Lösning till fråga 5 kappa-06

Storlek: px
Starta visningen från sidan:

Download "Lösning till fråga 5 kappa-06"

Transkript

1 Lösning till fråga 5 kappa-06 Figurer till uppgift a) ligger samlade efter uppgiften. Inledning Betrakta först N punkter som tillhör den slutna enhetskvadraten inlagd i ett koordinatsystem enligt figur 1. N 3. Antag att den punkt P (Xp, Yp) som ligger längst till höger inte ligger på den högra kanten. Denna punkt kan då flyttas horisontellt tills den når denna kant. Härvid ökas alla avstånd mellan denna punkt och de övriga. Om dessutom alla punkter förskjuts åt höger med faktorn 1/X p kommer varje avstånd mellan två godtyckliga punkter med olika x-koordinater att öka. x A xb T.ex. blir det nya avståndet mellan punkterna A och B: ( ) + ( y A yb ) ) x x ( x A x ) + ( y y ) ) eftersom X P 1. B A B Man kan resonera på samma sätt åt vänster, uppåt och nedåt och slutsatsen blir att för varje värde på N 3 gäller att om det minsta avståndet mellan två godtyckliga punkter ska maximeras måste det finnas en punkt på varje sida i kvadraten. En punkt som ligger i ett hörn räknas då tillhöra båda sidorna som skapar hörnet. Om alla punkter ligger på randen måste den optimala placeringen av punkterna innebära att en godtycklig punkts (P:s) avstånd till sina två grannar är lika, ty annars kan P flyttas mot den granne som ligger längst bort. Sedan kan alla andra punkter flyttas i samma riktning (medsols eller motsols) och då ökar avståndet mellan de två punkter förut låg närmast varandra. a) N=3 Enligt ovan måste en punkt (P) ligga i ett hörn (t.ex. övre vänstra), för annars täcks inte alla sidor i kvadraten. Om den andra punkten (Q) ligger i motsatta hörnet och den tredje punkten (R) ligger inne i kvadraten är dess avstånd till minst en av punkterna P och Q mindre än 1. Detta inses om man drar cirkelbågar med radien 1 från hörnen där P och Q är belägna (se fig. ). Så låt oss utgå från att punkterna ligger i var sina hörn. Om P ligger mellan Q och R är avstånden PQ = PR = 1 och avståndet QR = (ej optimalt). Med P som medelpunkt ritas cirkelbågar med varierande radier r 1. Med r = 1 skär cirkelbågen kvadratens hörn där Q och R ligger. Radien ökas successivt och cirkelbågen skär kvadratens nedre och högra kant. Q och R flyttas till dessa skärningspunkter. Då avståndet QR = r har vi uppnått den optimala placeringen av punkterna P, Q, R (en liksidig triangel med sidan d.) Ökas radien ytterligare kommer avståndet QR bli mindre än d. (Se fig. 3) 1 4 d = = = 6 1,035 är det maximala avståndet mellan de punkter cos(15 ) 6 + som ligger närmast varandra. P P

2 N = 4 Lösningen verkar självklar med punkterna P, Q, R och S i kvadratens hörn och det maximala minimiavståndet d = 1. Om en punkt flyttas till det inre av kvadraten är avståndet till minst två närliggande hörn mindre än 1, (detta inses om man drar cirkelbågar från kvadratens fyra hörn, se fig. 4) vilket utesluter en kant att placera någon punkt på som motsägs av det inledande resonemanget. Alltså alla punkter ligger på randen. Om P flyttas en sträcka a (0 a 1) mot Q måste Q flyttas en sträcka a mot R osv. för att alla avstånd skall bli lika (se fig. 5) och då erhålls: d = (1 a) + a = 1 a(1 a) 1 med likhet för a = 0 och a = 1 vilket medför att den optimala lösningen erhålls då punkterna befinner sig i var sitt hörn och d = 1. N = 5 Kvadraten delas i fyra kongruenta delkvadrater. Om 5 punkter skall placeras i dessa fyra kvadrater måste en av dem innehålla minst två punkter. Det längsta avståndet (d) mellan dessa punkter är delkvadratens diagonal 0, 707 och eftersom de fem punkterna kan placeras enligt fig. 6 med alla avstånd mellan två godtyckliga punkter d är detta den optimala placeringen med maximalt minimiavstånd lika med d. N = 6 Dela kvadraten i 6 kongruenta rektanglar och placera punkterna enligt figur7. Det maximala avståndet mellan de två punkter som ligger närmast varandra är d = + = 0, Vi försöker hitta ett större värde på d. Dra en vertikal symmetrilinje enligt fig. 8. Om någon punkt ligger på symmetrilinjen måste den ena slutna kvadrathalvan innehålla minst 4 punkter vilket innebär att en sluten delrektangel innehåller minst två punkter. Största avståndet mellan dessa punkter blir då lika med d. Om ingen punkt ligger på symmetrilinjen delas kvadraten i fyra kongruenta delkvadrater med hjälp av två symmetrilinjer enligt fig. 9. Ingen punkt får nu ligga på någon av dessa symmetrilinjer ty då kommer någon kvadrathalva att innehålla minst fyra punkter vilket ger 13 maxavstånd enligt ovan. 6 Vidare måste två av delkvadraterna innehålla två punkter och dessa kvadrater måste ligga diagonalt annars blir det åter igen fyra punkter på ena halvan av enhetskvadraten. Antag att delkvadraterna I och III innehåller två punkter. Avståndet mellan punkterna skall vara större än d. Detta medför att de måste placeras i rutorna enligt fig. 10 eller 11. Vi förstorar figur 11 (se fig. 1) och drar cirkelbågar med radien d med nedre högra hörnet i ruta och övre vänstra hörnet i ruta 1 som medelpunkter. Punkterna i ruta 1 och måste då ligga i de skuggade områdena. Motsvarande begränsningar fås för punkterna i ruta 3 och 4.

3 Punkten som skall placeras i delkvadrat IV läggs i det övre vänstra hörnet för att avstånden till närmaste punkterna i delkvadraterna I och III skall maximeras. Detta innebär dock ytterligare begränsningar för var punkterna i ruta 1 och 3 kan ligga (se figur 1). Detta påverkar i sin tur var punkterna i ruta och 4 kan ligga. Slutligen ser man om man drar cirkelbågar från punkterna A och B med radien d genom delkvadrat II kommer en punkt som ska ha avståndet d till både A och B att hamna utanför delkvadrat II. Det maximala avståndet mellan två närliggande punkter kommer alltså att vara mindre än d. Då återstår placeringen enligt fig. 10 förstorad i fig. 13. En punkt A placeras i nedre vänstra hörnet (bästa placeringen för den punkten för att maximera d). En cirkelbåge med radien d dras med A som medelpunkt. Den skär symmetrilinjerna i B och C. Om man som gränsfall väljer B eller C som läge för punkten i ruta erhålls genom successiva cirkeldragningar olika uppsättningar av ursprungsplaceringen av punkterna enligt figur 7. Vi undersöker det symmetriska fallet då punkten i ruta är placerad på diagonalen. Cirkelbågar med radien d dras med D som medelpunkt. De skär kvadratens rand i E och F. Cirkelbågar med E och F som medelpunkter skär kvadratens rand i G och H. Avstånden AD, DE, DF, FG och EH är då lika med d. Avståndet GH ges av 13 (1 d (1 d ) vilket ger värdet 0,591 med d = 6 Det verkar alltså troligt att om vi betraktar det maximala avståndet mellan de punkter som ligger närmast varandra som funktion av punkten i ruta : s läge på cirkelbågen BC så har vi maximum i B och C och ett litet minimum i D. En annan intressant placering fås om vi i fig. 14 antar att alla avstånd inklusive GH är lika! r 3 r 6 Enligt figur 15 erhålls: = r + + vilket ger r = 0, 598 < d 3 13 Vi vidhåller alltså att den bästa lösningen finns i figur 7 med d = 6 (Man kan gå vidare med fallet enligt fig. 13 mot förhoppningsvis ett fullständigt bevis med flera cirkeldragningar mm för att begränsa punkternas lägen men nu är tiden och orken slut). b) Om punkterna endast får ligga på kvadratens rand får vi samma resultat för N = 3 och N = 4. Vid placering av punkterna på randen bör hörnen utnyttjas maximalt ty till ett hörn måste man gå längs kvadratens rand och inte ta några genvägar. För N = 5 och N = 6 Se bilagor!

4

5

6

7

8

9

10

11

NÄMNARENs. problemavdelning

NÄMNARENs. problemavdelning NÄMNARENs problemavdelning För problemavdelningen svarar denna gång Bernt Leonardsson och Bo Söderberg från Örebro. Problemen är snarare kluriga än svåra så ge inte upp i tron att du inte kan matematik.

Läs mer

Lösningar till udda övningsuppgifter

Lösningar till udda övningsuppgifter Lösningar till udda övningsuppgifter Övning 1.1. (i) {, } (ii) {0, 1,, 3, 4} (iii) {0,, 4, 6, 8} Övning 1.3. Påståendena är (i), (iii) och (v), varav (iii) och (v) är sanna. Övning 1.5. andra. (i) Nej.

Läs mer

Junior. låda 1 låda 2 låda 3 låda 4 låda 5 B V B V. a: det är omöjligt att göra så b: A c: V d: O e: R

Junior. låda 1 låda 2 låda 3 låda 4 låda 5 B V B V. a: det är omöjligt att göra så b: A c: V d: O e: R Junior vdelning 1. Trepoängsproblem 1. I fem lådor ligger kort. arje kort är märkt med en av bokstäverna,, R, O och. Peter ska plocka bort kort så att det blir ett enda kort kvar i varje låda och så att

Läs mer

Kapitel 4. cos(64 )= s s = 9 cos(64 )= 3.9m. cos(78 )= s s = 9 cos(78 )= 1.9m. a) tan(34 )= x x = 35 tan(34 )= 24cm

Kapitel 4. cos(64 )= s s = 9 cos(64 )= 3.9m. cos(78 )= s s = 9 cos(78 )= 1.9m. a) tan(34 )= x x = 35 tan(34 )= 24cm Kapitel 4 4107 4103 a) tan(34 )= x x = 35 tan(34 )= 4cm 35 b) cos(40 )= x x = 61 cos(40 )= 47cm 61 c) tan(56 )= 43 x x = 43 tan(56 ) = 9cm d) sin(53 )= x x = 75 sin(53 )= 60cm 75 4104 a) tan(v )= 7 4 v

Läs mer

NAMN KLASS/GRUPP. Poängsumma: Känguruskutt: UPPGIFT 1 2 3 4 5 6 7 8 9 10 SVAR UPPGIFT 11 12 13 14 15 16 17 18 19 20 SVAR

NAMN KLASS/GRUPP. Poängsumma: Känguruskutt: UPPGIFT 1 2 3 4 5 6 7 8 9 10 SVAR UPPGIFT 11 12 13 14 15 16 17 18 19 20 SVAR Känguru 2010 Junior (gymnasiet åk 1) sida 1 / 6 NAMN KLASS/GRUPP Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Lämna rutan tom om du inte vill besvara

Läs mer

2. Förkorta bråket så långt som möjligt 1001/

2. Förkorta bråket så långt som möjligt 1001/ Nästan vanliga tal 1. Beräkna1 2+3 4+5 2000+2001 Lösning. 1 + ( 2 + 3) + ( 4 + 5) +... + ( 2000 + 2001) = 1+ 142 +... 43 + 1 = 1001 2. Förkorta bråket så långt som möjligt 1001/10000001 1000 gnr Lösning.

Läs mer

Om ellipsen och hyperbelns optiska egenskaper

Om ellipsen och hyperbelns optiska egenskaper Om ellipsen och hyperbelns optiska egenskaper Anders Källén MatematikCentrum LTH anderskallen@gmail.com Sammanfattning Ellipser och hyperbler är, liksom parabeln, s.k. kägelsnitt, dvs kurvor som uppkommer

Läs mer

Veckoblad 1, Linjär algebra IT, VT2010

Veckoblad 1, Linjär algebra IT, VT2010 Veckoblad, Linjär algebra IT, VT Under den första veckan ska vi gå igenom (i alla fall stora delar av) kapitel som handlar om geometriska vektorer. De viktigaste teoretiska begreppen och resultaten i kapitlet

Läs mer

.I Minkowskis gitterpunktssats

.I Minkowskis gitterpunktssats 1.I Minkowskis gitterpunktssats Minkowskis sats klarar av en mängd problem inom den algebraiska talteorin och teorin för diofantiska ekvationer. en kan ses som en kontinuerlig, eller geometrisk, variant,

Läs mer

Kvalificeringstävling den 28 september 2010

Kvalificeringstävling den 28 september 2010 SKOLORNS MTEMTIKTÄVLING Svenska Matematikersamfundet Kvalificeringstävling den 28 september 2010 Förslag till lösningar Problem 1 En rektangel består av nio smårektanglar med areor (i m 2 ) enligt figur

Läs mer

Finaltävling i Lund den 19 november 2016

Finaltävling i Lund den 19 november 2016 SKOLORNS MTEMTIKTÄVLING Svenska matematikersamfundet Finaltävling i Lund den 19 november 2016 1. I en trädgård finns ett L-format staket, se figur. Till sitt förfogande har man dessutom två färdiga raka

Läs mer

MATEMATIKPROV, LÅNG LÄROKURS BESKRIVNING AV GODA SVAR

MATEMATIKPROV, LÅNG LÄROKURS BESKRIVNING AV GODA SVAR MATEMATIKPROV, LÅNG LÄROKURS.0.08 BESKRIVNING AV GODA SVAR De beskrivningar av svarens innehåll och poängsättningar som ges här är inte bindande för studentexamensnämndens bedömning. Censorerna beslutar

Läs mer

MVE365, Geometriproblem

MVE365, Geometriproblem Matematiska vetenskaper Chalmers MVE65, Geometriproblem Demonstration / Räkneövningar 1. Konstruera en triangel då två sidor och vinkeln mellan dem är givna. 2. Konstruera en triangel då tre sidor är givna..

Läs mer

September 13, Vektorer En riktad sträcka P Q, där P Q, är en pil med foten i P och med spetsen i Q. Denna har. (i) en riktning, och

September 13, Vektorer En riktad sträcka P Q, där P Q, är en pil med foten i P och med spetsen i Q. Denna har. (i) en riktning, och Fö : September 3, 205 Vektorer En riktad sträcka P Q, där P Q, är en pil med foten i P och med spetsen i Q. Denna har i en riktning, och ii en nollskild längd betecknad P Q. Man använder riktade sträckor

Läs mer

Polygoner. Trianglar på tre sätt

Polygoner. Trianglar på tre sätt Polygoner Trianglar på tre sätt Man kan skriva in punkter antingen via punktverktyget eller genom att skriva punktens namn och koordinater i inmatningsfältet. Då man ritar månghörningar lönar det sig att

Läs mer

Kvalificeringstävling den 29 september 2009

Kvalificeringstävling den 29 september 2009 SKOLORNAS MATEMATIKTÄVLING Svenska Matematikersamfundet Kvalificeringstävling den 29 september 2009 Förslag till lösningar Problem Visa att talet 2009 kan skrivas som summan av 7 positiva heltal som endast

Läs mer

Undersökande arbetssätt i matematik 1 och 2

Undersökande arbetssätt i matematik 1 och 2 Matematik Gymnasieskola Modul: Matematikundervisning med digitala verktyg Del 6: Undersökande arbetssätt med matematisk programvara Undersökande arbetssätt i matematik 1 och 2 I texten Undersökande arbetssätt

Läs mer

SKOLORNAS MATEMATIKTÄVLING Svenska Matematikersamfundet. Lösningsförslag till naltävlingen den 20 november 2004

SKOLORNAS MATEMATIKTÄVLING Svenska Matematikersamfundet. Lösningsförslag till naltävlingen den 20 november 2004 SKOLORNAS MATEMATIKTÄVLING Svenska Matematikersamfundet Lösningsförslag till naltävlingen den 0 november 004 1. Låt A, C vara de två cirklarnas medelpunkter och B, D de två skärningspunkterna. Av förutsättningarna

Läs mer

Vektorgeometri och funktionslära

Vektorgeometri och funktionslära Vektorgeometri och funktionslära Xantcha 009 Del A: Beräkningsdel Räkningar behöver inte redovisas. Samtliga uppgifter måste vara korrekta om tentamen skall godkännas (möjligen kan något slarvfel tolereras),

Läs mer

1. Det står KANGAROO på mitt paraply. Du kan se det på bilden. Vilken av följande bilder visar också mitt paraply? A: B: C: D: E:

1. Det står KANGAROO på mitt paraply. Du kan se det på bilden. Vilken av följande bilder visar också mitt paraply? A: B: C: D: E: N G A RA Kängurutävlingen 2015 Cadet Trepoängsproblem 1. Det står KANGAROO på mitt paraply. Du kan se det på bilden. Vilken av följande bilder visar också mitt paraply? A: B: C: D: E: O O K 2. Rektangeln

Läs mer

Matematiska uppgifter

Matematiska uppgifter Elementa Första häftet 3220. Bestäm alla reella tal x för vilka 3 x x + 2. 322. Pelles och Palles sammanlagda ålder är 66 år. Pelle är dubbelt så gammal som Palle var när Pelle var hälften så gammal som

Läs mer

Repetitionsprov på algebra, p-q-formeln samt andragradsfunktioner

Repetitionsprov på algebra, p-q-formeln samt andragradsfunktioner Repetitionsprov på algebra, p-q-formeln samt andragradsfunktioner Del B Utan miniräknare Endast svar krävs! 1. Lös ekvationen (x + 3)(x 2) = 0 Svar: (1/0/0) 2. Förenkla uttrycket 4(x 3)(x + 3) så långt

Läs mer

Pangea Matematiktävling FRÅGEKATALOG. Finalomgång 2016 Årskurs 9

Pangea Matematiktävling FRÅGEKATALOG. Finalomgång 2016 Årskurs 9 FRÅGEKATALOG Finalomgång 2016 Årskurs 9 Pangea Regler & Instruktioner Svarsblankett -Vänligen fyll i förnamn, efternamn och årskurs på svarsblanketten. -Vi rekommenderar deltagarna att använda en blyertspenna

Läs mer

Matematik CD för TB. x + 2y 6 = 0. Figur 1:

Matematik CD för TB. x + 2y 6 = 0. Figur 1: Kontroll 8 1 Bestäm ekvationen för den linje som går genom punkterna P 1 (,4) och P 2 (9, 2). 2 Bestäm riktningskoefficienten för linjen x + 4y 6 = 0 Bestäm ekvationen för en linje som går genom punkten

Läs mer

Explorativ övning euklidisk geometri

Explorativ övning euklidisk geometri Explorativ övning euklidisk geometri De viktigaste begreppen och satser i detta avsnitt är: Kongruens och likhet mellan sträckor, vinklar och trianglar. Kongruensfallen för trianglar. Parallella linjer

Läs mer

TNA001- Matematisk grundkurs Tentamen Lösningsskiss

TNA001- Matematisk grundkurs Tentamen Lösningsskiss TNA00- Matematisk grundkurs Tentamen 05-0-0 - Lösningsskiss. a) Vi löser ekvationen x + x = x + 4 genom att studera tre fall. Fall : x 0. Vi får ekvationen: x + x = x + 4 x =, som duger ty x = tillhör

Läs mer

Trigonometri. Sidor i boken 26-34

Trigonometri. Sidor i boken 26-34 Sidor i boken 6-34 Trigonometri Definition: Gren av matematiken som studerar samband mellan vinklar och sträckor i planet (och rymden). Det grundläggande trigonometriska problemet är att beräkna alla sidor

Läs mer

Linjen P Q tangerar cirkeln i P och enligt en sats i geometrin är OP vinkelrät. tan u = OP. tan(180 v) = RS. cos v = sin v = tan v, tan v = RS.

Linjen P Q tangerar cirkeln i P och enligt en sats i geometrin är OP vinkelrät. tan u = OP. tan(180 v) = RS. cos v = sin v = tan v, tan v = RS. Lösningar till några övningar i Kap 1 i Vektorgeometri 17. I figuren är u en spetsig vinkel som vi har markerat i enhetscirkeln. Linjen P Q tangerar cirkeln i P och enligt en sats i geometrin är OP vinkelrät

Läs mer

5 Linjär algebra. 5.1 Addition av matriser 5 LINJÄR ALGEBRA

5 Linjär algebra. 5.1 Addition av matriser 5 LINJÄR ALGEBRA 5 LINJÄR ALGEBRA 5 Linjär algebra En kul gren av matematiken som inte fått speciellt mycket utrymme i gymnasiet men som har många tillämpningsområden inom t.ex. fysik, logistik, ekonomi, samhällsplanering

Läs mer

Kongruens och likformighet

Kongruens och likformighet Kongruens och likformighet Torbjörn Tambour 23 mars 2015 I kompendiet har jag tagit kongruens- och likformighetsfallen mer eller mindre som axiom, vilket jag nu tycker är olyckligt, och de här sidorna

Läs mer

Komposanter, koordinater och vektorlängd Ja, den här teorin gick vi igenom igår. Istället koncentrerar vi oss på träning inför KS3 och tentamen.

Komposanter, koordinater och vektorlängd Ja, den här teorin gick vi igenom igår. Istället koncentrerar vi oss på träning inför KS3 och tentamen. Sidor i boken 40-4 Komposanter, koordinater och vektorlängd Ja, den här teorin gick vi igenom igår. Istället koncentrerar vi oss på träning inför KS3 och tentamen. Läxa 1. En rät linje, L 1, skär y-axeln

Läs mer

Tentamen 1 i Matematik 1, HF okt 2018, Skrivtid: 14:00-18:00 Examinator: Armin Halilovic

Tentamen 1 i Matematik 1, HF okt 2018, Skrivtid: 14:00-18:00 Examinator: Armin Halilovic Tentamen i Matematik, HF9 4 okt 8, Skrivtid: 4:-8: Examinator: Armin Halilovic För godkänt betyg krävs av max 4 poäng Betygsgränser: För betyg A, B, C, D, E krävs, 9, 6, respektive poäng Komplettering:

Läs mer

TNA001- Matematisk grundkurs Tentamen Lösningsskiss

TNA001- Matematisk grundkurs Tentamen Lösningsskiss TNA001- Matematisk grundkurs Tentamen 016-10-8 - Lösningsskiss 1. a) 1 1 1 0 0 1 0 + 1 0 Sedvanligt teckenschema visar att detta är uppfyllt [,0[. Svar: [,0[. b) Vi löser ekvationen 1 = genom att studera

Läs mer

Svar och arbeta vidare med Student 2008

Svar och arbeta vidare med Student 2008 Student 008 Svar och arbeta vidare med Student 008 Det finns många intressanta idéer i årets Känguruaktiviteter. Problemen kan inspirera undervisningen under flera lektioner. Här ger vi några förslag att

Läs mer

Avdelning 1, trepoängsproblem

Avdelning 1, trepoängsproblem Avdelning 1, trepoängsproblem 1. I ett akvarium finns det 00 fiskar varav 1 % är blå medan övriga är gula. Hur många gula fiskar måste avlägsnas från akvariet för att de blå fiskarna ska utgöra % av alla

Läs mer

SF1620 Matematik och modeller

SF1620 Matematik och modeller KTH Teknikvetenskap, Institutionen för matematik 1 SF1620 Matematik och modeller 2007-09-03 1 Första veckan Geometri med trigonometri Till att börja med kom trigometrin till för att hantera och lösa geometriska

Läs mer

Kängurutävlingen Matematikens hopp

Kängurutävlingen Matematikens hopp Kängurutävlingen Matematikens hopp Student 016, svar och lösningar Här följer först svar, rättningsmall och redovisningsblanketter. Förutom svar ger vi också några olika lösningsförslag. Ett underlag till

Läs mer

Enklare matematiska uppgifter

Enklare matematiska uppgifter Årgång 35, 1952 Första häftet 1793. I en cirkel med centrum O och radien R är inskriven en spetsvinklig triangel ABC, vars höjder råkas i H. Bestäm maximum och minimum för summan av PO och PH, när punkten

Läs mer

y º A B C sin 32 = 5.3 x = sin 32 x tan 32 = 5.3 y = tan 32

y º A B C sin 32 = 5.3 x = sin 32 x tan 32 = 5.3 y = tan 32 6 Trigonometri 6. Dagens Teori Vi startar med att repetera lite av det som ingått i tidigare kurser angående trigonometri. Här följer en och samma rätvinkliga triangel tre gånger. Med en sida och en vinkel

Läs mer

? A: -1 B: 1 C: 19 D: 36 E: 38 Belarus A: ROOT B: BOOM C: BOOT D: LOOT E: TOOT A: 1,5 B: 1,8 C: 2 D: 2,4 E: Vilket tal bör ersätta

? A: -1 B: 1 C: 19 D: 36 E: 38 Belarus A: ROOT B: BOOM C: BOOT D: LOOT E: TOOT A: 1,5 B: 1,8 C: 2 D: 2,4 E: Vilket tal bör ersätta Trepoängsproblem 1. Vilket värde har uttrycket 20 + 18 20 18? A: -1 B: 1 C: 19 D: 36 E: 38 2. Om bokstäverna i ordet MAMA skrivs vertikalt kan en symmetrilinje dras vertikalt längs bokstäverna. Vilket

Läs mer

Sidor i boken Figur 1:

Sidor i boken Figur 1: Sidor i boken 5-6 Mer trigonometri Detta bör du kunna utantill Figur 1: Triangeln till vänster är en halv liksidig triangel. Varje triangel med vinklarna 0,60,90 är en halv liksidig triangel. Hypotenusan

Läs mer

Trepoängsproblem. Kängurutävlingen 2014 Junior. 1 Bilden visar tre kurvor med längderna a, b respektive c. Vilket av följande påståenden är korrekt?

Trepoängsproblem. Kängurutävlingen 2014 Junior. 1 Bilden visar tre kurvor med längderna a, b respektive c. Vilket av följande påståenden är korrekt? Trepoängsproblem 1 Bilden visar tre kurvor med längderna a, b respektive c. Vilket av följande påståenden är korrekt? A: a < b < c B: a < c < b C: b < a < c D: b < c < a E: c < b < a 2 Sidolängderna i

Läs mer

Trepoängsproblem. Kängurutävlingen 2011 Junior

Trepoängsproblem. Kängurutävlingen 2011 Junior Trepoängsproblem 1 Övergångsställen är markerade med vita och svarta streck som är 50 cm breda. Markeringen börjar och slutar med ett vitt streck. På Storgatan har ett övergångsställe totalt åtta vita

Läs mer

9 Geometriska begrepp

9 Geometriska begrepp 9 Geometriska begrepp Rita figurer som visar vad vi menar med... 261 a) 4 cm och 4 cm 2 b) 5 cm och 5 cm 2 262 Rita två olika figurer som båda har arean 8 cm 2 263 Rita tre olika figurer som alla har arean

Läs mer

8-6 Andragradsekvationer. Namn:..

8-6 Andragradsekvationer. Namn:.. 8-6 Andragradsekvationer. Namn:.. Inledning Nu har du arbetat en hel del med ekvationer där du löst ut ett siffervärde på en okänd storhet, ofta kallad x. I det här kapitlet skall du lära dig lösa ekvationer,

Läs mer

Övningar till kapitel 1

Övningar till kapitel 1 Övningar till kapitel. Skissera för hand och/eller med Maple de delmängder av R som beskrivs av följande ekvationer och olikheter. a) > 0, >0 b) = +, 0, 0 c) = d) e) = f) >3 g)

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://homepage.lnu.se/staff/psvmsi/vektorgeometri/gymnasiet.html Fakulteten för teknik Linnéuniversitetet Räta linjens och planets ekvationer III Innehåll

Läs mer

i=1 β i a i. (Rudolf Tabbe.) i=1 b i a i n

i=1 β i a i. (Rudolf Tabbe.) i=1 b i a i n Årgång 48, 1965 Första häftet 2505. Låt M = {p 1, p 2,..., p k } vara en mängd med k element. Vidare betecknar M 1, M 2,..., M n olika delmängder till M, alla bestående av tre element. Det gäller alltså

Läs mer

Lösningsförslag till problem 1

Lösningsförslag till problem 1 Lösningsförslag till problem Lisa Nicklasson november 0 Att beskriva trianglar Vi ska börja med att beskriva hur trianglar kan representeras i x, y)-planet Notera att varje triangel har minst två spetsiga

Läs mer

===================================================

=================================================== AVSTÅNDSBERÄKNING ( I ETT TREDIMENSIONELLT ORTONORMERAT KOORDINATSYSTEM ) Avståndet mellan två punkter Låt A ( x1, och B ( x, y, z) vara två punkter i rummet Avståndet d mellan A och B är d AB ( x z x1)

Läs mer

5B1134 Matematik och modeller

5B1134 Matematik och modeller KTH Matematik 1 5B1134 Matematik och modeller 2006-09-04 1 Första veckan Geometri med trigonometri Veckans begrepp cirkel, cirkelsegment, sektor, korda, båglängd, vinkel, grader, radianer, sinus, cosinus,

Läs mer

Enklare matematiska uppgifter

Enklare matematiska uppgifter Årgång 43, 1960 Första häftet 2244. Vilka värden kan a) tan A tanb + tan A tanc + tanb tanc, b) cos A cosb cosc anta i en triangel ABC? 2245. På en cirkel med centrum O väljes en båge AB, som är större

Läs mer

Kartläggningsmaterial för nyanlända elever SVENSKA. Geometri Matematik. 1 2 Steg 3

Kartläggningsmaterial för nyanlända elever SVENSKA. Geometri Matematik. 1 2 Steg 3 Kartläggningsmaterial för nyanlända elever Geometri Matematik 1 2 Steg 3 SVENSKA Kartläggningsmaterial för nyanlända elever Geometri åk 3 MA 1. Rita färdigt bilden så att mönstret blir symmetriskt. 2.

Läs mer

Sidor i boken 8-9, 90-93

Sidor i boken 8-9, 90-93 Sidor i boken 8-9, 90-93 Absolutbelopp Men först lite om Absolutbelopp., kallas absolutbeloppet av, och är avståndet för till origo på tallinjen. Som bekant är avståndet till origo för talet 4, 4. Detta

Läs mer

Vektorgeometri för gymnasister

Vektorgeometri för gymnasister Vektorgeometri för gymnasister Per-Anders Svensson http://w3.msi.vxu.se/users/pa/vektorgeometri/gymnasiet.html Institutionen för datavetenskap, fysik och matematik Linnéuniversitetet Vektorer i planet

Läs mer

Linjer och plan (lösningar)

Linjer och plan (lösningar) Linjer och plan (lösningar) 0. Enligt mittpunktsformeln (med O i just origo) OM = ³ OA + OB a) b) ((, 0, ) + (,, )) = (0,, ) µ +, +, z + z 0. Enligt tngdpunktsformeln (med O i just origo) ³ OA + OB + OC

Läs mer

Tentamen i Matematik 1 HF1901 (6H2901) 4 juni 2008 Tid:

Tentamen i Matematik 1 HF1901 (6H2901) 4 juni 2008 Tid: Tentamen i Matematik HF9 (6H9) 4 juni 8 Tid: 85 5 Lärare: Agneta Ivarson, Armin Halilovic, Bengt Mattiasson, Taras Kentrschynskyj, Ulf Djupedal Hjälpmedel: Formelblad (Inga andra hjälpmedel utöver utdelat

Läs mer

Välkommen till. Kängurutävlingen Matematikens hopp 2009 Student för elever på kurs D och E. Kängurutävlingen 2009 Student.

Välkommen till. Kängurutävlingen Matematikens hopp 2009 Student för elever på kurs D och E. Kängurutävlingen 2009 Student. Till läraren Välkommen till Kängurutävlingen Matematikens hopp 009 Student för elever på kurs D och E. Kängurutävlingen genomförs 19 mars. Om den dagen inte passar kan hela veckan 0 7 mars användas, däremot

Läs mer

Bästa skottläge på en fotbollsplan längs långsidan

Bästa skottläge på en fotbollsplan längs långsidan Bästa skottläge på en fotbollsplan längs långsidan Frågeställningen lyder: Vad är det bästa skottläget? för en spelare som befinner sig på en rak linje på en fotbollsplan. Det är alltså en vinkel som söks,

Läs mer

Student för elever på kurs Ma 4 och Ma 5

Student för elever på kurs Ma 4 och Ma 5 Till läraren Välkommen till Kängurutävlingen Matematikens hopp 16 mars 2017 Student för elever på kurs Ma 4 och Ma 5 Tävlingen genomförs under perioden 16 24 mars. Uppgifterna får inte användas tidigare.

Läs mer

Fler uppgifter på andragradsfunktioner

Fler uppgifter på andragradsfunktioner Fler uppgifter på andragradsfunktioner 1 I grafen nedan visas tre andragradsfunktioner. Bestäm a,b och c för p(x) = ax 2 + bx + c genom att läsa av lämpliga punkter i grafen. 10 5 1 3 5 Figur 1: 2 Vi har

Läs mer

Känguru 2017 Student gymnasiet

Känguru 2017 Student gymnasiet sid 1 / 9 NAMN GRUPP Poäng: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Rätt svar ger dig 3, 4 eller 5 poäng. Varje uppgift har endast ett rätt svar. Felaktigt

Läs mer

KS övning 1. Problem 1. Beräkna Problem 2. Förenkla. (x 1 3 y

KS övning 1. Problem 1. Beräkna Problem 2. Förenkla. (x 1 3 y KS övning 1 Problem 1. Beräkna 48 1 3 Problem 2. Förenkla 6 1 3 (x 1 3 y 1 3 )(x 2 3 +x 1 3 y 1 3 +y 2 3 ) Problem 3. I ABC är AB = 15 cm och AC = 12 cm. En rät linje parallell med BC träffar AB i D och

Läs mer

5B1134 Matematik och modeller

5B1134 Matematik och modeller KTH Matematik 1 5B1134 Matematik och modeller 5 september 2005 1 Första veckan Geometri med trigonometri Veckans begrepp cirkel, cirkelsegment, sektor, korda båglängd, vinkel, grader, radianer sinus, cosinus,

Läs mer

Moment 4.2.1, 4.2.2, 4.2.3, Viktiga exempel 4.1, 4.3, 4.4, 4.5, 4.6, 4.13, 4.14 Övningsuppgifter 4.1 a-h, 4.2, 4.3, 4.4, 4.5, 4.

Moment 4.2.1, 4.2.2, 4.2.3, Viktiga exempel 4.1, 4.3, 4.4, 4.5, 4.6, 4.13, 4.14 Övningsuppgifter 4.1 a-h, 4.2, 4.3, 4.4, 4.5, 4. Moment 4.2.1, 4.2.2, 4.2., 4.2.4 Viktiga exempel 4.1, 4., 4.4, 4.5, 4.6, 4.1, 4.14 Övningsuppgifter 4.1 a-h, 4.2, 4., 4.4, 4.5, 4.7 Många av de objekt man arbetar med i matematiken och naturvetenskapen

Läs mer

Lathund geometri, åk 7, matte direkt (nya upplagan)

Lathund geometri, åk 7, matte direkt (nya upplagan) Lathund geometri, åk 7, matte direkt (nya upplagan) Det som står i den här lathunden ska du kunna till provet. Du ska kunna ställa upp och räkna ut liknande tal som de nedan: a) 39,8 + 2,62 b) 16,42 5,8

Läs mer

Explorativ övning euklidisk geometri

Explorativ övning euklidisk geometri Explorativ övning euklidisk geometri De viktigaste begreppen och satser i detta avsnitt är: Kongruens och likhet mellan sträckor, vinklar och trianglar. Kongruensfallen för trianglar. Parallella linjer

Läs mer

Tentamen i SG1140 Mekanik II. Problemtentamen

Tentamen i SG1140 Mekanik II. Problemtentamen 010-01-14 Tentamen i SG1140 Mekanik II KTH Mekanik 1. OBS: Inga hjälpmedel förutom rit- och skrivdon får användas! Problemtentamen Triangelskivan i den plana mekanismen i figuren har en vinkelhastighet

Läs mer

Banach-Tarskis paradox

Banach-Tarskis paradox Banach-Tarskis paradox Tony Johansson 1MA239: Specialkurs i Matematik II Uppsala Universitet VT 2018 Banach-Tarskis paradox, bevisad 1924 och döpt efter Stefan Banach och Alfred Tarski, är en sats inom

Läs mer

Utforska cirkelns ekvation

Utforska cirkelns ekvation Utforska cirkelns ekvation Målet med denna aktivitet är att eleverna förstår definitionen av en cirkel som en uppsättning av punkter som är lika långt från en given punkt. eleverna förstår att koordinaterna

Läs mer

Matematiska uppgifter

Matematiska uppgifter Elementa Årgång 7, 988 Årgång 7, 988 Första häftet Matematiska uppgifter 3500. På redaktionsbordet ligger tre askar i rad. En av dem innehåller en tusenkronorssedel medan de båda andra är tomma. Askarna

Läs mer

Matematiska uppgifter

Matematiska uppgifter Årgång 55, 1972 Första häftet 2863. Lös ekvationssystemet { 2sin x cos x = 1 (Svar: π + 2nπ, n Z) 2864. Visa att (1,000001) 1000000 > 2. sin x 2cos x = 2 2865. Visa att ekvationen x 4 x 2 + 2x + 3 = 0

Läs mer

Del 1 Med miniräknare Endast svar! 1. Till höger visas två trianglar T 1 och T 2, som är likformiga. Bestäm alla vinklar i triangel T 1.

Del 1 Med miniräknare Endast svar! 1. Till höger visas två trianglar T 1 och T 2, som är likformiga. Bestäm alla vinklar i triangel T 1. Matematik 2b Repetitionsprov Potenser, potensekvationer, eponentialekvationer, eponentialfunktioner, randvinklar, likformighet, kongruens, Pythagoras sats, koordinatgeometri Del 1 Med miniräknare Endast

Läs mer

Kängurutävlingen Matematikens hopp 2010 Cadet för elever i åk 8 och 9

Kängurutävlingen Matematikens hopp 2010 Cadet för elever i åk 8 och 9 Till läraren Välkommen till Kängurutävlingen Matematikens hopp 2010 Cadet för elever i åk 8 och 9 Kängurutävlingen genomförs den 18 mars. Om den dagen inte passar kan hela veckan 19 26 mars användas, däremot

Läs mer

Mer om kontinuitet. Kapitel K. K.1 Övre och undre gräns

Mer om kontinuitet. Kapitel K. K.1 Övre och undre gräns Kapitel K Mer om kontinuitet I detta kapitel bevisar vi Sats 3.1, som säger att en kontinuerlig funktion av typen R 2 R på ett kompakt område antar ett största och ett minsta värde. Vi studerar dessutom

Läs mer

Tynker gratisapp på AppStore

Tynker gratisapp på AppStore Tynker gratisapp på AppStore Innehåll Använda appen 2 Koordinatsystemet 6 Rita rektanglar i koordinatsystemet 7 Rita ellipser i koordinatsystemet 9 Rita trianglar i koordinatsystemet 11 Skapa mönster med

Läs mer

3. Trigonometri. A c. Inledning

3. Trigonometri. A c. Inledning 3. Trigonometri Inledning Trigonometri betyder triangelmätning. De grundläggande storheterna som vi kan mäta i en triangel är dess sidor och vinklar. Ett bra sätt att beteckna en triangels sidor och hörn

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS B HÖSTEN Del I, 10 kortsvarsuppgifter med miniräknare 4

NATIONELLT KURSPROV I MATEMATIK KURS B HÖSTEN Del I, 10 kortsvarsuppgifter med miniräknare 4 freeleaks NpMaB ht000 () Innehåll Förord NATIONELLT KURSPROV I MATEMATIK KURS B HÖSTEN 000 Del I, 0 kortsvarsuppgifter med miniräknare 4 Del II, 9 uppgifter med miniräknare, fullständiga lösningar 7 Del

Läs mer

c) Låt ABC vara rätvinklig vid C och låt D vara fotpunkten för höjden från C. Då uppfyller den villkoren i uppgiften, men inte nödvändigtvis AC = BC.

c) Låt ABC vara rätvinklig vid C och låt D vara fotpunkten för höjden från C. Då uppfyller den villkoren i uppgiften, men inte nödvändigtvis AC = BC. Lösningar till några övningar i geometri Kapitel 2 1. Formuleringen av övningen är tyvärr inte helt lyckad (jag ska ändra den till nästa upplaga, som borde ha kommit för länge sedan). Man måste tolka frågan

Läs mer

Problemlösning med hjälp av nycklar

Problemlösning med hjälp av nycklar Problemlösning med hjälp av nycklar I denna problemavdelning finns förutom ett antal geometriproblem även förslag på ett arbetssätt som avser underlätta för elever att komma igång med problemlösning och

Läs mer

Kängurutävlingen Matematikens hopp

Kängurutävlingen Matematikens hopp Kängurutävlingen Matematikens hopp Student 2017, svar och lösningar Här följer svar, rättningsmall och redovisningsblanketter. Förutom svar ger vi också några olika lösningsförslag. Ett underlag till hjälp

Läs mer

Tentamen 973G10 Matematik för lärare årskurs 4-6, del2, 15 hp delmoment Geometri 4,5 hp, , kl. 8-13

Tentamen 973G10 Matematik för lärare årskurs 4-6, del2, 15 hp delmoment Geometri 4,5 hp, , kl. 8-13 Kurskod: 9G0 Provkod: STN Tentamen 9G0 Matematik för lärare årskurs -, del, 5 hp delmoment Geometri,5 hp, 0-0-08, kl 8- Tillåtna hjälpmedel : Passare, linjal För varje uppgift ska fullständig lösning med

Läs mer

Känguru 2016 Student gymnasieserien

Känguru 2016 Student gymnasieserien sid 1 / 10 NAMN GRUPP Poäng: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Felaktigt svar ger minus 1/4 poäng av uppgiftens totala poängantal! Så om du t.ex. svarar

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN Del I, 10 uppgifter utan miniräknare 3. Del II, 9 uppgifter med miniräknare 6

NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN Del I, 10 uppgifter utan miniräknare 3. Del II, 9 uppgifter med miniräknare 6 freeleaks NpMaB vt2001 1(8) Innehåll Förord 1 NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 2001 2 Del I, 10 uppgifter utan miniräknare 3 Del II, 9 uppgifter med miniräknare 6 Förord Skolverket har endast

Läs mer

Känguru 2013 Junior sida 1 / 9 (gymnasiet åk 1) i samarbete med Jan-Anders Salenius vid Brändö gymnasium

Känguru 2013 Junior sida 1 / 9 (gymnasiet åk 1) i samarbete med Jan-Anders Salenius vid Brändö gymnasium Känguru 2013 Junior sida 1 / 9 NAMN KLASS / GRUPP Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Felaktigt svar ger minus 1/4 poäng av uppgiftens totala

Läs mer

Om ellipsen och hyperbelns optiska egenskaper. Och lite biljard

Om ellipsen och hyperbelns optiska egenskaper. Och lite biljard Om ellipsen och hyperbelns optiska egenskaper. Och lite biljard Sammanfattning Anders Källén MatematikCentrum LTH anderskallen@gmail.com Ellipser och hyperbler är, liksom parabeln, s.k. kägelsnitt, dvs

Läs mer

Välkommen till Kängurutävlingen Matematikens hopp 17 mars Student för elever på kurs Ma 4 och Ma 5

Välkommen till Kängurutävlingen Matematikens hopp 17 mars Student för elever på kurs Ma 4 och Ma 5 Till läraren Välkommen till Kängurutävlingen Matematikens hopp 17 mars 2016 Student för elever på kurs Ma 4 och Ma 5 Tävlingen ska genomföras under perioden 17 mars 1 april. Uppgifterna får inte användas

Läs mer

A: måndag B: onsdag C: torsdag D: lördag E: söndag Grekland 2. Vilket av följande uttryck har högst värde?

A: måndag B: onsdag C: torsdag D: lördag E: söndag Grekland 2. Vilket av följande uttryck har högst värde? Kängurutävlingen 208 Student Trepoängsproblem. Bilden visar ett månadsblad i Filips engelska almanacka. Oturligt nog välte Filip ut sitt bläckhorn över bladet och det mesta blev oläsligt. På vilken veckodag

Läs mer

Känguru Student (gymnasiet åk 2 och 3) sida 1 / 6

Känguru Student (gymnasiet åk 2 och 3) sida 1 / 6 Känguru Student (gymnasiet åk 2 och 3) sida 1 / 6 NAMN KLASS/GRUPP Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Lämna rutan tom om du inte vill besvara

Läs mer

Svar och arbeta vidare med Cadet 2008

Svar och arbeta vidare med Cadet 2008 Svar och arbeta vidare med Det finns många intressanta idéer i årets Känguruaktiviteter. Problemen kan inspirera undervisningen under flera lektioner. Här ger vi några förslag att arbeta vidare med. Känguruproblemen

Läs mer

Enklare matematiska uppgifter

Enklare matematiska uppgifter Elementa Årgång 39, 1956 Årgång 39, 1956 Första häftet 2028. En regelbunden dodekaeder och en regelbunden ikosaeder äro omskrivna kring samma klot (eller inskrivna i samma klot). Bestäm förhållandet mellan

Läs mer

MER TOPOLOGI OCH KONVERGENS

MER TOPOLOGI OCH KONVERGENS MER TOPOLOGI OCH KONVERGENS SVANTE JANSON 1. Kompakta mängder Definition. En delmängd av R n kallas kompakt om den är sluten och begränsad. Sats 1. Om K är en kompakt mängd i R n och {x i } är en följd

Läs mer

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A

SF1626 Flervariabelanalys Lösningsförslag till tentamen DEL A Institutionen för matematik SF66 Flervariabelanalys Lösningsförslag till tentamen 4-9-6 DEL A. Betrakta följande tre områden i planet: D = {(x, y): x y < 4}, D = {(x, y): x + y }, D 3 = {(x, y): 4x + 3y

Läs mer

Geometri med fokus på nyanlända

Geometri med fokus på nyanlända Geometri med fokus på nyanlända Borås 17 januari 2017 Madeleine Löwing Tala matematik Bygga och Begripa Begrepp i Geometri Använda förklaringsmodeller som hjälper eleven att bygga upp långsiktigt hållbara

Läs mer

Bestäm den sida som är markerad med x.

Bestäm den sida som är markerad med x. 7 trigonometri Trigonometri handlar om sidor och inklar i trianglar. Ordet kommer från grekiskans trigonon (tre inklar) och métron (mått). Trigonometri har anänts under de senaste 2000 åren inom astronomi,

Läs mer

Sidor i boken f(x) = a x 2 +b x+c

Sidor i boken f(x) = a x 2 +b x+c Sidor i boken 18-151 Andragradsfunktioner Här ska vi studera andragradsfunktionen som skrivs f(x) = ax +bx+c där a, b, c är konstanter (reella tal) och där a 0. Grafen (kurvan) till f(x), y = ax + bx +

Läs mer

Finaltävling i Stockholm den 22 november 2008

Finaltävling i Stockholm den 22 november 2008 SKOLORNAS MATEMATIKTÄVLING Svenska Matematikersamfundet Finaltävling i Stockholm den november 008 Förslag till lösningar Problem 1 En romb är inskriven i en konve fyrhörning Rombens sidor är parallella

Läs mer

Np MaB vt Låt k = 0 och rita upp de båda linjerna. Bestäm skärningspunkten mellan linjerna.

Np MaB vt Låt k = 0 och rita upp de båda linjerna. Bestäm skärningspunkten mellan linjerna. Vid bedömning av ditt arbete med uppgift nummer 17 kommer läraren att ta hänsyn till: Hur väl du beräknar och jämför trianglarnas areor Hur väl du motiverar dina slutsatser Hur väl du beskriver hur arean

Läs mer

Kvalificeringstävling den 30 september 2008

Kvalificeringstävling den 30 september 2008 SKOLORNAS MATEMATIKTÄVLING Svenska Matematikersamfundet Kvalificeringstävling den 30 september 2008 Förslag till lösningar Problem 1 Tre rader med tal är skrivna på ett papper Varje rad innehåller tre

Läs mer

Dubbelintegraler och volymberäkning

Dubbelintegraler och volymberäkning ubbelintegraler och volymberäkning Volym och dubbelintegraler över en rektangel Alla funktioner nedan antas vara kontinuerliga. Om f (x) i intervallet [a, b], så är arean av mängden {(x, y) : y f (x),

Läs mer