 1 juni 2011 LUNDS UNIVERSITET STATISTISKA INSTITUTIONEN MATS HAGNELL STAB2 Skrivning i ekonometri onsdagen den 1 juni 211 1. Vi vill undersöka hur variationen i försäljningspriset för ett hus (i en liten stad i USA

Läs mer

Formel- och tabellsamling i matematisk statistik

Formel- och tabellsamling i matematisk statistik Formel- och tabellsamling i matematisk statistik 1. Sannolikhetsteori för lärarprogrammet Sannolikhetsformler P (A ) = 1 P (A) P (A B) = P (A) + P (B) P (A B) P (A B) = P (A B) P (B) P (A B) = P (A B)P

Läs mer

F13 Regression och problemlösning

F13 Regression och problemlösning 1/18 F13 Regression och problemlösning Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 4/3 2013 2/18 Regression Vi studerar hur en variabel y beror på en variabel x. Vår modell

Läs mer

Laboration 2. Övningsuppgifter. Syfte: Syftet med den här laborationen är att träna på att utföra multipel regressionsanalys MÄLARDALENS HÖGSKOLA

Laboration 2. Övningsuppgifter. Syfte: Syftet med den här laborationen är att träna på att utföra multipel regressionsanalys MÄLARDALENS HÖGSKOLA MÄLARDALENS HÖGSKOLA Akademin för ekonomi, samhälle och teknik Statistik och kvantitativa undersökningar, A 15 p Höstterminen 2016 Laboration 2 Övningsuppgifter Baserade på dataseten: Discrim_lab.xlsx

Läs mer

Tentamen Statistik och dataanalys 1, 5p Institutionen för matematik, natur- och datavetenskap, Högskolan i Gävle

Tentamen Statistik och dataanalys 1, 5p Institutionen för matematik, natur- och datavetenskap, Högskolan i Gävle Tentamen Statistik och dataanalys 1, 5p Institutionen för matematik, natur- och datavetenskap, Högskolan i Gävle Lärare: Mikael Elenius, 2006-08-25, kl:9-14 Betygsgränser: 65 poäng Väl Godkänt, 50 poäng

Läs mer

Matematisk statistik för D, I, Π och Fysiker

Matematisk statistik för D, I, Π och Fysiker Matematisk statistik för D, I, Π och Fysiker Föreläsning 15 Johan Lindström 4 december 218 Johan Lindström - johanl@maths.lth.se FMSF45/MASB3 F15 1/28 Repetition Linjär regression Modell Parameterskattningar

Läs mer

STOCKHOLMS UNIVERSITET FYSIKUM

STOCKHOLMS UNIVERSITET FYSIKUM STOCKHOLMS UNIVERSITET FYSIKUM Tentamensskrivning i Fysikexperiment, 7,5 hp, för FK2002 Onsdagen den 15 december 2010 kl. 9-14. Skrivningen består av två delar A och B. Del A innehåller enkla frågor och

Läs mer

tentaplugg.nu av studenter för studenter

tentaplugg.nu av studenter för studenter tentaplugg.nu av studenter för studenter Kurskod Kursnamn SM Matematisk statistik Datum LP - Material Laboration Kursexaminator Adam Betygsgränser Tentamenspoäng Övrig kommentar Försättsblad inlämningsuppgift

Läs mer

Föreläsning 15, FMSF45 Multipel linjär regression

Föreläsning 15, FMSF45 Multipel linjär regression Föreläsning 15, FMSF45 Multipel linjär regression Stas Volkov 2017-11-28 Stanislav Volkov s.volkov@maths.lth.se FMSF45 F15 1/23 Linjär regression Vi har n st par av mätvärden (x i, y i ), i = 1,..., n

Läs mer

Medicinsk statistik II

Medicinsk statistik II Medicinsk statistik II Läkarprogrammet termin 5 VT 2013 Susanna Lövdahl, Msc, doktorand Klinisk koagulationsforskning, Lunds universitet E-post: susanna.lovdahl@med.lu.se Dagens föreläsning Fördjupning

Läs mer

oberoende av varandra så observationerna är

oberoende av varandra så observationerna är Lunds tekniska högskola Matematikcentrum Matematisk statistik FMSF55: Matematisk statistik för C och M OH-bilder på föreläsning 1, 1-5-7 REGRESSION (repetition) Vi har mätningarna ( 1, 1 ),..., ( n, n

Läs mer

Formler och tabeller till kursen MSG830

Formler och tabeller till kursen MSG830 Formler och tabeller till kursen MSG830 Deskriptiva mått För ett datamängd x 1,, x n denieras medelvärde standardavvikelse standardfelet (SEM) Sannolikheter x = 1 n n i=1 = x 1 + + x n n s = 1 n (x i x)

Läs mer

Kapitel 15: INTERAKTIONER, STANDARDISERADE SKALOR OCH ICKE-LINJÄRA EFFEKTER

Kapitel 15: INTERAKTIONER, STANDARDISERADE SKALOR OCH ICKE-LINJÄRA EFFEKTER Kapitel 15: INTERAKTIONER, STANDARDISERADE SKALOR OCH ICKE-LINJÄRA EFFEKTER När vi mäter en effekt i data så vill vi ofta se om denna skiljer sig mellan olika delgrupper. Vi kanske testar effekten av ett

Läs mer

Tentamen i matematisk statistik

Tentamen i matematisk statistik Sid (7) i matematisk statistik Statistik och kvalitetsteknik 7,5 hp Tillåtna hjälpmedel: Miniräknare. Studenterna får behålla tentamensuppgifterna. Skrivtid: 4.00-7.00 ger maximalt 24 poäng. Betygsgränser:

Läs mer