Frågeoptimering. Frågeoptimering kapitel 14

Storlek: px
Starta visningen från sidan:

Download "Frågeoptimering. Frågeoptimering kapitel 14"

Transkript

1 Frågeoptimering kapitel 14 Frågeoptimering sid Introduktion 1 Transformering av relationsuttyck 4 Kataloginformation för kostnadsestimering Statisk information för kostnadsestimering Kostnadsbaserad optimering

2 Frågeoptimering, Introduktion 14-1 Introduktion "Systemet" (ej användaren) ansvarar för att transformera en fråga till en ekvavalent fråga som kan evalueras effektift. Intern representeras en fråga som ett annoterat relationsalgebraiskt-uttrycksträd. Ex.: Π customer_name (sort to remove duplicates) (hash join) (merge join) depositor σ branch_city = Brooklyn (use index 1) σ balance < 1000 (use linear scan) branch account En given fråga kan evalueras på många olika sätt, ty ett fråga motsvaras av mågna ekvivalenta uttryck många olika algoritmer kan användas för att utföra en given operation (kap 13). Dvs. För en given fråga kan många annoterade uttrycksträd (exekveringsplaner) konstrueras och systemet bör välja den mest effektiva. Obs! Kostnadsskilnaden mellan ett bra och ett dåligt sätt att evaluera en fråga kan vara enorm. Idealiskt: Hitta bästa planen Verkligheten: Undvik sämsta planen Π customer_name (σ branch_city = Brooklyn balance < 1000 (branch account depositor))

3 Frågeoptimering, Introduktion 14-2 Kostnadsbaserad optimering Generering av evalueringsplaner för ett uttryck involverar fler steg: Generera logiskt ekvivalenta uttryck m.h.a. ekvivalensregler Annotera resulterande uttryck för att få allternativa exekveringsplaner Uppskatta planernas kostnader (estimerad kostnad) och välj den billigaste planer.

4 Frågeoptimering, Transformering av relationsuttryck 14-3 Transformering av relationsuttryck Två relationsalgebra uttryck säges vara ekvivalenta om de två uttrycken genererar samma mängd av tupler på varje legal databasinstans (tuplernas ordningsföljd är irrelevant). Två uttryck i multimängd versionen av relationsalgebra säges vara ekvivalenta om de genererar samma multimängd av tupler på varje legal databasinstans. En ekvivalensregel anger att två uttryck är ekvivalent, dvs. att uttrycken kan ersätta varandra. Ekvivalensregeler 1. Konjunktiva selektions-operationer kan brytas ned till en följd av individuella selektioner σ (E ) = σ (σ (E )) θ 1 θ 2 θ 1 θ 2 2. Selektions operationen är kommutativ σ (σ (E )) = σ (σ (E )) θ 1 θ 2 θ 2 θ 1 3. Bara den sista i en följd av projektions operationer behövs, de andra kan utelämnas Π (Π (... (Π (E ))...) = Π (E )) L 1 L 2 L ν L 1 4. Selektioner kan kombineras med kartesiska produkter och theta- joins a. σ θ (E 1 E 2 ) = E 1 1θE 2 b. σ θ1 (E 1 1θ2 E 2 ) = E 1 1θ1 θ2 E 2 5. Theta-join operationen (och naturliga join operationer) är kommutativ E 1 E 2 = E 2 E 1 1θ 1θ

5 Frågeoptimering, Transformering av relationsuttryck a. Naturliga join operationen är assossiativ (E 1 E 2 ) E 3 = E 1 (E 2 E 3 ) 6b. Theta-join operationen är assossiativ på följande sätt (E 1 1θ E 2 ) E 3 = E 1 (E 2 E 3 ) 1 1θ 2 θ 3 1θ 1 θ 3 1θ 2 där θ 2 bara involverar attribut från E 2 och E 3 7. Selektion operationen distribuerar över theta-join operationen under följande två villkor: (a) När alla attribut i θ 0 bara involverar attribut ur ett av uttrycken som joinas σ (E 1 E 2 ) = (σ (E 1 )) E 2 θ 0 1θ θ 0 1θ (b) När θ 1 bara involverar attribut ur E 1 och θ 2 bara involverar attribut ur E 2 σ (E 1 E 2 ) = (σ (E 1 )) (σ (E 2 )) θ 1 θ 2 1θ θ 1 1θ θ 2 8. Projektions operationen distribuerar över theta-join operationen på följande sätt: (a) om Θ bara involverar attribut från L 1 L 2 Π (E 1 E 2 ) = (Π (E 1 )) (Π (E 2 )) L 1 L 2 1θ L 1 1θ L 2 (b) Betrakta ej join E 1 E 2 1θ Låt L 1 och L 2 vara mängder av attribut i E 1 resp. E 2. Låt L 3 vara attribut i E 1 som är involverade i join-vilkor θ, men ej är i L 1 L 2 Låt L 4 vara attribut i E 2 som är involverade i join-vilkor θ, men ej är i L 1 L 2 Π (E 1 E 2 ) =Π ((Π (E 1 )) ((Π (E 2 ))) L 1 L 2 1θ L 1 L 2 L 1 L 3 1θ L 2 L 4

6 Frågeoptimering, Transformering av relationsuttryck Mängd operationa union och intersektion är kommutativa E 1 E 2 = E 2 E 1 E 1 E 2 = E 2 E Mängd operationa union och intersektion är assosiativa (E 1 E 2 ) E 3 = E 2 (E 1 E 3 ) (E 1 E 2 ) E 3 = E 2 (E 1 E 3 ) 11. Selektions operationen distribuerar över, och. Även σ θ (E 1 E 2 ) = σ θ (E 1 ) σ θ (E 2 ) σ θ (E 1 E 2 ) = σ θ (E 1 ) σ θ (E 2 ) σ θ (E 1 E 2 ) = σ θ (E 1 ) σ θ (E 2 ) σ θ (E 1 E 2 ) = σ θ (E 1 ) E 2 σ θ (E 1 E 2 ) = σ θ (E 1 ) E Projektions operationen distribuerar över union. Π L (E 1 E 2 ) = (Π L (E 1 )) (Π L (E 2 )) Dessutom finns ekvivalensregler för utvidgade relationsalgebraiska operatorer

7 Frågeoptimering, Transformering av relationsuttryck 14-6 Ex.: Bestäm namnen på alla kunder som har ett konto vid någon gren belägen i Brooklyn. Π customer_name (σ branch_city = Brooklyn (branch account depositor)) Transfomera med regel 7a: σ θ (E 1 E 2 ) = (σ (E 1 )) E 2 0 1θ θ 0 1θ Π customer_name (σ branch_city = Brooklyn (branch)) (account depositor)) Tumregel: Utför selektion så tidigt som möjligt ty då reduseras storleken på de relationer som joinas Ex.: Bestäm namnen på alla kunder som har ett konto vid någon gren belägen i Brooklyn vars balans är över Π customer-name (σ branch_city = Brooklyn balance < 1000 (branch account depositor)) Transfomera med regel 6a: (E 1 E 2 ) E 3 = E 1 (E 2 E 3 ) Π customer-name (σ branch_city = Brooklyn balance < 1000 (branch account )) depositor) Transfomera med regel 7a Π customer_name (σ branch_city = Brooklyn (branch) σ balance < 1000 (account )) depositor)

8 Frågeoptimering, Transformering av relationsuttryck 14-7 Ex.: Projektionoperation Π customer_name ((σ barnch_city = "Brooklyn" (branch) account) depositor) ger en relation vars schema är (branch_name, branch_city, assets, account_numer, balance) Transition m.h.a. reglerna 8a och 8b; eliminera attribut som ej behövs från mellanresultat Π customer_name ((Π account_number ( σ barnch_city = "Brooklyn" (branch) account)) depositor) Tumregel: Genom att utföra projektion så tidigt som möjligt reduseras storleken på relationer (dvs. tuplernas storlek) som joinas. Ex.: Π customer_name ((σ barnch_city = "Brooklyn" (branch)) (account depositor)) account och depositor är stora relation jämfrört med σ barnch_city = "Brooklyn" (branch) Π customer_name ((σ barnch_city = "Brooklyn" (branch) account)) depositor)

9 Frågeoptimering, Enumerering av ekvivalenta uttryck 14-8 Enumerering av ekvivalenta uttryck Frågeoptimerare använder ekvivalensreglerna för att systematiskt generera uttryck ekvivalenta med det givna uttrycket: Alla ekvivalenta uttryck kan genereras genom att upprepat exekvera följande steg tills inga flere uttryck hittas: för varje uttryck som hittats tillsvidare, använd alla tillämpningsbara ekvivalensregler om ett nytt uttryck hittas lägg detta till de redan hittad. Ovanstående angreppssätt är mycket dyrt m.a.p. tid och utrymme. Utrymmeskravet reduseras genom att uttrycken delar gemensamma deluttryck i representationen dvs. de gemensamma delarna lagras bara på ett ställe. (Representationtekniskt problem) När ett uttryck genereras från ett annat m.h.a. en regel, är vanligen bara en del av de två trädena olika, resten är lika. Tidskravet reduseras genom att ej generera alla uttryck: Optimeraren kan genom att beakta evalueringskostnaderna hitta dåliga uttryksträd som inte behöver undersökas vidare. Π customer-name Π customer-name σ balance < 2500 customer Π account_number customer account σ balance < 2500 account

10 Frågeoptimering, Kostnads estimering 14-9 Kostnads estimering Kostnaden för varje operatorberäknas (kap 13) Statistisk information över relationerna (antal tupler, tupelstorlek, domäner o.dyl.) finns tillgängligt. Statistik för uttrycksresultat behöver estimeras. Ex.: Vilken är den bästa join-ordningen för r 1 r 2... r n (det finns (2(n-1))! / (n-1)! st, dvs om n=7). För att undvika generering av alla join-ordningar används dynamisk programmering: beräkna den minsta-kostnads join-ordning för varje delmängd av {r 1, r 2,...,r n } bara en gång och lagra för framtida bruk: För att bestämma bästa planen för en mängd S av n relationer, beakta alla möjliga planer av formen S 1 (S S 1 ) där S 1 är en icke-tom delmängd av S. Beräkna rekursivt kostnader för att joina delmängder av S för att bestämma kostnaden av varje plan. Välj den billigaste av de 2 n - 1 alternativen. När en plan för någon delmängd beräknas, lagras den och återanvänds när den behövs igen.

11 Frågeoptimering, Val av evalueringsplan Val av evalueringsplan En evalueringsplan definierar exakt vilken algoritm som används för varje operation, och hur exekveringen koordineras. Π customer_name (sort to remove duplicates) (hash join) (merge join) depositor σ branch_city = Brooklyn (use index 1) σ balance < 1000 (use linear scan) branch account Interaktionen av evalueringstekniker måste beaktas vid val av evalueringsplan: Att välja den billigaste algoritmen för varje enskild operation behöver ej ge det bästa totala resultatet. Merge-join kan vara dyrare än hash-join, men kan ge en sorterad output som reducerar kostnaden för en yttre nivås aggregering Nästlad-loop join kan ge möjlighet för pipelining. Frågeoptimerare inkorporerar element av två breda angreppsätt: Sök alla planer och välj den bästa på ett kostnadsbaserar sätt Använd heuristik för att välja en plan

Andra relationella språk

Andra relationella språk Andra relationella språk Kapitel 5 Andra relationella språk sid Tupelrelationskalkyl 1 Domänrelationskalkyl 6 Query-by-Example (QBE) 8 Andra relationella språk, tupelrelationskalkyl 5-1 Tupelrelationskalkyl

Läs mer

Relationell databasdesign

Relationell databasdesign Relationell databasdesign Kapitel 7 Relationell databasdesign sid Uppdelning m.h.a. funktionella beroenden 3 Funktionella beroenden - teori 12 Uppdelningsalgoritmer 27 Designprocess 33 Relational oath

Läs mer

Relationsmodellen. Relations modellen är idag den mest änvända datamodellen för kommersiella

Relationsmodellen. Relations modellen är idag den mest änvända datamodellen för kommersiella Relationsmodellen 2-1 Relationsmodellen Relations modellen är idag den mest änvända datamodellen för kommersiella applikationer. Relationsdatabasstruktur En relationsdatabas består av en samling tabeller,

Läs mer

Uppdelning. Relationell databasdesign, FB Teori 7-20. Låt R vara ett relationsschema. R 1, R 2,..., R n är en uppdelning av

Uppdelning. Relationell databasdesign, FB Teori 7-20. Låt R vara ett relationsschema. R 1, R 2,..., R n är en uppdelning av Relationell databasdesign, FB Teori 7-20 Uppdelning Låt R vara ett relationsschema. R 1, R 2,..., R n är en uppdelning av R om R i = R, i=1,...,n. Dvs. varje R i är en delmängd av R och varje attribut

Läs mer

Dagens föreläsning. KTH & SU, CSC Databasteknik Föreläsning 10 sid 1

Dagens föreläsning. KTH & SU, CSC Databasteknik Föreläsning 10 sid 1 Dagens föreläsning Vad du skall komma ihåg från tidigare föreläsningar Optimering av frågor Algebraisk omformulering Kostnadsberäkningar Evaluering av frågor Algoritmer för relationsoperatorer Beräkning

Läs mer

Vad du skall komma ihåg från tidigare föreläsningar. Dagens föreläsning. Evaluering av frågor. Data dictionary

Vad du skall komma ihåg från tidigare föreläsningar. Dagens föreläsning. Evaluering av frågor. Data dictionary Dagens föreläsning Vad du skall komma ihåg från tidigare föreläsningar Vad du skall komma ihåg från tidigare föreläsningar Optimering av frågor Algebraisk omformulering Kostnadsberäkningar Evaluering av

Läs mer

SQL, nästlade delfrågor 3-19. Nästlade delfrågor. En nästlda delfråga är ett select-from-where uttryck inom where-klausulen i en annan fråga.

SQL, nästlade delfrågor 3-19. Nästlade delfrågor. En nästlda delfråga är ett select-from-where uttryck inom where-klausulen i en annan fråga. SQL, nästlade delfrågor 3-19 Nästlade delfrågor SQL har en mekanism för nästling av delfrågor: En nästlda delfråga är ett select-from-where uttryck inom where-klausulen i en annan fråga. Delfrågor används

Läs mer

E-R-modellen, E-R-diagram 6-14. E-R-diagram. representerar entitetsmängder

E-R-modellen, E-R-diagram 6-14. E-R-diagram. representerar entitetsmängder E-R-modellen, E-R-diagram 6-14 Komponenter Rektanglar Ellipser Ruter Linjer E-R-diagram representerar entitetsmängder repr. attribut repr. relationskapsmängder länkar attribut till entitetsmängder och

Läs mer

Databaser - Design och programmering. Operationer i relationsalgebra. Att söka ut data. Exempel DBschema. Att plocka ut data, forts

Databaser - Design och programmering. Operationer i relationsalgebra. Att söka ut data. Exempel DBschema. Att plocka ut data, forts Databaser Design och programmering Relationsalgebra den matematiska grunden för att bearbeta data representerad i relationsmodellen Operationer i relationsalgebra Två typer av operationer: Operationer

Läs mer

EMPS(NAME, SALARY, DEPT)

EMPS(NAME, SALARY, DEPT) Databaser Design och programmering Relationsalgebra den matematiska grunden för att bearbeta data representerad i relationsmodellen Operationer i relationsalgebra Två typer av operationer: Operationer

Läs mer

Reducering till relationsscheman

Reducering till relationsscheman E-R-modellen, Reducering till rel.scheman 6-26 Reducering till relationsscheman En databas som överensstämmer med ett E-R-databasschema kan representeras som en mängd relationsscheman ty E-R-modellen och

Läs mer

Funktionella beroenden - teori

Funktionella beroenden - teori Relationell databasdesign, FB Teori 7-12 Funktionella beroenden - teori Vid utformning av databassystem är det av största vikt att man kan resonera systematiskt om funktionella beroenden bl.a. för att

Läs mer

Tentamen i Databasteknik

Tentamen i Databasteknik Tentamen i Onsdagen den 7 mars 2007 Tillåtna hjälpmedel: Allt skrivet material Använd bara framsidan på varje blad. Skriv max en uppgift per blad. Motivera allt, dokumentera egna antaganden. Oläslig/obegriplig

Läs mer

Databasdesign. E-R-modellen

Databasdesign. E-R-modellen Databasdesign Kapitel 6 Databasdesign E-R-modellen sid Modellering och design av databaser 1 E-R-modellen 3 Grundläggande begrepp 4 Begränsningar 10 E-R-diagram 14 E-R-design 16 Svaga entitetsmängder 19

Läs mer

Informationssystem och Databasteknik, 2I-1100 HT2001. Relationsalgebra. Relationsalgebran är sluten: R 1 op R 2 R 3.

Informationssystem och Databasteknik, 2I-1100 HT2001. Relationsalgebra. Relationsalgebran är sluten: R 1 op R 2 R 3. Primtiva operatorer projektion π selektion σ union differens - kryssprodukt X Relationsalgebra Tilldelning := Relationsalgebran är sluten: Med hjälp av dessa operatorer kan andra (icke-primitiva) operatorer

Läs mer

Tentamen i Databasteknik

Tentamen i Databasteknik Tentamen i Lördagen den 21 oktober 2006 Tillåtna hjälpmedel: Allt skrivet material Använd bara framsidan på varje blad. Skriv max en uppgift per blad. Motivera allt, dokumentera egna antaganden. Oläslig/obegriplig

Läs mer

n Detta för att kunna koncentrera oss på n Tal: number? n Symboler: symbol? n Strängar: string? n Tecken: char? n Boolskt: boolean?

n Detta för att kunna koncentrera oss på n Tal: number? n Symboler: symbol? n Strängar: string? n Tecken: char? n Boolskt: boolean? Tidigare TDDC74 Programming: Abstraktion och modellering Föreläsning 4 Symboler, Par, Listor Representation av par, Grafisk notation för par Representation av listor mha par Typiska listhanteringsprocedurer

Läs mer

Relationsalgebra. Varför behöver jag lära mig relationsalgebra?!

Relationsalgebra. Varför behöver jag lära mig relationsalgebra?! Relationsalgebra 1 Varför behöver jag lära mig relationsalgebra?! Relationsmodellen är den datamodell som används i de flesta moderna databassystemen Data beskrivs och lagras som relationer, dvs. som ett

Läs mer

Frågespråk mot relationsmodellen

Frågespråk mot relationsmodellen HUND Mindy Ossi Frågespråk mot relationsmodellen Relationsalgebra Relationsalgebra Primtiva operatorer projektion π selektion σ union differens - kryssprodukt X Med hjälp av dessa operatorer kan andra

Läs mer

Tillämpad Programmering (ID1218) :00-13:00

Tillämpad Programmering (ID1218) :00-13:00 ID1218 Johan Montelius Tillämpad Programmering (ID1218) 2014-03-13 09:00-13:00 Förnamn: Efternamn: Regler Du får inte ha något materiel med dig förutom skrivmateriel. Mobiler etc, skall lämnas till tentamensvakten.

Läs mer

Introduktion till algoritmer - Lektion 4 Matematikgymnasiet, Läsåret 2014-2015. Lektion 4

Introduktion till algoritmer - Lektion 4 Matematikgymnasiet, Läsåret 2014-2015. Lektion 4 Introduktion till algoritmer - Lektion 4 Matematikgymnasiet, Läsåret 014-015 Denna lektion ska vi studera rekursion. Lektion 4 Principen om induktion Principen om induktion är ett vanligt sätt att bevisa

Läs mer

Datastrukturer och algoritmer. Innehåll. Tabell. Tabell - exempel. Gränsyta till Tabell. Tabell. Modell. Hashtabell Relation, lexikon.

Datastrukturer och algoritmer. Innehåll. Tabell. Tabell - exempel. Gränsyta till Tabell. Tabell. Modell. Hashtabell Relation, lexikon. Datastrukturer och algoritmer Föreläsning 7 Tabell, hashtabell Relation & lexikon Innehåll Tabell Tabell Hashtabell Relation, lexikon Modell Uppslagsbok Organisation Ändlig avbildning av argument på värden

Läs mer

Tentamen i. TDDC67 Funktionell programmering och Lisp

Tentamen i. TDDC67 Funktionell programmering och Lisp 1 Linköpings tekniska högskola Institutionen för datavetenskap Anders Haraldsson Tentamen i TDDC67 Funktionell programmering och Lisp och äldre kurser TDDC57 Programmering, Lisp och funktionell programmering

Läs mer

Grunderna för relationsmodellen!

Grunderna för relationsmodellen! Grunderna för relationsmodellen! 1 Varför behöver jag lära mig relationsmodellen?! Relationsmodellen är den totalt dominerande datamodellen i moderna databassystem Beskriver databaser som en mängd tabeller

Läs mer

Ett databashanteringssystem (DBHS) skiljer sig från andra programmeringssystem bl.a.

Ett databashanteringssystem (DBHS) skiljer sig från andra programmeringssystem bl.a. 1 Kap. 1 INTRODUKTION Ett databashanteringssystem (DBHS) skiljer sig från andra programmeringssystem bl.a. 1. Möjligheten att hantera persistenta data 2. Möjligheten att accessera stora mängder av data

Läs mer

Avancerad SQL Kapitel 4. Databaser: Avancerad SQL. sid SQL datatyper 1 Integritetsbegränsningar 3 Auktorisering 7 Inbäddad SQL 10 Dynamisk SQL 10

Avancerad SQL Kapitel 4. Databaser: Avancerad SQL. sid SQL datatyper 1 Integritetsbegränsningar 3 Auktorisering 7 Inbäddad SQL 10 Dynamisk SQL 10 Avancerad SQL Kapitel 4 Avancerad SQL sid SQL datatyper 1 Integritetsbegränsningar 3 Auktorisering 7 Inbäddad SQL 10 Dynamisk SQL 10 Avancerad SQL, datatyper 4-1 Datatyper i SQL En datatyp, dvs. domän

Läs mer

Tentamen EIT:DB Databastmetodik 11/1 2013 kl. 13 17 + Lösningsförslag

Tentamen EIT:DB Databastmetodik 11/1 2013 kl. 13 17 + Lösningsförslag Tentamen EIT:DB Databastmetodik 11/1 2013 kl. 13 17 + Lösningsförslag Inga hjälpmedel är tillåtna (annat än ordbok). Kort syntaxsamling för delar av SQL samt lista med symboler för relationsalgebraiska

Läs mer

TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 3 Jonas Lindgren, Institutionen för Datavetenskap, LiU

TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 3 Jonas Lindgren, Institutionen för Datavetenskap, LiU TDDC30 Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 3 Jonas Lindgren, Institutionen för Datavetenskap, LiU På denna föreläsning: Abstrakta datatyper Listor Stackar

Läs mer

1 Duala problem vid linjär optimering

1 Duala problem vid linjär optimering Krister Svanberg, april 2012 1 Duala problem vid linjär optimering Detta kapitel handlar om två centrala teoretiska resultat för LP, nämligen dualitetssatsen och komplementaritetssatsen. Först måste vi

Läs mer

TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 6 Jonas Lindgren, Institutionen för Datavetenskap, LiU

TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 6 Jonas Lindgren, Institutionen för Datavetenskap, LiU TDDC30 Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 6 Jonas Lindgren, Institutionen för Datavetenskap, LiU På denna föreläsning: Sortering Selectionsort, Bubblesort,

Läs mer

729G74 IT och programmering, grundkurs. Tema 2. Föreläsning 3 Jody Foo,

729G74 IT och programmering, grundkurs. Tema 2. Föreläsning 3 Jody Foo, 729G74 IT och programmering, grundkurs Tema 2. Föreläsning 3 Jody Foo, jody.foo@liu.se Föreläsningsöversikt Information i grafstrukturer Diskret matematik Relationer: kopplingar mellan mängder Funktioner

Läs mer

Föreläsning 2 Datastrukturer (DAT037)

Föreläsning 2 Datastrukturer (DAT037) Föreläsning 2 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-11-02 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037 Tidskomplexitet

Läs mer

Tentamen DATABASTEKNIK - 1DL116, 1MB025

Tentamen DATABASTEKNIK - 1DL116, 1MB025 Uppsala universitet Institutionen för informationsteknologi Kjell Orsborn, Tore Risch Tentamen 2004-08-16 DATABASTEKNIK - 1DL116, 1MB025 Datum...Måndagen den 16 Augusti, 2004 Tid...14:00-19:00 Jourhavande

Läs mer

Språket Python - Del 1 Grundkurs i programmering med Python

Språket Python - Del 1 Grundkurs i programmering med Python Hösten 2009 Dagens lektion Ett programmeringsspråks byggstenar Några inbyggda datatyper Styra instruktionsflödet Modulen sys 2 Ett programmeringsspråks byggstenar 3 ETT PROGRAMMERINGSSPRÅKS BYGGSTENAR

Läs mer

Linjärt minne. Sammanhängande minne är ej flexibelt. Effektivt

Linjärt minne. Sammanhängande minne är ej flexibelt. Effektivt Binära träd (forts) Ett binärt träd kan lagras i ett enda sammanhängande minne Roten har index 1 Vänster barn till nod i har index 2*i Höger barn till nod i har index 2*i + 1 Föräldern till nod i har index

Läs mer

DIVISIONSEXEMPEL RELATIONSALGEBRA OCH SQL. r s använder vi för att uttrycka frågor där ordet alla figurerar:

DIVISIONSEXEMPEL RELATIONSALGEBRA OCH SQL. r s använder vi för att uttrycka frågor där ordet alla figurerar: DIVISIONSEXEMPEL RELATIONSALGEBRA OCH SQL r s använder vi för att uttrycka frågor där ordet alla figurerar: Ex. Vilka personer har stamkundskort vid ALLA klädesbutiker i stad X? Vilka personer har bankkonto

Läs mer

Problemlösning och funktioner Grundkurs i programmering med Python

Problemlösning och funktioner Grundkurs i programmering med Python Hösten 2009 Dagens lektion Problemlösningsstrategier Repetition av funktioner Mer om funktioner 2 Problemlösningsstrategier 3 PROBLEMLÖSNINGSSTRATEGIER Strategier Det finns ett flertal olika ansatser till

Läs mer

I kursen i endimensionell analys är mängden av reella tal (eng. real number), R, fundamental.

I kursen i endimensionell analys är mängden av reella tal (eng. real number), R, fundamental. Lunds tekniska högskola Datavetenskap Lennart ndersson Föreläsningsanteckningar EDF10 4 Mängder 4.1 Motivering Mängden är den mest grundläggande diskreta strukturen. Nästan alla matematiska begrepp går

Läs mer

Datastrukturer och algoritmer

Datastrukturer och algoritmer Datastrukturer och algoritmer Föreläsning 16 2 Innehåll Snabbrepetition Exempeltentamen Kursutvärdering Mina målsättningar Kursens mål: 3 Rolig och viktig kurs Bli en bättre programmerare och inse att

Läs mer

Dagens föreläsning Programmering i Lisp Fö 7. Sammanfattning funktionell programmering Exempel på funktionella programspråk

Dagens föreläsning Programmering i Lisp Fö 7. Sammanfattning funktionell programmering Exempel på funktionella programspråk 1 Dagens föreläsning Programmering i Lisp Fö 7 Kopplingen funktionella programmering och diskret matematik. Jämför vad ni hittills gjort i denna kurs och i den diskreta matematiken, med referenser in i

Läs mer

Tommy Färnqvist, IDA, Linköpings universitet. 1 ADT Map/Dictionary 1 1.1 Definitioner... 1 1.2 Implementation... 2

Tommy Färnqvist, IDA, Linköpings universitet. 1 ADT Map/Dictionary 1 1.1 Definitioner... 1 1.2 Implementation... 2 Föreläsning 5 ADT Map/Dictionary, hashtabeller TDDI16: DALG Utskriftsversion av föreläsning i Datastrukturer och algoritmer 16 september 2015 Tommy Färnqvist, IDA, Linköpings universitet 5.1 Innehåll Innehåll

Läs mer

Introduktion till programmering SMD180. Föreläsning 9: Tupler

Introduktion till programmering SMD180. Föreläsning 9: Tupler Introduktion till programmering Föreläsning 9: Tupler 1 1 Sammansatta datatyper Strängar Sekvenser av tecken Icke muterbara Syntax: "abcde" Listor Sekvenser av vad som helst Muterbara Syntax: [1, 2, 3]

Läs mer

IT för personligt arbete F5

IT för personligt arbete F5 IT för personligt arbete F5 Datalogi del 1 DSV Peter Mozelius 1 En dators beståndsdelar 1) Minne 2) Processor 3) Inmatningsenheter 1) tangentbord 2) scanner 3) mus 4) Utmatningsenheter 1) bildskärm 2)

Läs mer

Dynamisk programmering. Dynamisk programmering. Dynamisk programmering. Dynamisk programmering

Dynamisk programmering. Dynamisk programmering. Dynamisk programmering. Dynamisk programmering Betrakta ett lagerhållningsproblem i flera tidsperioder. Vi har tillverkning och försäljning av produkter i varje tidsperiod. Dessutom kan vi lagra produkter mellan tidsperioder, för att utnyttja stordriftsfördelar

Läs mer

Predikatlogik: Normalformer. Klas Markström

Predikatlogik: Normalformer. Klas Markström 1 Precis som i satslogik så är det bekvämt att kunna hitta en normalform för meningar. Om vi kan utgå från att alla meningar är på normalform så behöver vi t.e.x. inte bekymra oss om en massa specialfall

Läs mer

Objekt och klasser - Introduktion. Objekt. SparKonto.java 2. SparKonto.java 1. Konton.java. Ett objekt har: Ett bankkonto

Objekt och klasser - Introduktion. Objekt. SparKonto.java 2. SparKonto.java 1. Konton.java. Ett objekt har: Ett bankkonto Objekt och klasser - Introduktion Objekt Ð Begreppet objekt Ð Hur klasser anvšnds fšr att skapa objekt Ð Fšr-definierade klasser Ð Metoder och parameteršverfšring Ð Definiera klasser Ð Modifierare Ð Statiska

Läs mer

Hur implementera algoritmerna på maskinnivå - datorns byggstenar

Hur implementera algoritmerna på maskinnivå - datorns byggstenar Hur implementera algoritmerna på maskinnivå - datorns byggstenar Binära tal Boolesk logik grindar och kretsar A A extern representation intern representation minnet i datorn extern representation 1000001

Läs mer

Optimering. Optimering

Optimering. Optimering TAOP88 Optimering för ingenjörer Examinator: Kaj Holmberg kaj.holmberg@liu.se Kurshemsida: http://courses.mai.liu.se/gu/taop88 Lärare: Föreläsningar: Kaj Holmberg Lektioner, labbar: Oleg Burdakov, William

Läs mer

TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 8 Jonas Lindgren, Institutionen för Datavetenskap, LiU

TDDC30. Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 8 Jonas Lindgren, Institutionen för Datavetenskap, LiU TDDC30 Objektorienterad programmering i Java, datastrukturer och algoritmer. Föreläsning 8 Jonas Lindgren, Institutionen för Datavetenskap, LiU På denna föreläsning: Träd Traversering Insättning, borttagning

Läs mer

TENTAMEN: Algoritmer och datastrukturer. Läs detta! Uppgifterna är inte avsiktligt ordnade efter svårighetsgrad.

TENTAMEN: Algoritmer och datastrukturer. Läs detta! Uppgifterna är inte avsiktligt ordnade efter svårighetsgrad. 1 (8) TENTMEN: lgoritmer och datastrukturer Läs detta! Uppgifterna är inte avsiktligt ordnade efter svårighetsgrad. örja varje uppgift på ett nytt blad. Skriv inga lösningar i tesen. Skriv ditt idnummer

Läs mer

Programdesign, databasdesign. Databaser - Design och programmering. Funktioner. Relationsmodellen. Relation = generaliserad funktion.

Programdesign, databasdesign. Databaser - Design och programmering. Funktioner. Relationsmodellen. Relation = generaliserad funktion. Databaser Design och programmering Relationsmodellen definitioner ER-modell -> relationsmodell nycklar, olika varianter Programdesign, databasdesign Databasdesign Konceptuell design Förstudie, behovsanalys

Läs mer

Karlstads Universitet, Datavetenskap 1

Karlstads Universitet, Datavetenskap 1 * * * * DAV B04 - Databasteknik! "# $ %'&( ) KaU - Datavetenskap - DAV B04 - MGö 132 Riktlinjer när man vill skapa en databas 1) Designa så att det är lätt att förstå innebörden. Kombinera inte attribut

Läs mer

IT för personligt arbete F6

IT för personligt arbete F6 IT för personligt arbete F6 Datalogi del 2 DSV Peter Mozelius Datarepresentation Det som lagras i en dator representeras i grunden som 1:or och 0:or Dessa binära värden kan sedan tolkas på olika sätt i

Läs mer

TMV166/186 Linjär Algebra M/TD 2011/2012 Läsvecka 1. Omfattning. Innehåll 2012-01-20. Lay, kapitel 1.1-1.9, Linjära ekvationer i linjär algebra

TMV166/186 Linjär Algebra M/TD 2011/2012 Läsvecka 1. Omfattning. Innehåll 2012-01-20. Lay, kapitel 1.1-1.9, Linjära ekvationer i linjär algebra TMV166/186 Linjär Algebra M/TD 2011/2012 Läsvecka 1 Omfattning Lay, kapitel 1.1-1.9, Linjära ekvationer i linjär algebra Innehåll Olika aspekter av linjära ekvationssystem 1. skärning mellan geometriska

Läs mer

Kapitel 1. betecknas detta antal med n(a). element i B; bet. A B. Den tomma mängden är enligt överenskommelsen en delmängd. lika; bet. A = B.

Kapitel 1. betecknas detta antal med n(a). element i B; bet. A B. Den tomma mängden är enligt överenskommelsen en delmängd. lika; bet. A = B. Kapitel 1 Mängdlära Begreppet mängd är fundamentalt i vårt tänkande; en mängd är helt allmänt en samling av objekt, vars antal kan vara ändligt eller oändligt. I matematiken kallas dessa objekt mängdens

Läs mer

Föreläsning 9: Talteori

Föreläsning 9: Talteori DD2458, Problemlösning och programmering under press Föreläsning 9: Talteori Datum: 2009-11-11 Skribent(er): Ting-Hey Chau, Gustav Larsson, Åke Rosén Föreläsare: Fredrik Niemelä Den här föreläsningen handlar

Läs mer

Lektion 8: Konstruktion av semantiska tablåer för PTL-formler

Lektion 8: Konstruktion av semantiska tablåer för PTL-formler Lektion 8: Konstruktion av semantiska tablåer för PTL-formler Till denna lektion hör uppgift 2, 6 och 0 i lärobokens avsnitt.6 (sid. 255). Lös uppgift 2 genom att konstruera en semantisk tablå. Följande

Läs mer

Kombinatorik. Kapitel 2. Allmänt kan sägas att inom kombinatoriken sysslar man huvudsakligen med beräkningar av

Kombinatorik. Kapitel 2. Allmänt kan sägas att inom kombinatoriken sysslar man huvudsakligen med beräkningar av Kapitel 2 Kombinatorik Allmänt kan sägas att inom kombinatoriken sysslar man huvudsakligen med beräkningar av det antal sätt, på vilket elementen i en given mängd kan arrangeras i delmängder på något sätt.

Läs mer

Objektorienterad programmering

Objektorienterad programmering Objektorienterad programmering Föreläsning 14 Copyright Mahmud Al Hakim mahmud@dynamicos.se www.webacademy.se Agenda Exceptionella händelser Vanliga Programfel Exception-klasser Automatiskt genererade

Läs mer

Karlstads Universitet, Datavetenskap 1

Karlstads Universitet, Datavetenskap 1 2003-01-20 DAV B04 - Databasteknik 2003-01-20 KaU - Datavetenskap - DAV B04 - MGö 26 Relationsmodellen En formell teori som baserar sig på (främst) mängdlära predikatlogik Föreslogs av E.F Codd 1970 i

Läs mer

Objekt och klasser - Introduktion

Objekt och klasser - Introduktion Objekt och klasser - Introduktion Begreppet objekt Hur klasser används för att skapa objekt Fördefinierade klasser Metoder och parameteröverföring Definiera klasser Modifierare Statiska variabler och metoder

Läs mer

Programmering i C++ EDA623 Objektorienterad programutveckling. EDA623 (Föreläsning 5) HT 2013 1 / 33

Programmering i C++ EDA623 Objektorienterad programutveckling. EDA623 (Föreläsning 5) HT 2013 1 / 33 Programmering i C++ EDA623 Objektorienterad programutveckling EDA623 (Föreläsning 5) HT 2013 1 / 33 Objektorienterad programutveckling Innehåll Grundläggande begrepp Relationer mellan objekt Grafisk representation

Läs mer

Kortsiktig produktionsplanering med hjälp av olinjär programmering

Kortsiktig produktionsplanering med hjälp av olinjär programmering Kortsiktig produktionsplanering med hjälp av olinjär programmering S. Velut, P-O. Larsson, J. Windahl Modelon AB K. Boman, L. Saarinen Vattenfall AB 1 Kortsiktig produktionsplanering Introduktion Optimeringsmetod

Läs mer

Datatyper och kontrollstrukturer. Skansholm: Kapitel 2) De åtta primitiva typerna. Typ Innehåll Defaultvärde Storlek

Datatyper och kontrollstrukturer. Skansholm: Kapitel 2) De åtta primitiva typerna. Typ Innehåll Defaultvärde Storlek De åtta primitiva typerna Java, datatyper, kontrollstrukturer Skansholm: Kapitel 2) Uppsala Universitet 11 mars 2005 Typ Innehåll Defaultvärde Storlek boolean true, false false 1 bit char Tecken \u000

Läs mer

Logik. Boolesk algebra. Logik. Operationer. Boolesk algebra

Logik. Boolesk algebra. Logik. Operationer. Boolesk algebra Logik F4 Logik Boolesk algebra EDAA05 Roger Henriksson Jonas Wisbrant Konsten att, och vetenskapen om, att resonera och dra slutsatser. Vad behövs för att man ska kunna dra en slutsats? Hur kan man dra

Läs mer

de var svåra att implementera och var väldigt ineffektiva.

de var svåra att implementera och var väldigt ineffektiva. OBS! För flervalsfrågorna gäller att flera alternativ eller inget alternativ kan vara korrekt. På flervalsfrågorna kan man bara ha rätt eller fel, dvs frågan måste vara helt korrekt besvarad. Totalt kan

Läs mer

Vad är en databas? Databaser. Relationsdatabas. Vad är en databashanterare? Vad du ska lära dig: Ordlista

Vad är en databas? Databaser. Relationsdatabas. Vad är en databashanterare? Vad du ska lära dig: Ordlista Databaser Vad är en databas? Vad du ska lära dig: Använda UML för att modellera ett system Förstå hur modellen kan översättas till en relationsdatabas Använda SQL för att ställa frågor till databasen Använda

Läs mer

Instruktioner - Datortentamen TDDD73 Funktionell och imperativ programmering i Python

Instruktioner - Datortentamen TDDD73 Funktionell och imperativ programmering i Python Instruktioner - Datortentamen TDDD73 Funktionell och imperativ programmering i Python Hjälpmedel Följande hjälpmedel är tillåtna: Exakt en valfri bok, t.ex. den rekommenderade kursboken. Boken får ha anteckningar,

Läs mer

Grundläggande logik och modellteori

Grundläggande logik och modellteori Grundläggande logik och modellteori Kapitel 6: Binära beslutsdiagram (BDD) Henrik Björklund Umeå universitet 22. september, 2014 Binära beslutsdiagram Binära beslutsdiagram (Binary decision diagrams, BDDs)

Läs mer

De optimeringsproblem som kommer att behandlas i denna kurs kan alla (i princip) skrivas. 1 2 xt Hx + c T x. minimera

De optimeringsproblem som kommer att behandlas i denna kurs kan alla (i princip) skrivas. 1 2 xt Hx + c T x. minimera Krister Svanberg, mars 2012 1 Introduktion De optimeringsproblem som kommer att behandlas i denna kurs kan alla (i princip) skrivas på följande allmänna form: f(x) (1.1) x F, där x = (x 1,..., x n ) T

Läs mer

Linjär algebra på några minuter

Linjär algebra på några minuter Linjär algebra på några minuter Linjära ekvationssystem Ekvationssystem: { Löses på matrisform: ( ) ( ) I det här fallet finns en entydig lösning, vilket betyder att determinanten av koefficientmatrisen

Läs mer

Schema XMLSIE_1_0.xsd

Schema XMLSIE_1_0.xsd Schema XMLSIE_1_0.xsd Elements Groups Complex types Simple types SIE BalanceGROUP BalanceWithPeriodTYPE AccountIdTYPE JournalInfoTYPE AccountTypeTYPE LedgerEntryTYPE CurrencyIdTYPE ObjectGroupReferenceTYPE

Läs mer

Tentamen: Programutveckling ht 2015

Tentamen: Programutveckling ht 2015 Tentamen: Programutveckling ht 2015 Datum: 2015-11-04 Tid: 09:00-13:00 Sal: Ansvarig: Resultat: Hjälpmedel: Maxpoäng: Betygsgränser: Anslås inom 3 veckor. Inga 40 p 20 p för G, 32 p för VG. Iakttag följande:

Läs mer

LUNDS TEKNISKA HÖGSKOLA EDAA01 Programmeringsteknik fördjupningskurs Institutionen för datavetenskap HT 2015

LUNDS TEKNISKA HÖGSKOLA EDAA01 Programmeringsteknik fördjupningskurs Institutionen för datavetenskap HT 2015 LUNDS TEKNISKA HÖGSKOLA EDAA01 Programmeringsteknik fördjupningskurs Institutionen för datavetenskap HT 2015 Testning med JUnit 1 Inledning JUnit är ett ramverk för enhetstestning av Javakod. Det är utvecklat

Läs mer

18 juni 2007, 240 minuter Inga hjälpmedel, förutom skrivmateriel. Betygsgränser: 15p. för Godkänd, 24p. för Väl Godkänd (av maximalt 36p.

18 juni 2007, 240 minuter Inga hjälpmedel, förutom skrivmateriel. Betygsgränser: 15p. för Godkänd, 24p. för Väl Godkänd (av maximalt 36p. HH / Georgi Tchilikov DISKRET MATEMATIK,5p. 8 juni 007, 40 minuter Inga hjälpmedel, förutom skrivmateriel. Betygsgränser: 5p. för Godkänd, 4p. för Väl Godkänd (av maximalt 36p.). Förenkla (så mycket som

Läs mer

Rekursiva algoritmer sortering sökning mönstermatchning

Rekursiva algoritmer sortering sökning mönstermatchning Anders Haraldsson 1 Anders Haraldsson 2 Dagens föreläsning Programmering i Lisp Fö 6-7 Rekursiva strukturer rekursiva definitioner rekursiva funktioner rekursiva bevis: induktion - rekursion strukturell

Läs mer

Föreläsning 1: Dekomposition, giriga algoritmer och dynamisk programmering

Föreläsning 1: Dekomposition, giriga algoritmer och dynamisk programmering 2D1458, Problemlösning och programmering under press Föreläsning 1: Dekomposition, giriga algoritmer och dynamisk programmering Datum: 2007-09-04 Skribent(er): Anders Malm-Nilsson och Niklas Nummelin Föreläsare:

Läs mer

Tommy Färnqvist, IDA, Linköpings universitet. 1 ADT Map/Dictionary 1 1.1 Definitioner... 1 1.2 Implementation... 2

Tommy Färnqvist, IDA, Linköpings universitet. 1 ADT Map/Dictionary 1 1.1 Definitioner... 1 1.2 Implementation... 2 Föreläsning 4 ADT Map/Dictionary, hashtabeller, skip-listor TDDC91: DALG Utskriftsversion av föreläsning i Datastrukturer och algoritmer 9 september 2015 Tommy Färnqvist, IDA, Linköpings universitet 4.1

Läs mer

Kursplanering Objektorienterad programmering

Kursplanering Objektorienterad programmering Kursplanering Objektorienterad programmering Fakta Ämne Programmering Poäng 40 Yh-poäng Kurskod YSYS-OOP Klass Systemutvecklare.NET 2 Syfte och koppling till yrkesrollen Syftet är att få en stabil grund

Läs mer

6 Rekursion. 6.1 Rekursionens fyra principer. 6.2 Några vanliga användningsområden för rekursion. Problem löses genom:

6 Rekursion. 6.1 Rekursionens fyra principer. 6.2 Några vanliga användningsområden för rekursion. Problem löses genom: 6 Rekursion 6.1 Rekursionens fyra principer Problem löses genom: 1. förenkling med hjälp av "sig själv". 2. att varje rekursionssteg löser ett identiskt men mindre problem. 3. att det finns ett speciellt

Läs mer

Läsanvisning till Discrete matematics av Norman Biggs - 5B1118 Diskret matematik

Läsanvisning till Discrete matematics av Norman Biggs - 5B1118 Diskret matematik Läsanvisning till Discrete matematics av Norman Biggs - 5B1118 Diskret matematik Mats Boij 18 november 2001 13 Grupper Det trettonde kapitlet behandlar grupper. Att formulera abstrakta begrepp som grupper

Läs mer

Synkronisering. Föreläsning 8

Synkronisering. Föreläsning 8 Synkronisering Föreläsning 8 Synkronisering Så stort, intrikat och viktigt att det finns hela kurser om det i parallellprogrammering. Vi fuskar lite med några av de viktigaste bitarna! Synkronisering Vad

Läs mer

Träd. Sats. Grafer. Definition. En fullständig graf har en båge mellan varje par av noder. Definition

Träd. Sats. Grafer. Definition. En fullständig graf har en båge mellan varje par av noder. Definition Grafdefinitioner Träd N = {i}: noder (hörn) = {(i, )}, i N, N: bågar (kanter) Graf: G = (N, ) efinitioner Väg: Sekvens av angränsande bågar. ykel: Väg som startar och slutar i samma nod. En enkel väg innehåller

Läs mer

Provmoment: Ladokkod: Tentamen ges för: Tentamen TE111B El3. Namn: Personnummer: Tentamensdatum: 20120410 Tid: 14:00-18:00.

Provmoment: Ladokkod: Tentamen ges för: Tentamen TE111B El3. Namn: Personnummer: Tentamensdatum: 20120410 Tid: 14:00-18:00. Mikrodatorteknik Provmoment: Ladokkod: Tentamen ges för: Tentamen TE111B El3 7,5 högskolepoäng Namn: Personnummer: Tentamensdatum: 20120410 Tid: 14:00-18:00 Hjälpmedel: Totalt antal poäng på tentamen:

Läs mer

Tentamen Datastrukturer D DAT 036/INN960

Tentamen Datastrukturer D DAT 036/INN960 Tentamen Datastrukturer D DAT 036/INN960 18 december 2009 Tid: 8.30-12.30 Ansvarig: Peter Dybjer, tel 7721035 eller 405836 Max poäng på tentamen: 60. Betygsgränser, CTH: 3 = 24 p, 4 = 36 p, 5 = 48 p, GU:

Läs mer

Några saker som jag inte hann: Ur trigonometriska ettan kan vi uttrycka och i termer av. Vi delar båda led i trig. 1:an med :

Några saker som jag inte hann: Ur trigonometriska ettan kan vi uttrycka och i termer av. Vi delar båda led i trig. 1:an med : 1 Onsdag v 1 Några saker som jag inte hann: Ur trigonometriska ettan kan vi uttrycka och i termer av Vi delar båda led i trig 1:an med : Detta ger också att vi kan uttrycka : Formeln ger också en formel

Läs mer

Sortering. Intern/ extern? Antaganden. Vad kan vi kräva? Rank sort. Rank sort. På en nod/ distribuerad? Jämförelsebaserad/ icke jämförelsebaserad?

Sortering. Intern/ extern? Antaganden. Vad kan vi kräva? Rank sort. Rank sort. På en nod/ distribuerad? Jämförelsebaserad/ icke jämförelsebaserad? Sortering Föreläsning : Sorteringsalgoritmer Sortering: att ordna data i någon sekventiell ordning Sortering förekommer som del i många applikationer Kanonisk form för sorterat data? Skall den sorterade

Läs mer

TNK049 Optimeringslära

TNK049 Optimeringslära TNK49 Optimeringslära Clas Rydergren, ITN Föreläsning 7 Nätverksoptimering Billigaste uppspännande träd (MST) Billigaste väg (SP) Projektnätverk Minkostnadsflödesproblem Agenda Terminologi för grafer/nätverk

Läs mer

Länkade listor kan ingå som en del av språket, dock ej i C Länkade listor är ett alternativ till:

Länkade listor kan ingå som en del av språket, dock ej i C Länkade listor är ett alternativ till: Länkade listor i C Länkade listor kan ingå som en del av språket, dock ej i C Länkade listor är ett alternativ till: Dynamiskt allokerad array Arrayer allokerade på stacken Kan alltså användas till att

Läs mer

MS-A0409 Grundkurs i diskret matematik Appendix, del II

MS-A0409 Grundkurs i diskret matematik Appendix, del II MS-A0409 Grundkurs i diskret matematik Appendix, del II G. Gripenberg Aalto-universitetet 17 oktober 2013 G. Gripenberg (Aalto-universitetet) MS-A0409 Grundkurs i diskret matematikappendix, del II 17 oktober

Läs mer

Algebra I, 1MA004. Lektionsplanering

Algebra I, 1MA004. Lektionsplanering UPPSALA UNIVERSITET Matematiska Institutionen Dan Strängberg HT2016 Fristående, IT, KandDv, KandMa, Lärare 2016-11-02 Algebra I, 1MA004 Lektionsplanering Här anges rekommenderade uppgifter ur boken till

Läs mer

Föreläsning 6: Introduktion av listor

Föreläsning 6: Introduktion av listor Föreläsning 6: Introduktion av listor Med hjälp av pekare kan man bygga upp datastrukturer på olika sätt. Bland annat kan man bygga upp listor bestående av någon typ av data. Begreppet lista bör förklaras.

Läs mer

Tentamen i Databasteknik

Tentamen i Databasteknik Tentamen i Databasteknik Tisdagen den 15 mars 2010 Tillåtna hjälpmedel: Allt skrivet material och räknedosa Använd bara framsidan på varje blad. Skriv max en uppgift per blad. Motivera allt, dokumentera

Läs mer

Relationsdatabasdesign 2I-4067 HT99. Relationsalgebra. som resultat!

Relationsdatabasdesign 2I-4067 HT99. Relationsalgebra. som resultat! Relationsalgebra Relationsalgebra Relationsalgebran r ett formellt sprâk fˆr att extrahera data ur relationer. SprÂket r uppbyggt av ett litet antal operatorer. Tar en eller två tabeller De primitiva operatorerna

Läs mer

Innehåll. Föreläsning 10. Specifikation. Mängd. Specifikation. Konstruktion av mängd. Mängd Lexikon Hashtabell

Innehåll. Föreläsning 10. Specifikation. Mängd. Specifikation. Konstruktion av mängd. Mängd Lexikon Hashtabell Innehåll Föreläsning Mängd, lexikon och hashtabell Mängd Lexikon Hashtabell Mängd Specifikation Modell: En påse, men den är inte riktigt bra eftersom man tex kan ha mängder med gemensamma element. Organisation:

Läs mer

TDDE10 TDDE11, 725G91/2. Objektorienterad programmering i Java, Föreläsning 4 Erik Nilsson, Institutionen för Datavetenskap, LiU

TDDE10 TDDE11, 725G91/2. Objektorienterad programmering i Java, Föreläsning 4 Erik Nilsson, Institutionen för Datavetenskap, LiU TDDE10 TDDE11, 725G91/2 Objektorienterad programmering i Java, Föreläsning 4 Erik Nilsson, Institutionen för Datavetenskap, LiU På denna föreläsning: Ett större exempel på OOP Objektorienterad Analys (OOA)

Läs mer

Formell Verifiering. Hur vet man att ett system fungerar korrekt? Lisa Kaati

Formell Verifiering. Hur vet man att ett system fungerar korrekt? Lisa Kaati Formell Verifiering Hur vet man att ett system fungerar korrekt? Lisa Kaati Innehåll Motivering Formell verifiering Modellkontroll (model checking) Verifiering av kod Forskning Dator system finns överallt

Läs mer

1 De fyra fundamentala underrummen till en matris

1 De fyra fundamentala underrummen till en matris Krister Svanberg, mars 2012 1 De fyra fundamentala underrummen till en matris 1.1 Definition av underrum En given delmängd M av IR n säges vara ett underrum i IR n om följande gäller: För varje v 1 M,

Läs mer

TENTAMEN PROGRAMMERING I JAVA, 5P SOMMARUNIVERSITETET

TENTAMEN PROGRAMMERING I JAVA, 5P SOMMARUNIVERSITETET UMEÅ UNIVERSITET Datavetenskap 010824 TENTAMEN PROGRAMMERING I JAVA, 5P SOMMARUNIVERSITETET Datum : 010824 Tid : 9-15 Hjälpmedel : Inga Antal uppgifter : 7 Totalpoäng : 40 (halva poängtalet krävs normalt

Läs mer

Föreläsning 10. Grafer, Dijkstra och Prim

Föreläsning 10. Grafer, Dijkstra och Prim Föreläsning 10 Grafer, Dijkstra och Prim Föreläsning 10 Grafer Representation av grafer Dijkstras algoritm Implementation av Dijkstras algoritm Minimium spanning tree Läsanvisning och uppgifter Broarna

Läs mer