Känguru 2013 Junior sida 1 / 9 (gymnasiet åk 1) i samarbete med Jan-Anders Salenius vid Brändö gymnasium

Save this PDF as:
 WORD  PNG  TXT  JPG

Storlek: px
Starta visningen från sidan:

Download "Känguru 2013 Junior sida 1 / 9 (gymnasiet åk 1) i samarbete med Jan-Anders Salenius vid Brändö gymnasium"

Transkript

1 Känguru 2013 Junior sida 1 / 9 NAMN KLASS / GRUPP Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Felaktigt svar ger minus 1/4 poäng av uppgiftens totala poängantal. Om du lämnar rutan tom får du inga minuspoäng. UPPGIFT SVAR UPPGIFT SVAR UPPGIFT SVAR

2 3 poäng Känguru 2013 Junior sida 2 / 9 1. Sanna har kvadratformade pappersark och hon ritar figurer på dessa. Hur många av dessa figurer har lika stor omkrets som pappersarket? (A) 2 (B) 3 (C) 4 (D) 5 (E) 6 2. Fru Skutt köpte fyra majsstänger åt var och en av medlemmarna i sin fyrapersonersfamilj. I butiken fick hon rabatt enligt skyltens text. Hur mycket kostade majsen hon köpte? Majsstänger 20cent/styck var sjätte är gratis (A) 0,80 (B) 1,20 (C) 2,80 (D) 3,20 (E) 3,40 3. Kängu reser gärna genom tunnlar med tåg. Igår när han reste in i tunneln visade klockan 12:30 och när han kom ut visade den 12:34. Vilka av följande utsagor är säkert sanna? Kängu var i tunneln (A) exakt fyra (B) högst fyra (C) minst fyra (D) minst tre (E) över fyra

3 Känguru 2013 Junior sida 3 / 9 4. Genom att rita två cirklar gjorde Juha en figur av ett tredelat område (se figuren): ett område ligger enbart innanför den vänstra cirkeln, ett annat enbart innanför den högra cirkeln och det tredje området innanför båda cirklarna. Hur många områden kan han högst bilda i en figur där han inte använder circklar utan två kvadrater? (A) 3 (B) 5 (C) 6 (D) 8 (E) 9 5. Av talen 2, 4, 16, 25, 50 och 125 väljer man de tre vars produkt är Vilken är då summan av dessa tre tal? (A) 131 (B) 91 (C) 77 (D) 70 (E) Sex punkter har satts ut i ett rutfält enligt figuren. Rutfältet består av kvadratiska rutor där en ruta har arean 1. Du ska rita en triangel och väljer hörnen bland de sex punkterna. Vilken är triangelns minsta möjliga area? (A) 1/4 (B) 1/3 (C) 1/2 (D) 1 (E) 2 7. Satu adderade talen och riktigt och fick som resultat ett tal som kan skrivas som en potens av talet 2. Vilket är talet? (A) (B) (C) (D) (E)

4 8. Känguru 2013 Junior sida 4 / 9 På utsidan av en kub har man målat svarta och vita kvadrater, alldeles som om kuben skulle bestå av fyra svarta och fyra vita mindre kuber. Hur ser kuben ut om man vecklar ut den i ett plan? (A) (B) (C) (D) (E) 9. Talet är det största positiva heltal för vilket utgör ett tresiffrigt heltal. Talet är det minsta positiva heltal för vilket är ett tresiffrigt tal. Beräkna. (A) 900 (B) (C) (D) (E) 10. Vilket av följande tal är störst? (A) (B) (C) (D) (E) 4 poäng 11. Triangeln RZT uppstår när en liksidig triangel AZC vrids runt punkten Z. Man vet, att. Hur stor är vinkeln? (A) 20 (B) 25 (C) 30 (D) 35 (E) 40

5 Känguru 2013 Junior sida 5 / Sick-sack figuren består av sex kvadrater på 1 cm x 1 cm och figurens omkrets är 14 cm. Om man på samma sätt gjorde en likadan sick-sack figur av 2013 kvadrater, vilken omkrets skulle den figuren få? (A) 2022 cm (B) 4028 cm (C) 4032 cm (D) 6038 cm (E) 8050 cm 13. Sträckan förenar två motstående hörn i en regelbunden sexhörning. Sträckan, som är vinkelrät mot sträckan, förenar mittpunkterna på motstående sidor. Sexhörningens area är 60. Beräkna. (A) 40 (B) 50 (C) 60 (D) 80 (E) Eleverna i en klass gjorde ett matematikprov. Om varje pojke hade fått 3 poäng mer i provet hade medelvärdet varit 1,2 poäng högre än det nuvarande. Hur många procent av klassens elever är flickor? (A) 20 % (B) 30 % (C) 40 % (D) 60 % (E) omöjligt att veta 15. Sidorna AB och CD i rektangeln ABCD är parallella med x-axeln, och inga av rektangelns hörn är på y-axeln. Punkten A:s x-koordinat är mindre än punkten B:s x-koordinat och punkten A:s y- koordinat är mindre än punkten D:s y-koordinat. I vilket av rektangelns hörn är förhållandet (y-koordinat): (x-koordinat) minst? (A) A (B) B (C) C (D) D (E) beror av rektangelns form och/eller plats

6 Känguru 2013 Junior sida 6 / I går har både Kari och hans son födelsedag. I dag multiplicerar Kari sin ålder med sonens ålder riktigt och får resultatet Vilket år är Kari född? (A) 1952 (B) 1953 (C) 1981 (D) 1982 (E) omöjligt att veta 17. Teemu försökte rita två liksidiga trianglar fast i varandra varmed han fick en parallellogram. Han mätte dock inte alla längder och vinklar noga. Efteråt mätte Mari vinklarna rätt (se figuren). Vilken av de fem sträckorna i figuren är längst? (A) AD (B) AC (C) AB (D) BC (E) BD 18. Hur många mängder av fem på varandra följande positiva heltal finns det där mängden har följande egenskap: tre av talen har lika stor summa som de två övriga talen? (A) 0 (B) 1 (C) 2 (D) 3 (E) flera än 3

7 Känguru 2013 Junior sida 7 / Hur många olika rutter finns det i figuren från punkten A till punkten B? Du får endast röra dig i de riktningar som angetts i figuren. (A) 6 (B) 8 (C) 9 (D) 12 (E) Summan av siffrorna i ett sexsiffrigt tal är jämn och produkten av siffrorna är udda. Vilket av följande påståenden är sant? (A) Två eller fyra av siffrorna i talet är jämna. (B) Det finns inget sådant tal. (C) Det finns ett udda antal av udda siffror i talet. (D) Talet kan bestå av sex olika siffror. (E) Inget av de föregående påståendena är sant. 5 poäng 21. Hur många decimaler ingår i talet? (A) 10 (B) 12 (C) 13 (D) 14 (E) Hur många kordor måste man minst rita in i en cirkel för att de innanför cirkeln skulle skära varandra i exakt 50 skärningspunkter? (A) 10 (B) 11 (C) 12 (D) 13 (E) 14

8 Känguru 2013 Junior sida 8 / studerande deltog i en matematikolympiad, 50 i en fysiikolympiad och 48 i en datateknikolympiad. Var och en svarade tre ja-neg-frågor: deltog du i 1) åtminstone en tävling 2) åtminstone två tävlingar 3) tre tävlingar. Antalet ja-svar i frågan 2 var 50 % mindre än i frågan 1 och i frågan 3 2/3 mindre än i frågan 1. Hur många studerande deltog i åtminstone en av dessa tävlingar? (A) 100 (B) 108 (C) 124 (D) 150 (E) Vi definierar att förändringssumman av tre tal är en ny mängd av tre tal där varje av de tre talen är ersatt av summan av de två övriga talen. Exempelvis är förändringssumman av mängden { } lika med mängden { }. Förändringssumman av denna mängd är på motsvarande sätt { }. Om vi börjar med mängden { }, hur många på varandra följande förändringssummor behöver vi då för att talet 2013 skall ingå i en ny talmängd? (A) 8 (B) 9 (C) 10 (D) Talet 2013 kommer att finnas med fler än en gång. (E) Talet 2013 dyker aldrig upp i en sådan mängd. 25. Man utför 11 divisioner med heltalen 1-22 så att varje heltal används en gång. Vilket är det största antal av dessa divisioner ifall vi kräver att resultatet ska bli ett heltal? (A) 7 (B) 8 (C) 9 (D) 10 (E) Hur många trianglar finns det med följande egenskaper: triangelns hörn är valda bland hörnen i en regelbunden 13-hörning och medelpunkten i den omskrivna cirkeln till den regelbundna 13- hörningen ligger innnaför triangeln? (A) 72 (B) 85 (C) 91 (D) 100 (E) ett övrigt antal 27. Ett rymdskepp avgick från punkten A och flög först rätlinjigt med den konstanta hastigheten 50 km/h. Därefter avgick det varje timme från punkt A ett rymdskepp med en konstant hastighet och följande rymdskepp var alltid 1 km/h snabbare än det föregående. Det sista rymdskeppet startade 50 timmar efter det första och hade då hastigheten 100 km/h. Vilken hastighet har det rymdskepp som var längst ifrån punkten A 100 timmar efter att det första rymdskeppet startade? (Alla rymdskepp flög i lite olika riktningar så de kunde inte kollidera med varandra.) (A) 50 km/h (B) 66 km/h (C) 75 km/h (D) 84 km/h (E) 100 km/h

9 Känguru 2013 Junior sida 9 / Talen 1, 2, 3, 4, 5, 6, 7, 8, 9 och 10 skrivs i slumpmässig ordning i en cirkel. Om varje tal adderas med sina grannar (de närliggande talen) får man 10 summor. Vilket är det största värdet av den minsta av dessa summor? (A) 14 (B) 15 (C) 16 (D) 17 (E) träd (björkar och tallar) växer vid sidan av och på samma sida om vägen. Mellan vilka som helst två björkar växer det inte fem träd. Hur många kan högst vara björkar av dessa 100 växande träd? (A) 52 (B) 51 (C) 50 (D) 49 (E) Det var en gång en by i vilken det endast bodde två slags invånare: riddare som alltid talade sanning och narrar som alltid ljög. En dag kom en inspektör till byn. Han frågade av var och en av byns invånare en fråga. Frågan gällde om någon annan av byns invånare var en narr eller riddare. Han frågade aldrig två gånger om samma invånare. Sedan anhöll han varje person som påstods vara en narr och avlägsnade sig från byn med de anhållna. De riddare som blev kvar, och vars svar hade lett till gripningarna, blev nervösa och lämnade därefter byn. Antalet riddare som frivilligt lämnat byn var 1/3 av antalet anhållna riddare. Hur stor del av alla de invånare som hade lämnat byn på ett eller annat sätt var riddare? (A) 4/7 (B) 2/3 (C) 3/5 (D) 4/9 (E) 5/11

Känguru 2016 Student gymnasieserien

Känguru 2016 Student gymnasieserien sid 1 / 10 NAMN GRUPP Poäng: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Felaktigt svar ger minus 1/4 poäng av uppgiftens totala poängantal! Så om du t.ex. svarar

Läs mer

Känguru 2012 Cadet (åk 8 och 9)

Känguru 2012 Cadet (åk 8 och 9) sid 1 / 7 NAMN KLASS Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Lämna rutan tom om du inte vill besvara den frågan. Felaktigt svar ger minus 1/4

Läs mer

Känguru 2013 Benjamin sida 1 / 7 (åk 6 och 7) I samarbete med Pakilan ala-aste och Brändö gymnasium

Känguru 2013 Benjamin sida 1 / 7 (åk 6 och 7) I samarbete med Pakilan ala-aste och Brändö gymnasium Känguru 2013 Benjamin sida 1 / 7 NAMN KLASS Poäng: Känguruskutt: Lösgör denna svarsblankett från uppgiftspappren. Skriv ditt svarsalternativ under uppgiftsnumret. Ett felaktigt svar ger minus 1/4 poäng

Läs mer

Känguru 2013 Cadet (åk 8 och 9) i samarbete med Jan-Anders Salenius vid Brändö gymnasium

Känguru 2013 Cadet (åk 8 och 9) i samarbete med Jan-Anders Salenius vid Brändö gymnasium sida 1 / 7 NAMN KLASS/GRUPP Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Lämna rutan tom om du inte vill besvara den frågan. Gissa inte, felaktigt

Läs mer

Känguru 2014 Student sida 1 / 8 (gymnasiet åk 2 och 3)

Känguru 2014 Student sida 1 / 8 (gymnasiet åk 2 och 3) Känguru 2014 Student sida 1 / 8 NAMN GRUPP Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Felaktigt svar ger minus 1/4 poäng av uppgiftens totala poängantal.

Läs mer

Känguru 2010 Cadet (klass 8 och 9) sida 1 / 6

Känguru 2010 Cadet (klass 8 och 9) sida 1 / 6 Känguru 2010 Cadet (klass 8 och 9) sida 1 / 6 NAMN KLASS/GRUPP Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Lämna rutan tom om du inte vill besvara

Läs mer

Känguru 2016 Cadet (åk 8 och 9)

Känguru 2016 Cadet (åk 8 och 9) sid 1 / 8 NAMN KLASS Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Felaktigt svar ger minus 1/4 poäng av uppgiftens totala poängantal! Så om du t.ex.

Läs mer

NAMN KLASS/GRUPP. Poängsumma: Känguruskutt: UPPGIFT 1 2 3 4 5 6 7 8 9 10 SVAR UPPGIFT 11 12 13 14 15 16 17 18 19 20 SVAR

NAMN KLASS/GRUPP. Poängsumma: Känguruskutt: UPPGIFT 1 2 3 4 5 6 7 8 9 10 SVAR UPPGIFT 11 12 13 14 15 16 17 18 19 20 SVAR Känguru 2010 Junior (gymnasiet åk 1) sida 1 / 6 NAMN KLASS/GRUPP Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Lämna rutan tom om du inte vill besvara

Läs mer

Känguru 2011 Cadet (Åk 8 och 9)

Känguru 2011 Cadet (Åk 8 och 9) sida 1 / 7 NAMN KLASS/GRUPP Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Lämna rutan tom om du inte vill besvara den frågan. Gissa inte, felaktigt

Läs mer

Känguru 2013 Ecolier sida 1 / 6 (åk 4 och 5) i samarbete med Pakilan ala-aste och Jan-Anders Salenius vid Brändö gymnasium

Känguru 2013 Ecolier sida 1 / 6 (åk 4 och 5) i samarbete med Pakilan ala-aste och Jan-Anders Salenius vid Brändö gymnasium Känguru 2013 Ecolier sida 1 / 6 NAMN KLASS Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Felaktigt svar ger minus 1/4 poäng av uppgiftens totala poängantal!

Läs mer

Känguru 2016 Benjamin (åk 6 och 7)

Känguru 2016 Benjamin (åk 6 och 7) sid 1 / 8 NAMN KLASS Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Felaktigt svar ger minus 1/4 poäng av uppgiftens totala poängantal! Så om du t.ex.

Läs mer

Känguru 2012 Benjamin sid 1 / 8 (åk 6 och 7)

Känguru 2012 Benjamin sid 1 / 8 (åk 6 och 7) Känguru 2012 Benjamin sid 1 / 8 NAMN KLASS Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Lämna rutan tom om du inte vill besvara den frågan. Felaktigt

Läs mer

Känguru 2011 Benjamin (Åk 6 och 7)

Känguru 2011 Benjamin (Åk 6 och 7) sida 1 / 6 NAMN KLASS/GRUPP Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Lämna rutan tom om du inte vill besvara den frågan. Gissa inte, felaktigt

Läs mer

Avdelning 1, trepoängsproblem

Avdelning 1, trepoängsproblem Avdelning 1, trepoängsproblem 1. Vilket är ett jämnt tal? A: 2009 B: 2 + 0 + 0 + 9 C: 200 9 D: 200 9 E: 200 + 9 Frankrike 2. Var är kängurun? A: I cirkeln och i triangeln, men inte i kvadraten. B: I cirkeln

Läs mer

Känguru 2015 Benjamin (åk 6 och 7)

Känguru 2015 Benjamin (åk 6 och 7) sivu 1 / 8 NAMN KLASS/GRUPP Poängssumma: Känguruskrutt:: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Lämna rutan tom om du inte vill besvara den frågan. Felaktigt svar ger

Läs mer

Problem 1 2 3 4 5 6 7 Svar

Problem 1 2 3 4 5 6 7 Svar Känguru Cadet, svarsblankett Namn Klass/Grupp Poängsumman Känguruskuttet Ta lös svarsblanketten. Skriv ditt svarsalternativ under numret. Lämna rutan tom om du inte vet svaret. Gissa inte, felaktigt svar

Läs mer

Känguru 2014 Ecolier (åk 4 och 5)

Känguru 2014 Ecolier (åk 4 och 5) sida 1 / 11 NAMN KLASS Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Felaktigt svar ger minus 1/4 poäng av uppgiftens totala poängantal! Om du lämnar

Läs mer

Känguru 2015 Ecolier (åk 4 och 5)

Känguru 2015 Ecolier (åk 4 och 5) sida 1 / 9 NAMN KLASS Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Felaktigt svar ger minus 1/4 poäng av uppgiftens totala poängantal! Om du lämnar

Läs mer

2. 1 L ä n g d, o m k r e t s o c h a r e a

2. 1 L ä n g d, o m k r e t s o c h a r e a 2. 1 L ä n g d, o m k r e t s o c h a r e a Ett plan är en yta som inte är buktig och som är obegränsad åt alla håll. På ett plan kan man rita en linje som är rak (rät). En linje är obegränsad åt båda

Läs mer

i=1 β i a i. (Rudolf Tabbe.) i=1 b i a i n

i=1 β i a i. (Rudolf Tabbe.) i=1 b i a i n Årgång 48, 1965 Första häftet 2505. Låt M = {p 1, p 2,..., p k } vara en mängd med k element. Vidare betecknar M 1, M 2,..., M n olika delmängder till M, alla bestående av tre element. Det gäller alltså

Läs mer

Kängurutävlingen Matematikens hopp

Kängurutävlingen Matematikens hopp Kängurutävlingen Matematikens hopp Junior 2010 Här följer svar, rättningsmall och redovisningsblanketter. Förutom svar ger vi också några olika lösningsförslag. De flesta problem kan lösas på flera sätt

Läs mer

Cadet för gymnasiet. a: 1001 b: 11 c: 223 d: 191 e: 123 (Sverige)

Cadet för gymnasiet. a: 1001 b: 11 c: 223 d: 191 e: 123 (Sverige) Avdelning. Trepoängsproblem 007 + 0 + 0 + 7 = Cadet för gymnasiet a: 00 b: c: 3 d: 9 e: 3 (Sverige) Boris är född januari 00 och han är år och dag äldre än Irina. Vilken dag föddes Irina? a: januari 003

Läs mer

Känguru 2012 Ecolier sid 1 / 7 (åk 4 och 5)

Känguru 2012 Ecolier sid 1 / 7 (åk 4 och 5) Känguru 2012 Ecolier sid 1 / 7 NAMN KLASS Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Lämna rutan tom om du inte vill besvara den frågan. Felaktigt

Läs mer

Problem 1 2 3 4 5 6 7 Svar

Problem 1 2 3 4 5 6 7 Svar Känguru Ecolier, svarsblankett Namn Klass/Grupp Poängsumman Känguruskuttet Ta lös svarsblanketten. Skriv ditt svarsalternativ under numret. Lämna rutan tom om du inte vet svaret. Gissa inte, felaktigt

Läs mer

Känguru 2010 Ecolier (klass 4 och 5) sida 1 / 6

Känguru 2010 Ecolier (klass 4 och 5) sida 1 / 6 Känguru 2010 Ecolier (klass 4 och 5) sida 1 / 6 NAMN KLASS/GRUPP Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Lämna rutan tom om du inte vill besvara

Läs mer

Högskoleprovet. Block 1. Anvisningar. Övningsexempel. Delprovet innehåller 22 uppgifter.

Högskoleprovet. Block 1. Anvisningar. Övningsexempel. Delprovet innehåller 22 uppgifter. Block 1 2008-10-25 Högskoleprovet Svarshäfte nr. DELPROV 1 NOGe Delprovet innehåller 22 uppgifter. Anvisningar Varje uppgift innehåller en fråga markerad med fet stil. Uppgiften kan även innehålla viss

Läs mer

Svar och arbeta vidare med Cadet 2008

Svar och arbeta vidare med Cadet 2008 Svar och arbeta vidare med Det finns många intressanta idéer i årets Känguruaktiviteter. Problemen kan inspirera undervisningen under flera lektioner. Här ger vi några förslag att arbeta vidare med. Känguruproblemen

Läs mer

Matematiktävling för högstadieelever. Kvalificeringstest. Tid : 60 minuter Antal uppgifter: 15 Max poäng: 15 poäng.

Matematiktävling för högstadieelever. Kvalificeringstest. Tid : 60 minuter Antal uppgifter: 15 Max poäng: 15 poäng. PYTHAGORAS QUEST Matematiktävling för högstadieelever Kvalificeringstest Tid : 60 minuter Antal uppgifter: 15 Max poäng: 15 poäng. 1 Ett heltal multipliceras med 2 och produkten multipliceras med 5. Vilket

Läs mer

Svar och arbeta vidare med Student 2008

Svar och arbeta vidare med Student 2008 Student 008 Svar och arbeta vidare med Student 008 Det finns många intressanta idéer i årets Känguruaktiviteter. Problemen kan inspirera undervisningen under flera lektioner. Här ger vi några förslag att

Läs mer

Planering Geometri år 7

Planering Geometri år 7 Planering Geometri år 7 Innehåll Övergripande planering... 2 Bedömning... 2 Begreppslista... 3 Metodlista... 6 Arbetsblad... 6 Facit Diagnos + Arbeta vidare... 10 Repetitionsuppgifter... 11 Övergripande

Läs mer

Tentamen 973G10 Matematik för lärare årskurs 4-6, del2, 15 hp delmoment Geometri 4,5 hp, , kl. 8-13

Tentamen 973G10 Matematik för lärare årskurs 4-6, del2, 15 hp delmoment Geometri 4,5 hp, , kl. 8-13 Kurskod: 9G0 Provkod: STN Tentamen 9G0 Matematik för lärare årskurs -, del, 5 hp delmoment Geometri,5 hp, 0-0-08, kl 8- Tillåtna hjälpmedel : Passare, linjal För varje uppgift ska fullständig lösning med

Läs mer

A: 300 m B: 400 m C: 800 m D: 1000 m E: 700 m

A: 300 m B: 400 m C: 800 m D: 1000 m E: 700 m Trepoängsproblem. Hur långt är sträckan från Maria till Bianca? 00 m Maria 8 4 2 Bianca A: 300 m B: 400 m C: 800 m D: 000 m E: 700 m 2. Den liksidiga triangeln har arean 9 cm 2. Linjerna inne i triangeln

Läs mer

Högskoleprovet. Block 3. Anvisningar. Övningsexempel. Delprovet innehåller 22 uppgifter.

Högskoleprovet. Block 3. Anvisningar. Övningsexempel. Delprovet innehåller 22 uppgifter. Block 3 2011-04-02 Högskoleprovet Svarshäfte nr. DELPROV 5 NOG h Delprovet innehåller 22 uppgifter. Anvisningar Varje uppgift innehåller en fråga markerad med fet stil. Uppgiften kan även innehålla viss

Läs mer

Problemlösning med hjälp av nycklar

Problemlösning med hjälp av nycklar Problemlösning med hjälp av nycklar I denna problemavdelning finns förutom ett antal geometriproblem även förslag på ett arbetssätt som avser underlätta för elever att komma igång med problemlösning och

Läs mer

4. I lagret finns 24, 23, 17 och 16 kg:s säckar. På vilket sätt kan man leverera en beställning på exakt 100 kg utan att öppna någon säck?

4. I lagret finns 24, 23, 17 och 16 kg:s säckar. På vilket sätt kan man leverera en beställning på exakt 100 kg utan att öppna någon säck? Grundskolans matematiktävling Finaltävling fredagen den 3 februari 2012 DEL 1 Tid 30 min Maximal poängsumma 20 Räknare används inte i denna del. Skriv ner beräkningar, rita bilder eller ange andra motiveringar

Läs mer

Lathund geometri, åk 7, matte direkt (nya upplagan)

Lathund geometri, åk 7, matte direkt (nya upplagan) Lathund geometri, åk 7, matte direkt (nya upplagan) Det som står i den här lathunden ska du kunna till provet. Du ska kunna ställa upp och räkna ut liknande tal som de nedan: a) 39,8 + 2,62 b) 16,42 5,8

Läs mer

Gruppledtrådar 6-2A (i samband med sidorna 50-60) Ledtråd 2 Den har 4 begränsningsytor (B). Ledtråd 1 Polyedern är regelbunden.

Gruppledtrådar 6-2A (i samband med sidorna 50-60) Ledtråd 2 Den har 4 begränsningsytor (B). Ledtråd 1 Polyedern är regelbunden. Gruppledtrådar 6-2A (i samband med sidorna 50-60) Polyedern är regelbunden. Den har 4 begränsningsytor (B). Polyedern har 4 hörn (H). Antal kanter (K) kan beräknas med formeln B + H K = 2 Begränsningsytorna

Läs mer

Detta prov består av del 1 och 2. Här finns också facit och förslag till poängsättning

Detta prov består av del 1 och 2. Här finns också facit och förslag till poängsättning Allmänt om proven Detta prov består av del 1 och. Här finns också facit och förslag till poängsättning och bedömning. Provet finns på lärarwebben, dels som pdf-fil och dels som redigerbar Word-fil. Del

Läs mer

Riksfinal. Del 1: 6 uppgifter Tid: 60 min Maxpoäng: 18 (3p/uppgift) OBS! Skriv varje uppgift på separat papper och lagets namn på samtliga papper.

Riksfinal. Del 1: 6 uppgifter Tid: 60 min Maxpoäng: 18 (3p/uppgift) OBS! Skriv varje uppgift på separat papper och lagets namn på samtliga papper. Riksfinal Del 1: 6 uppgifter Tid: 60 min Maxpoäng: 18 (3p/uppgift) Hjälpmedel: Endast skrivmateriel, ingen miniräknare OBS Skriv varje uppgift på separat papper och lagets namn på samtliga papper. Fullständiga

Läs mer

Kvalificeringstävling den 30 september 2008

Kvalificeringstävling den 30 september 2008 SKOLORNAS MATEMATIKTÄVLING Svenska Matematikersamfundet Kvalificeringstävling den 30 september 2008 Förslag till lösningar Problem 1 Tre rader med tal är skrivna på ett papper Varje rad innehåller tre

Läs mer

Enklare matematiska uppgifter. Årgång 21, Första häftet

Enklare matematiska uppgifter. Årgång 21, Första häftet Elementa Årgång 21, 1938 Årgång 21, 1938 Första häftet 957. En cirkel, en punkt A på cirkeln och en punkt B på tangenten i A äro givna. Att konstruera den punkt P på cirkeln, för vilken AP + BP är maximum.

Läs mer

Geometri och statistik Blandade övningar. 1. Vid en undersökning av åldern hos 30 personer i ett sällskap erhölls följande data

Geometri och statistik Blandade övningar. 1. Vid en undersökning av åldern hos 30 personer i ett sällskap erhölls följande data Geometri och statistik Blandade övningar Sannolikhetsteori och statistik 1. Vid en undersökning av åldern hos 30 personer i ett sällskap erhölls följande data 27, 30, 32, 25, 41, 52, 39, 21, 29, 34, 55,

Läs mer

Enklare matematiska uppgifter

Enklare matematiska uppgifter Elementa Årgång 39, 1956 Årgång 39, 1956 Första häftet 2028. En regelbunden dodekaeder och en regelbunden ikosaeder äro omskrivna kring samma klot (eller inskrivna i samma klot). Bestäm förhållandet mellan

Läs mer

Bestäm den sida som är markerad med x.

Bestäm den sida som är markerad med x. 7 trigonometri Trigonometri handlar om sidor och inklar i trianglar. Ordet kommer från grekiskans trigonon (tre inklar) och métron (mått). Trigonometri har anänts under de senaste 2000 åren inom astronomi,

Läs mer

Repetitionsuppgifter. Geometri

Repetitionsuppgifter. Geometri Endimensionell anals, Geometri delkurs B1 1. Fra punkter A, B, C och D ligger pa en cirkel med radien 1 dm. Se guren! Strackorna AD och BD ar lika langa. Vidare ar vinkeln BAC och vinkeln ABC 100. D Berakna

Läs mer

Enklare matematiska uppgifter

Enklare matematiska uppgifter Årgång 43, 1960 Första häftet 2244. Vilka värden kan a) tan A tanb + tan A tanc + tanb tanc, b) cos A cosb cosc anta i en triangel ABC? 2245. På en cirkel med centrum O väljes en båge AB, som är större

Läs mer

Enklare matematiska uppgifter

Enklare matematiska uppgifter Elementa Årgång 5, 94 Årgång 5, 94 Första häftet 04. Toppen i en pyramid utgöres av ett regelbundet n-sidigt hörn. Tre på varandra följande sidokanter ha längderna a, b och c. Beräkna de övrigas längd.

Läs mer

Högskoleverket NOG 2007-10-27

Högskoleverket NOG 2007-10-27 Högskoleverket NOG 2007-10-27 Uppgifter 1. En kock försöker att skala en potatis i så långa remsor som möjligt. Hur lång är den längsta remsa som kocken lyckas åstadkomma? (1) Medianlängden av de tre längsta

Läs mer

Matematik CD för TB = 5 +

Matematik CD för TB = 5 + Föreläsning 4 70 a) Vi delar figuren i två delar, en triangel (på toppen) och en rektangel. Summan av dessa två figurers area ger den eftersökta. Vi behöver följande formler: A R = b h A T = b h Svar:

Läs mer

SF1620 Matematik och modeller

SF1620 Matematik och modeller KTH Teknikvetenskap, Institutionen för matematik 1 SF1620 Matematik och modeller 2007-09-03 1 Första veckan Geometri med trigonometri Till att börja med kom trigometrin till för att hantera och lösa geometriska

Läs mer

Kvalificeringstävling den 30 september 2014

Kvalificeringstävling den 30 september 2014 SKOLORNAS MATEMATIKTÄVLING Svenska matematikersamfundet Kvalificeringstävling den 30 september 2014 1. Ett tåg kör fram och tillbaka dygnet runt mellan Aby och Bro med lika långa uppehåll vid ändstationerna,

Läs mer

Gruppledtrådar. Gruppledtrådarna ingår i lärarhandledningen till Prima Formula 6 Får kopieras! Bo Sjöström, Jacob Sjöström och Gleerups Utbildning AB

Gruppledtrådar. Gruppledtrådarna ingår i lärarhandledningen till Prima Formula 6 Får kopieras! Bo Sjöström, Jacob Sjöström och Gleerups Utbildning AB Gruppledtrådar Som hjälp för dina elevgrupper att utveckla sin förmåga att tala matematik, samarbeta och lära i grupp finns övningar som vi kallar Gruppledtrådar. Dessa går ut på att elever tillsammans

Läs mer

A: 100 B: 1000 C: 10000 D: 100000 E: 1000000 (Tyskland) A: 10 B: 11 C: 13 D: 14 E: 15 (Tyskland) a 2 A: B: C: D: E:

A: 100 B: 1000 C: 10000 D: 100000 E: 1000000 (Tyskland) A: 10 B: 11 C: 13 D: 14 E: 15 (Tyskland) a 2 A: B: C: D: E: Kängurutävlingen 015 Junior Trepoängsproblem 1. Vilket av följande tal är närmast produkten 0,15 51,0? A: 100 B: 1000 C: 10000 D: 100000 E: 1000000. Linda har hängt upp T-tröjor i en lång rad på tvättlinan

Läs mer

150 cm 2 m 70 dm. 280 cm 3,5 m 40 dm 3,50 0,50. 200 cm 1,5 2,5. 6 m. 30 cm 4 dm 500 mm. 2 m. 70 dm. 150 cm. 3,5 m. 40 dm. 280 cm.

150 cm 2 m 70 dm. 280 cm 3,5 m 40 dm 3,50 0,50. 200 cm 1,5 2,5. 6 m. 30 cm 4 dm 500 mm. 2 m. 70 dm. 150 cm. 3,5 m. 40 dm. 280 cm. Skriv sträckorna i storleksordning. Längdenheter: meter (m), decimeter (dm), centimeter (cm) och millimeter (mm). Längden 15 cm kan skrivas på olika sätt: 15 cm = 1 m 5 cm = 1,5 m eller 15 dm cm eller

Läs mer

PROBLEMLÖSNINGSUPPGIFTER

PROBLEMLÖSNINGSUPPGIFTER PROBLEMLÖSNINGSUPPGIFTER ADDERA RÄTT 1. Bestäm vilka siffror bokstäverna A, B, C, och D bör bytas ut mot i additionen nedan för att additionen ska vara riktig. A 6 3 7 B 2 + 5 8 C D 0 4 2 2. Gör ett eget

Läs mer

Matematiska uppgifter

Matematiska uppgifter Elementa Årgång 69, 1986 Årgång 69, 1986 Första häftet 3420. Två ljus av samma längd är gjorda av olika material så att brinntiden är olika. Det ena brinner upp på tre timmar och det andra på fyra timmar.

Läs mer

Känguru 2011 Student (gymnasiet åk 2 och 3)

Känguru 2011 Student (gymnasiet åk 2 och 3) Känguru 011 Student sida 1 / 8 NAMN KLASS / GRUPP Pängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Lämna rutan tm m du inte vill besvara den frågan. Gissa

Läs mer

Matematikcirkel Katedralskolan 4 december 2013 Gott och Blandat

Matematikcirkel Katedralskolan 4 december 2013 Gott och Blandat Liten tävling Matematikcirkel Katedralskolan 4 december 2013 Gott och Blandat Uttryck talet 2013 genom att bara använda fyror. Försök att använda så få fyror som möjligt. Tillåtna operationer är de fyra

Läs mer

Lokala mål i matematik

Lokala mål i matematik Lokala mål i matematik År 6 År 7 År 8 År 9 Taluppfattning (aritmetik) förstår positionssystemets uppbyggnad med decimaler ex: kan skriva givna tal adderar decimaltal ex: 15,6 + 3,87 subtraherar decimaltal

Läs mer

Elevers kunskaper i geometri. Madeleine Löwing

Elevers kunskaper i geometri. Madeleine Löwing Elevers kunskaper i geometri Madeleine Löwing Elevers kunskaper i mätning och geometri Resultaten från interna=onella undersök- ningar, såsom TIMSS, visar ac svenska elever lyckas mindre bra i geometri.

Läs mer

Kängurun Matematikens Hopp

Kängurun Matematikens Hopp Kängurun Matematikens Hopp Student 2009 Här följer svar och lösningar, samt rättningsmall och redovisningsblanketter. Vi ger förslag till lösningsmetod. Bland eleverna i klassen finns säkert andra lösningsmetoder

Läs mer

Enklare matematiska uppgifter

Enklare matematiska uppgifter Elementa Årgång 44, 1961 Årgång 44, 1961 Första häftet 2298. Beräkna för en triangel (med vanliga beteckningar) ( (b 2 + c 2 )sin2a) : T (V. Thébault.) 2299. I den vid A rätvinkliga triangeln OAB är OA

Läs mer

Känguru Benjamin (6. ja 7. klass) sida 1 / 5

Känguru Benjamin (6. ja 7. klass) sida 1 / 5 Känguru Benjamin (6. ja 7. klass) sida 1 / 5 3 poäng 1) Vilket är minst? A) 2 + 0 + 0 + 8 B) 200 : 8 C) 2 0 0 8 D) 200 8 E) 8 + 0 + 0 2 2) Vad ska bytas ut mot för att detta ska bli rätt?. = 2 2 3 3 A)

Läs mer

Högskoleverket. Delprov NOG 2005-04-09

Högskoleverket. Delprov NOG 2005-04-09 Högskoleverket Delprov NOG 2005-04-09 1. Eva, Pia och Linus köpte totalt 18 frukter. Hur många frukter köpte Eva? (1) Eva och Linus köpte sammanlagt dubbelt så många frukter som Pia. (2) Pia köpte tre

Läs mer

Årgång 75, 1992. Första häftet

Årgång 75, 1992. Första häftet Elementa Årgång 75, 1992 Årgång 75, 1992 Första häftet 3660. I vidstående välbekanta, uråldriga kinesiska tecken sammanförs de två grundläggande principerna i universum, som ständigt kämpar och samverkar

Läs mer

1. Amanda tänker på ett femsiffrigt heltal. Talet börjar med 1 och slutar med 8. Vilket är talet?

1. Amanda tänker på ett femsiffrigt heltal. Talet börjar med 1 och slutar med 8. Vilket är talet? 2 1. Amanda tänker på ett femsiffrigt heltal. Talet börjar med 1 och slutar med 8. Vilket är talet? (1) Tiotalssiffran är dubbelt så stor som tusentalssiffran. (2) Hundratalssiffran är hälften så stor

Läs mer

Känguru 2014 Benjamin (Åk 6 och 7) sida 1 / 7 och Pakilan ala-aste

Känguru 2014 Benjamin (Åk 6 och 7) sida 1 / 7 och Pakilan ala-aste (Åk 6 och 7) sida 1 / 7 och Pakilan ala-aste NAMN KLASS Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Felaktigt svar ger minus 1/4 poäng av uppgiftens

Läs mer

Enklare matematiska uppgifter

Enklare matematiska uppgifter Elementa Årgång 42, 1959 Årgång 42, 1959 Första häftet 2193. Tre cirklar med radierna r 1, r 2 och r 3 skär varandra under räta vinklar två och två. Hur stor är ytan av den triangel, som har sina hörn

Läs mer

Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet.

Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. 1) a) Bestäm ekvationen för den räta linjen i figuren. (1/0/0) b) Rita i koordinatsystemet en rät linje

Läs mer

4-4 Parallellogrammer Namn:..

4-4 Parallellogrammer Namn:.. 4-4 Parallellogrammer Namn:.. Inledning Hittills har du arbetat bl.a. med linjer och vinklar. En linje är ju någonting som bara har en dimension, längd. Men när två linjer skär varandra och det bildas

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN Del I, 10 uppgifter utan miniräknare 3. Del II, 9 uppgifter med miniräknare 6

NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN Del I, 10 uppgifter utan miniräknare 3. Del II, 9 uppgifter med miniräknare 6 freeleaks NpMaB vt2001 1(8) Innehåll Förord 1 NATIONELLT KURSPROV I MATEMATIK KURS B VÅREN 2001 2 Del I, 10 uppgifter utan miniräknare 3 Del II, 9 uppgifter med miniräknare 6 Förord Skolverket har endast

Läs mer

Matematik A Testa dina kunskaper!

Matematik A Testa dina kunskaper! Testa dina kunskaper! Försök i största möjliga mån att räkna utan hjälp av boken, skriv små noteringar i kanten om ni tycker att ni kan uppgifterna, att ni löste dem med hjälp av boken etc. Facit kommer

Läs mer

FACIT Ö1A Ö1B. 1 a 25 b 40 c 50 d 500. 2 a 24 b 36 c 40 d 400. 3 a 70 90 110 b 700 900 1100 c 200 250 300 d 100 125 150 e 120 150 180.

FACIT Ö1A Ö1B. 1 a 25 b 40 c 50 d 500. 2 a 24 b 36 c 40 d 400. 3 a 70 90 110 b 700 900 1100 c 200 250 300 d 100 125 150 e 120 150 180. FACIT Ö1A 1 a 25 b 40 c 50 d 500 2 a 24 b 36 c 40 d 400 3 a 70 90 110 b 700 900 1100 c 200 250 300 d 100 125 150 e 120 150 180 Ö1B 1 a 3311 b 2042 2 a 2468 b 3579 c 1953 3 a 5566 b 7432 c 9876 4 a 1205

Läs mer

geometri ma B 2009-08-26

geometri ma B 2009-08-26 OP-matematik opyright Tord Persson geometri ma 2009-08-26 Uppgift nr 1 Uppgift nr 3 26 13 z s Hur stor är vinkeln z i den här figuren? Uppgift nr 2 Hur stor är vinkeln s i den här figuren? Uppgift nr 4

Läs mer

Matematik 92MA41 (15hp) Vladimir Tkatjev

Matematik 92MA41 (15hp) Vladimir Tkatjev Matematik 92MA41 (15hp) Vladimir Tkatjev Lite inspiration Går det att konstruera 6 kvadrater av 12 tändstickor? Hur gör man då? (Nämnaren, Nr 2, 2005) Litet klurigt kanske, bygg en kub av stickorna: Uppgift

Läs mer

Lösningsförslag Cadet 2014

Lösningsförslag Cadet 2014 Kängurutävlingen 2014 Cadet svar och korta lösningar Lösningsförslag Cadet 2014 1. A 0 2014 2014 2014 2014 = 0 2. D 21 mars Det blir torsdag senast om månaden börjar med en fredag. Då är det torsdag dag

Läs mer

4-7 Pythagoras sats. Inledning. Namn:..

4-7 Pythagoras sats. Inledning. Namn:.. Namn:.. 4-7 Pythagoras sats Inledning Nu har du lärt dig en hel del om trianglar. Du vet vad en spetsig och en trubbig triangel är liksom vad en liksidig och en likbent triangel är. Vidare vet du att vinkelsumman

Läs mer

Välkommen till Borgar!

Välkommen till Borgar! Välkommen till Borgar! Välkommen till Borgar! Vi ser fram emot att snart träffa en ny årskull med naturettor och hoppas att du kommer att trivas mycket bra hos oss. Studier i naturvetenskapliga ämnen förutsätter

Läs mer

Addition och subtraktion. Vilka uträkningar visas på tallinjerna nedan? Beräkna med huvudräkning 1 3 5 = 2 2 2 + 5 = 3 3 7 + 3 = 4 4 1 4 = 5 7 2 + 7 5

Addition och subtraktion. Vilka uträkningar visas på tallinjerna nedan? Beräkna med huvudräkning 1 3 5 = 2 2 2 + 5 = 3 3 7 + 3 = 4 4 1 4 = 5 7 2 + 7 5 OH 1 Addition och subtraktion Vilka uträkningar visas på tallinjerna nedan? 1 = 7 6 1 0 1 + = 7 6 1 0 1 7 + = 7 6 1 0 1 1 = 7 6 1 0 1 Beräkna med huvudräkning 8 6 6 8 7 + 7 8 9 7 9 1 8 10 1 + 0 Kopiering

Läs mer

Matematik CD för TB. tanv = motstående närliggande. tan34 = x 35. x = 35tan 34. x 23.6. cosv = närliggande hypotenusan. cos40 = x 61.

Matematik CD för TB. tanv = motstående närliggande. tan34 = x 35. x = 35tan 34. x 23.6. cosv = närliggande hypotenusan. cos40 = x 61. Föreläning 8 Problem hämtade från boken idan 15 A 510 a) Rätvinklig triangel med vinkel och katet given. Mottående katet efterfråga. tan4 = x 5 x = 5tan 4 Svar:.6 cm x.6 A 510 b) Vinkel och hypotenuan

Läs mer

Distriktsfinal. Del 1: 7 uppgifter Tid: 60 min Maxpoäng: 21 (3p/uppgift)

Distriktsfinal. Del 1: 7 uppgifter Tid: 60 min Maxpoäng: 21 (3p/uppgift) Distriktsfinal Del 1: 7 uppgifter Tid: 60 min Maxpoäng: 21 (3p/uppgift) Hjälpmedel: Endast skrivmateriel, ingen miniräknare! OBS! Skriv varje uppgift på separat papper och lagets namn på samtliga papper.

Läs mer

MATEMATIKPROV, KORT LÄROKURS 23.9.2015 BESKRIVNING AV GODA SVAR

MATEMATIKPROV, KORT LÄROKURS 23.9.2015 BESKRIVNING AV GODA SVAR MATEMATIKPROV, KORT LÄROKURS 3.9.05 BESKRIVNING AV GODA SVAR De beskrivningar av svarens innehåll och poängsättningar som ges här är inte bindande för studentexamensnämndens bedömning. Censorerna beslutar

Läs mer

Övningsuppgifter omkrets, area och volym

Övningsuppgifter omkrets, area och volym Stockholms Tekniska Gymnasium 01-0-0 Övningsuppgifter omkrets, area och volym Uppgift 1: Beräkna arean och omkretsen av nedanstående figur. 4 7 Uppgift : Beräkna arean och omkretsen av nedanstående figur.

Läs mer

Enklare matematiska uppgifter

Enklare matematiska uppgifter Elementa Årgång 4, 94 Årgång 4, 94 Första häftet 47. Om en triangels hörn speglas i motstående sidor, bilda spegelbilderna en liksidig triangel. Beräkna den ursprungliga triangelns vinklar. 48. Att konstruera

Läs mer

28 Lägesmått och spridningsmått... 10

28 Lägesmått och spridningsmått... 10 Marjan Repetitionsuppgifter Ma2 1(14) Innehåll 1 Lös ekvationer exakt................................... 2 2 Andragradsfunktion och symmetrilinje........................ 2 3 Förenkla uttryck.....................................

Läs mer

Högskoleprovet. Block 1. Anvisningar. Övningsexempel. Delprovet innehåller 22 uppgifter.

Högskoleprovet. Block 1. Anvisningar. Övningsexempel. Delprovet innehåller 22 uppgifter. Block 1 2010-10-23 Högskoleprovet Svarshäfte nr. DELPROV 1 NOGa Delprovet innehåller 22 uppgifter. Anvisningar Varje uppgift innehåller en fråga markerad med fet stil. Uppgiften kan även innehålla viss

Läs mer

Matteklubben Vårterminen 2015, lektion 6

Matteklubben Vårterminen 2015, lektion 6 Matteklubben Vårterminen 2015, lektion 6 Regler till Matematisk Yatzy Matematisk Yatzy är en tävling där man tävlar i att lösa matematikproblem. Målet i tävlingen är att få så mycket poäng som möjligt

Läs mer

geometri och statistik

geometri och statistik Svikten geometri och statistik Innehåll Mönster Geometriska figurer Del av Matematiska ord Längd runt om Tredimensionella figurer Tabeller och diagram Problemlösning Kan du? Hur gick det? 2-3 4-5 6-7 8-9

Läs mer

fredag den 11 april 2014 POOL BYGGE

fredag den 11 april 2014 POOL BYGGE POOL BYGGE KLADD Såhär ser min kladd ut: På min kladd så bestämde jag mig för vilken form poolen skulle ha och ritade ut den. På min kladd har jag även skrivit ut måtten som min pool skulle vara i. Proportionerna

Läs mer

2. Förkorta bråket så långt som möjligt 1001/

2. Förkorta bråket så långt som möjligt 1001/ Nästan vanliga tal 1. Beräkna1 2+3 4+5 2000+2001 Lösning. 1 + ( 2 + 3) + ( 4 + 5) +... + ( 2000 + 2001) = 1+ 142 +... 43 + 1 = 1001 2. Förkorta bråket så långt som möjligt 1001/10000001 1000 gnr Lösning.

Läs mer

Tema: Pythagoras sats. Linnéa Utterström & Malin Öberg

Tema: Pythagoras sats. Linnéa Utterström & Malin Öberg Tema: Pythagoras sats Linnéa Utterström & Malin Öberg Innehåll: Introduktion till Pythagoras sats! 3 Pythagoras sats! 4 Variabler! 5 Potenser! 5 Att komma tillbaka till ursprunget! 7 Vi bevisar Pythagoras

Läs mer

Enklare matematiska uppgifter

Enklare matematiska uppgifter Elementa Årgång 30, 947 Årgång 30, 947 Första häftet 500. Om (x 0 ; y 0 ; z 0 ) är en lösning till systemet cos x + cos y + cos z = 0, sin x+sin y+sin z = 0, så äro (x 0 +y 0 ; y 0 +z 0 ; z 0 +x 0 ) och

Läs mer

Årgång 85, 2002. Första häftet

Årgång 85, 2002. Första häftet Elementa Årgång 85, 2002 Årgång 85, 2002 Första häftet 4060. Dorotea, Fredrika, Nora och Ulrika har tillsammans 117 glaskulor. Uppgifterna om hur många kulor var och en äger är ytterst knapphändiga. Man

Läs mer

Välkommen till Borgar!

Välkommen till Borgar! Välkommen till Borgar! Välkommen till Borgar! Vi ser fram emot att snart träffa en ny årskull med ettor och hoppas att du kommer att trivas mycket bra hos oss. Din första termin på gymnasiet kommer att

Läs mer

Repetitionsuppgifter 1

Repetitionsuppgifter 1 Repetitionsuppgifter 1 1 Vilka tal pekar pilarna på? a) b) Skriv talen med siffror 2 a) trehundra sju b) femtontusen fyrtiofem c) tvåhundrafemtusen tre 3 a) fyra tiondelar b) 65 hundradelar c) 15 tiondelar

Läs mer

Sammanfattningar Matematikboken X

Sammanfattningar Matematikboken X Sammanfattningar Matematikboken X KAPITEL 1 TAL OCH RÄKNING Naturliga tal Med naturliga tal menas talen 0, 1,,, Jämna tal 0,,, 6, 8 Udda tal 1,,, 7 Tallinje Koordinater En tallinje kan t ex användas för

Läs mer

REPETITION 2 A. a) Är sträckan proportionell mot tiden? b) Beräkna medelhastigheten under de fem första sekunderna.

REPETITION 2 A. a) Är sträckan proportionell mot tiden? b) Beräkna medelhastigheten under de fem första sekunderna. REPETITION Hur mcket är a) 9 b) 00 0 c) 00 På en karta i skala : 0 000 är det, cm mellan två små sjöar. Hur långt är det i verkligheten? Grafen visar hur långt en bil hinner de se första sekunderna efter

Läs mer

Kängurun Matematikens hopp Benjamin 2006 A: B: C: D: E:

Kängurun Matematikens hopp Benjamin 2006 A: B: C: D: E: 3-poängsproblem : = + + Vilket tal ska frågetecknet ersättas med A: B: C: D: E: : Sex tal står skrivna på korten här intill. Vilket är det minsta tal man kan bilda genom att lägga korten efter varandra

Läs mer

Högskoleprovet. Block 5. Anvisningar. Övningsexempel. Delprovet innehåller 22 uppgifter.

Högskoleprovet. Block 5. Anvisningar. Övningsexempel. Delprovet innehåller 22 uppgifter. Block 5 2008-04-05 Högskoleprovet Svarshäfte nr. DELPROV 9 NOGf Delprovet innehåller 22 uppgifter. Anvisningar Varje uppgift innehåller en fråga markerad med fet stil. Uppgiften kan även innehålla viss

Läs mer

ÖVNINGSTENTOR I MATEMATIK DEL C (MED LÖSNINGSFÖRSLAG)

ÖVNINGSTENTOR I MATEMATIK DEL C (MED LÖSNINGSFÖRSLAG) ÖVNINGSTENTOR I MATEMATIK DEL C (MED LÖSNINGSFÖRSLAG) 0 ÖVNINGSTENTAMEN DEL C p Beräkna sidan AC p Bestäm f ( 0 ) då f ( ) ( ) p Ange samtliga etrempunkter till funktionen f ( ) 6. Ange även om det är

Läs mer