Vad du skall komma ihåg från tidigare föreläsningar. Dagens föreläsning. Evaluering av frågor. Data dictionary

Storlek: px
Starta visningen från sidan:

Download "Vad du skall komma ihåg från tidigare föreläsningar. Dagens föreläsning. Evaluering av frågor. Data dictionary"

Transkript

1 Dagens föreläsning Vad du skall komma ihåg från tidigare föreläsningar Vad du skall komma ihåg från tidigare föreläsningar Optimering av frågor Algebraisk omformulering Kostnadsberäkningar Evaluering av frågor Algoritmer för relationsoperatorer Beräkning av resultatets storlek DML-delen av SQL Relationsalgebraiska operatorer Mappning av SQL-uttryck på relationsalgebra Indexering KTH & SU, CSC Databasteknik Föreläsning 10 sid 1 KTH & SU, CSC Databasteknik Föreläsning 10 sid 2 Data dictionary Evaluering av frågor Databasen innehåller en beskrivning av sig själv. Denna beskrivning lagras i en databas, Data dictionary (DD). I DD finns information om: alla termer och deras typer, relationer, användare och deras rättigheter, indexfiler, rapporter, statistik, analys, filer, backup-filer, historik, återhämtningsinformation, program i systemet, in- och utdata till programmen. DD för varuhuset: RelName AttrName Domain ITerm ForKey FKRel FRITerm Anställd Namn VarChar(50) 1 no - - Anställd Chef VarChar(50) - yes Anställd Namn Anställd Lön Integer - no - - Anställd Avd VarChar(30) - yes Avdelning Avd Försäljning Avd VarChar(30) 1 yes Avdelning Avd Försäljning Varunr Smallint 2 yes Vara Varunr Data DD Data Evaluering av frågor Fråga lexikal analys syntaxkontroll frågan på internt format (RA) optimering (evalueringsplan) kodgenerering frågan i körbar kod exekvering svaret (om det finns ett svar) KTH & SU, CSC Databasteknik Föreläsning 10 sid 3 KTH & SU, CSC Databasteknik Föreläsning 10 sid 4 1

2 Varför optimera? Ex: Vilka firmor levererar sportskor till sportavdelningen? B-trädsindex med partiell matchning av nyckeln företag (σ lager.varunr=vara.varunr vara.typ='sportskor' lager.avd='sport' (lager vara)) Antag att lager har tupler och vara har tmp lager vara tupler från lager 600 tupler från vara tupler till tmp 2. σ lager.varunr=vara.varunr vara.typ='sportskor' lager.avd='sport' (tmp) tupler filtreras genom primärminnet 50 tupler kvar i primärminnet 3. resultat företag 3 tupler kvar i primärminnet accesser till sekundärminnet i värsta fall Varför optimera? företag ( σ avd='sport' ( lager varunr (σ typ='sportskor' (vara))) lager har tupler, vara har tmp varunr (σ typ='sportskor' (vara)) 600 tupler från vara läses in med 600 läsningar från sekundärminnet 50 tupler till tmp 2. resultat företag (σ avd='sport' (lager tmp)) max tupler filtreras genom primärminnet 3 tupler kvar i primärminnet = accesser till sekundärminnet i värsta fall Det är klart att vi skall optimera! KTH & SU, CSC Databasteknik Föreläsning 10 sid 5 KTH & SU, CSC Databasteknik Föreläsning 10 sid 6 Transformationsregler 1. Kaskadering av σ. σc1 c2 c3 (R ) σc1(σc2(σc3( (R )))) 2. Kommutativitet hos σ. σc1(σc2(r )) σc2(σc1(r )). 3. Kaskader av. Lista1 ( Lista2 ( Lista3 ( (R )))) Lista1 (R ). 4. Kommutering av σ och. Lista (σ c (R )) σ c ( Lista (R )), om c opererar endast på de attribut som finns i listan. 5. Kommutativitet hos (eller ). R c S S c R. 6. Kommutering av σ och (eller ). Om attributen i villkoret c för selektionen endast kommer från R så: σ c (R S) σ c (R) S. 7. Kommutering av och (eller ). Om Lr är attribut i R och Ls är attribut i S och L = Lr Ls, så L (R c S) Lr (R) c Ls (S). Om joinvillkoret c innehåller attribut som inte finns i L så behövs en slutlig projektion, dvs om L Lr Ls så L (R c S ) L ( Lr (R ) c Ls (S )). Transformationsregler 8. Mängdoperationers kommutativitet. är kommutativa, men - är inte kommutativ. 9. Associativitet hos,. Om ϕ är en av,, eller så: (R ϕ S ) ϕ T R ϕ (S ϕ T ). 10. Kommutering av σ och mängdoperationer. σ kommuterar med,, och. Om ϕ är en av,,, eller så: σ c (R ϕ S ) σ c (R ) ϕ σ c (S ). 11. Kommutering av och mängdoperationer. kommuterar med,, och. Om ϕ är en av,,, eller så: L (R ϕ S ) L (R ) ϕ L (S ). 12. De Morgans lag: (c1 c2) ( c1) ( c2) (c1 c2) ( c1) ( c2) KTH & SU, CSC Databasteknik Föreläsning 10 sid 7 KTH & SU, CSC Databasteknik Föreläsning 10 sid 8 2

3 En heuristisk algoritm för optimering. En enkel algoritm Bygg ett initialt evalueringsträd. 1. Använd regel 1 för att kaskadera alla σ som har konjunktiva villkor. 2. Använd reglerna 2, 4, 6 och 10 för att flytta ner alla σ så långt som möjligt i trädet. 3. Kombinera med efterföljande σ till. 4. Använd reglerna 3, 4, 7 och 11 för att föra ner så långt som möjligt i trädet. 5. Använd regel 9 för att arrangera om trädets lövnoder så att de mest restriktiva exekveras först. Mest restriktiv = minst utrymme i primärminnet. 6. Slutligen, identifiera grupper som kan exekveras som en sammanhängande operation och gör rutiner för exekvering. Antag databas: Bok (ISBN, titel, förf, förl) Förläggare (Förl, adress, ort) (Namn, adress, ort, kortnr) (KortNr, ISBN, Datum) Ett enkelt exempel En virtuell vy men inte temporär vy, X, finns, skapad genom satsen create view X as select titel, förf, förl,.isbn, adress, ort,.kortnr, datum from,, Bok where.kortnr =.kortnr and Bok.ISBN =.ISBN dvs: f (σ g (,, Bok)) där f är titel, förf, förl,.isbn, adress, ort,.kortnr, datum och g är.kortnr =.kortnr Bok.ISBN =.ISBN KTH & SU, CSC Databasteknik Föreläsning 10 sid 9 KTH & SU, CSC Databasteknik Föreläsning 10 sid 10 Vi vill veta vilka titlar som lånats ut mellan och Endast titlarna är intressanta. Kan ske genom select titel from X where datum > and datum < ; eller ( (X)) Vi får ett evalueringsträd enligt: σ datum > σ datum < , förf, förl,.isbn, adress, ort,.kortnr, datum f σ g Bok σ.kortnr =.kortnr Bok.ISBN =.ISBN Bok KTH & SU, CSC Databasteknik Föreläsning 10 sid 11 KTH & SU, CSC Databasteknik Föreläsning 10 sid 12 3

4 a. splittra σ g i σ Bok.ISBN=.ISBN och σ.kortnr=.kortnr. b. datum har endast med att göra. Flytta ned till strax ovanför. c. σ.kortnr=.kortnr har endast med nedre vänstra kartesiska prod att göra, för ned till strax ovanför denna. a. Kombinera och f samt använd reglerna 3 och 4 på res + σ Bok.ISBN=.ISBN σ Bok.ISBN =.ISBN σ Bok.ISBN =.ISBN, förf, förl,.isbn, adress, ort,.kortnr, datum σ.kortnr =.kortnr Bok,Bok.ISBN,.ISBN KTH & SU, CSC Databasteknik Föreläsning 10 sid 13 KTH & SU, CSC Databasteknik Föreläsning 10 sid 14 σ.kortnr =.kortnr Bok Använd regel 7 på första kartesiska produkten och proj ovanför denna Använd regel på proj + sel ovanför andra kartesiska produkten σ Bok.ISBN =.ISBN σ Bok.ISBN =.ISBN.ISBN, Bok.ISBN.ISBN, Bok.ISBN σ.kortnr =.kortnr σ.kortnr =.kortnr Bok KTH & SU, CSC Databasteknik Föreläsning 10 sid 15.ISBN,.kortnr,.kortnr Bok KTH & SU, CSC Databasteknik Föreläsning 10 sid 16 4

5 Använd regel 7 på andra kartesiska produkten och proj ovanför denna Proj + sel + kartesisk prod på två ställen kan kombineras till naturlig-join (steg 4 i alg) σ Bok.ISBN =.ISBN.ISBN, Bok.ISBN.ISBN, ISBN σ.kortnr =.kortnr Bok.ISBN,.kortnr.kortnr KTH & SU, CSC Databasteknik Föreläsning 10 sid 17 Bok ISBN, kortnr kortnr KTH & SU, CSC Databasteknik Föreläsning 10 sid 18 Ordna om lövnoderna så att minsta datamängden hamnar längst till vänster o s v.isbn, ISBN Tidsuppskattning för operationer Antal blocköverföringar: b Tiden för att föra över ett block: t T Antal disksökningar: S Tiden för en sökning: t S Antal block som behövs för att lagra relationen R: b(r) Tiden för att söka igenom relationen R: b(r)*t T + t S ISBN, kortnr Bok kortnr Tiden för bearbetning i primärminnet är i allmänhet mycket mindre än diskhanteringen. KTH & SU, CSC Databasteknik Föreläsning 10 sid 19 KTH & SU, CSC Databasteknik Föreläsning 10 sid 20 5

6 Selektion Selektion med hjälp av index Linjärsökning: b(r)*t T + t S efter nyckel: b(r) /2 *t T + t S men i värsta fall b(r)*t T + t S Binärsökning (om filen är sorterad): (log 2 b(r))*(t T + t S ) I båda fallen kan man behöva lagra resultatet på disk och då tillkommer denna kostnad. Selektiviteten hos ett villkor: 1/V(A, r) där V är antalet distinkta värden för attributet A i relationen r Storleken i block: 1/V(A, r)*n r /f r där n r är antalet tupler i relationen r och f r är blockningsfaktorn för r (antalet tupler i ett block) Antal block för en punktselektion 1/V(A, r)*n r /f r som måste mellanlagras till en kostnad av (1/V(A, r)*n r /f r )*t T + t S B + -träd med höjden h. Primärindex Likhet i nyckel: Kostnad (h+1)*(t T + t S ) Likhet i ickenyckelattribut: Som linjärsökning. Sekundärindex (h+n)*(t T + t S ) där n är antalet tupler som selekteras Hash-index Primärindex Likhet i nyckel: Kostnad 2*(t T + t S ) Likhet i ickenyckelattribut: Som linjärsökning. Sekundärindex (n+1)*(t T + t S ) där n är antalet tupler som selekteras KTH & SU, CSC Databasteknik Föreläsning 10 sid 21 KTH & SU, CSC Databasteknik Föreläsning 10 sid 22 Sortering Projektion Vanligast: mergesort Två faser: Hitta sorterade följder Samsortera följder Antal blockläsningar/skrivningar: 2*B(R)*log 2 B(R) (om vi inte buffrar några block) Tiden blir då: (log 2 B(R))*(B(R)/4)*t S +(2*B(R)*log 2 B(R))*t T Här är det lite förenklade beräkningar jfrt med boken. Primärnyckel: Som sekventiell sökning Lagring av resultatet: n(x)/n(t)* b(r) antal block där n(a) är antalet byte för attributet/attributen X och n(t) är tupelstorleken i byte. Övriga attribut: Som för ovanstående men följt av eliminering av dubbletter. Dubbletter kan elimineras genom att sortera relationen eller med hjälp av hashing. Hash-baserad dubbletteliminering: Partitionera relationen m a p hash-värde för hela tupler. Varje partition läses in och varje unikt värde skrivs till resultatet. KTH & SU, CSC Databasteknik Föreläsning 10 sid 23 KTH & SU, CSC Databasteknik Föreläsning 10 sid 24 6

7 Nästlad loop: foreach r in R do foreach s in S do add(r s) Join I värsta fall (kartesisk produkt) n R *b(s)+ b(r) block läses och n R *n S /f resultat skrivs annars n R *b(s)+ b(r) block läses och (n R *n S /V(A, r))/f resultat där A är det selekterande attributet. Förbättring: Blockbaserad join: M-1 block används till R och ett block för S. S kommer att skannas b(r)/(m-1) ggr Index kan användas i den inre loopen för att undersöka villkoren för joinoperationen. Kan används för naturlig- och equi-join R(X), S(Y) sorteras m a p X Y. R S A B B C Merge-join Vi behöver bara genomlöpa relationerna en gång+sortering KTH & SU, CSC Databasteknik Föreläsning 10 sid 25 KTH & SU, CSC Databasteknik Föreläsning 10 sid 26 Hash-join Gruppering och aggregering Hasha alla tupler till M hinkar m a p X Y. För varje par av hinkar med samma hash-värde skriv den konstruerade tupeln, bestående av unika kombinationer, till resultatet Antal blockoperationer: 3*(b(R) + b(s)) Obs 1: Alla tupler med samma värde på H(X Y) ligger i samma hink 2: Alla tupler i en hink måste ligga i primärminnet så antalet hinkar måste väljas efter utrymmet i PM. 1 Sortera med det/de grupperande attributet/en som sorteringsbegrepp. Applicera den aggregerande funktionen för varje värde på det grupperande attributet. Skriv till resultatet värdet av den aggregerande funktionen och det/de grupperande attributet/en 2 Använd hashing för att skapa grupperingen. För varje hink appliceras den aggregerande funktionen Antalet blockoperationer: 3*b(R) + resultat KTH & SU, CSC Databasteknik Föreläsning 10 sid 27 KTH & SU, CSC Databasteknik Föreläsning 10 sid 28 7

8 Optimeringskostnad Det viktigaste på denna föreläsning Heuristisk optimering att föredra men Kostnadsberäkningar ger en bättre evaluseringsplan. Pipelining (utdata från en algoritm tas som indata till en annan) kan minska kostnaden. Minnesanvändningen viktig för exekveringen. Indexering kan både minska och öka kostnaden Förstå principerna för optimering Flytta selektion och projektion så nära basrelationerna som möjligt Kombinera selektion och kartesisk produkt till join Ordna lövnoderna efter storleksordning så att förstaoperanden om möjligt kan ligga i PM Beräkning av antalet blockoperationer för de grundläggande operationerna Algebraiska ekvivalenser Materialiserade vyer (en vy som lagrar värden) kan minska kostnaden (såväl som öka) men har nackdelen att den måste synkroniseras med underliggande relationer. KTH & SU, CSC Databasteknik Föreläsning 10 sid 29 KTH & SU, CSC Databasteknik Föreläsning 10 sid 30 Att läsa till nästa gång Silb(6): kap 22, 23, Appendix D, Appendix E Silb(5): kap 9, 10, Appendix A, Appendix B Föreläsningsanteckningar för föreläsning 12 KTH & SU, CSC Databasteknik Föreläsning 10 sid 31 8

Dagens föreläsning. KTH & SU, CSC Databasteknik Föreläsning 10 sid 1

Dagens föreläsning. KTH & SU, CSC Databasteknik Föreläsning 10 sid 1 Dagens föreläsning Vad du skall komma ihåg från tidigare föreläsningar Optimering av frågor Algebraisk omformulering Kostnadsberäkningar Evaluering av frågor Algoritmer för relationsoperatorer Beräkning

Läs mer

Tentamen i Databasteknik

Tentamen i Databasteknik Tentamen i Onsdagen den 7 mars 2007 Tillåtna hjälpmedel: Allt skrivet material Använd bara framsidan på varje blad. Skriv max en uppgift per blad. Motivera allt, dokumentera egna antaganden. Oläslig/obegriplig

Läs mer

Tentamen i Databasteknik

Tentamen i Databasteknik Tentamen i Lördagen den 21 oktober 2006 Tillåtna hjälpmedel: Allt skrivet material Använd bara framsidan på varje blad. Skriv max en uppgift per blad. Motivera allt, dokumentera egna antaganden. Oläslig/obegriplig

Läs mer

Tentamen i Databasteknik

Tentamen i Databasteknik Tentamen i Databasteknik Tisdagen den 15 mars 2010 Tillåtna hjälpmedel: Allt skrivet material och räknedosa Använd bara framsidan på varje blad. Skriv max en uppgift per blad. Motivera allt, dokumentera

Läs mer

Frågeoptimering. Frågeoptimering kapitel 14

Frågeoptimering. Frågeoptimering kapitel 14 Frågeoptimering kapitel 14 Frågeoptimering sid Introduktion 1 Transformering av relationsuttyck 4 Kataloginformation för kostnadsestimering Statisk information för kostnadsestimering Kostnadsbaserad optimering

Läs mer

Tentamen. i Databasteknik. lördagen den 13 mars 2004. Tillåtna hjälpmedel: Allt upptänkligt material

Tentamen. i Databasteknik. lördagen den 13 mars 2004. Tillåtna hjälpmedel: Allt upptänkligt material Tentamen i lördagen den 13 mars 2004 Tillåtna hjälpmedel: Allt upptänkligt material Använd bara framsidan på varje blad. Skriv max en uppgift per blad. Motivera allt, dokumentera egna antaganden. Oläslig/obegriplig

Läs mer

Tentamen i. Databasteknik

Tentamen i. Databasteknik Tentamen i Databasteknik Torsdagen den 10/3 2005 14.00-19.00 Tillåtna hjälpmedel: Allt tänkbart material Använd bara framsidan på varje blad Skriv max en uppgift per blad. Skriv tydligt. Motivera allt.

Läs mer

Karlstads Universitet, Datavetenskap 1

Karlstads Universitet, Datavetenskap 1 DAV B04 - Databasteknik KaU - Datavetenskap - DAV B04 - MGö 151 Lagring av databaser på sekundärminne Att läsa/skriva på sekundärminne (hårddisk) är en långsam process jämfört med operationer i primärminnet

Läs mer

Databaser Design och programmering Minnesteknik Minnesteknik, forts Utvecklingen Hårddisk Hårddisk, forts

Databaser Design och programmering Minnesteknik Minnesteknik, forts Utvecklingen Hårddisk Hårddisk, forts Databaser Design och programmering Fysisk design av databasen att ta hänsyn till implementationsaspekter minnesteknik filstrukturer indexering 1 Minnesteknik Primärminne (kretsteknik) Flyktigt Snabbt Dyrt

Läs mer

Databaser - Design och programmering. Minnesteknik. Minnesteknik, forts. Hårddisk. Primärminne (kretsteknik) Fysisk design av databasen

Databaser - Design och programmering. Minnesteknik. Minnesteknik, forts. Hårddisk. Primärminne (kretsteknik) Fysisk design av databasen Databaser Design och programmering Fysisk design av databasen att ta hänsyn till implementationsaspekter minnesteknik filstrukturer indexering Minnesteknik Primärminne (kretsteknik) Flyktigt Snabbt Dyrt

Läs mer

Minnesteknik. Minnen lämpliga för databaser. Minnesteknik, forts. Databaser design och programmering. temporärt/flyktig Snabbt Dyrt

Minnesteknik. Minnen lämpliga för databaser. Minnesteknik, forts. Databaser design och programmering. temporärt/flyktig Snabbt Dyrt Databaser design och programmering n Fysisk design av databasen Minnesteknik n Primärminne (kretsteknik) n att ta hänsyn till implementationsaspekter minnesteknik filstrukturer indexering 1 temporärt/flyktig

Läs mer

Karlstads Universitet, Datavetenskap 1

Karlstads Universitet, Datavetenskap 1 2003-01-20 DAV B04 - Databasteknik 2003-01-20 KaU - Datavetenskap - DAV B04 - MGö 26 Relationsmodellen En formell teori som baserar sig på (främst) mängdlära predikatlogik Föreslogs av E.F Codd 1970 i

Läs mer

SQLs delar. Idag. Att utplåna en databas. Skapa en databas

SQLs delar. Idag. Att utplåna en databas. Skapa en databas Idag SQLs delar Hur skapar vi och underhåller en databas? Hur skapar man tabeller? Hur får man in data i tabellerna? Hur ändrar man innehållet i en tabell? Index? Vad är det och varför behövs de? Behöver

Läs mer

Tentamen för DD1370 Databasteknik och informationssystem

Tentamen för DD1370 Databasteknik och informationssystem Tentamen för DD1370 Databasteknik och informationssystem 16 Januari 2015 Hjälpmedel: Inga hjälpmedel utom papper och penna Tänk på: Skriv högst en uppgift på varje blad. Använd endast framsidan på varje

Läs mer

Vad är en databas? Databaser. Relationsdatabas. Vad är en databashanterare? Vad du ska lära dig: Ordlista

Vad är en databas? Databaser. Relationsdatabas. Vad är en databashanterare? Vad du ska lära dig: Ordlista Databaser Vad är en databas? Vad du ska lära dig: Använda UML för att modellera ett system Förstå hur modellen kan översättas till en relationsdatabas Använda SQL för att ställa frågor till databasen Använda

Läs mer

Relationsalgebra. Varför behöver jag lära mig relationsalgebra?!

Relationsalgebra. Varför behöver jag lära mig relationsalgebra?! Relationsalgebra 1 Varför behöver jag lära mig relationsalgebra?! Relationsmodellen är den datamodell som används i de flesta moderna databassystemen Data beskrivs och lagras som relationer, dvs. som ett

Läs mer

Idag. Hur skapar vi och underhåller en databas? DD1370 (Föreläsning 4) Databasteknik och informationssystem 7,5 hp Hösten / 20

Idag. Hur skapar vi och underhåller en databas? DD1370 (Föreläsning 4) Databasteknik och informationssystem 7,5 hp Hösten / 20 Idag Hur skapar vi och underhåller en databas? DD1370 (Föreläsning 4) Databasteknik och informationssystem 7,5 hp Hösten 2009 1 / 20 Idag Hur skapar vi och underhåller en databas? Hur skapar man tabeller?

Läs mer

DIVISIONSEXEMPEL RELATIONSALGEBRA OCH SQL. r s använder vi för att uttrycka frågor där ordet alla figurerar:

DIVISIONSEXEMPEL RELATIONSALGEBRA OCH SQL. r s använder vi för att uttrycka frågor där ordet alla figurerar: DIVISIONSEXEMPEL RELATIONSALGEBRA OCH SQL r s använder vi för att uttrycka frågor där ordet alla figurerar: Ex. Vilka personer har stamkundskort vid ALLA klädesbutiker i stad X? Vilka personer har bankkonto

Läs mer

Introduktion till frågespråket SQL (v0.91)

Introduktion till frågespråket SQL (v0.91) DD1370: Databaser och Informationssystem Hösten 2014 Petter Ögren Introduktion till frågespråket SQL (v0.91) 13:e November Disclaimer: Dessa anteckningar har producerats under viss tidspress, och kan därför

Läs mer

Övningar i SQL. SQLAccess.doc Ove Lundgren 2000-11-14

Övningar i SQL. SQLAccess.doc Ove Lundgren 2000-11-14 Övningar i SQL Övningar i SQL Använd Access för att öva SQL (= Structured Query Language) Skapa tabeller med SQL 1. Ny databas: SQLÖVNING Klicka: Frågor > Ny > Design > OK >Stäng > SQL Radera ordet SELECT.

Läs mer

Fillagring och indexering

Fillagring och indexering Fillagring och indexering Lena Strömbäck Institutionen för datavetenskap (IDA) Databaser Världen Databas Modell Databas- Hanterings- System (DBMS) Queries Svar Queries Svar Användare Anv Updates Queries

Läs mer

Tentamen för DD1370 Databasteknik och informationssystem

Tentamen för DD1370 Databasteknik och informationssystem Tentamen för DD1370 Databasteknik och informationssystem 24 Augusti 2015 Hjälpmedel: Inga hjälpmedel utom papper och penna Tänk på: Skriv högst en uppgift på varje blad. Använd endast framsidan på varje

Läs mer

Programdesign, databasdesign. Databaser - Design och programmering. Funktioner. Relationsmodellen. Relation = generaliserad funktion.

Programdesign, databasdesign. Databaser - Design och programmering. Funktioner. Relationsmodellen. Relation = generaliserad funktion. Databaser Design och programmering Relationsmodellen definitioner ER-modell -> relationsmodell nycklar, olika varianter Programdesign, databasdesign Databasdesign Konceptuell design Förstudie, behovsanalys

Läs mer

Informationssystem och Databasteknik, 2I-1100 HT2001. Relationsalgebra. Relationsalgebran är sluten: R 1 op R 2 R 3.

Informationssystem och Databasteknik, 2I-1100 HT2001. Relationsalgebra. Relationsalgebran är sluten: R 1 op R 2 R 3. Primtiva operatorer projektion π selektion σ union differens - kryssprodukt X Relationsalgebra Tilldelning := Relationsalgebran är sluten: Med hjälp av dessa operatorer kan andra (icke-primitiva) operatorer

Läs mer

Föreläsning 1: Dekomposition, giriga algoritmer och dynamisk programmering

Föreläsning 1: Dekomposition, giriga algoritmer och dynamisk programmering 2D1458, Problemlösning och programmering under press Föreläsning 1: Dekomposition, giriga algoritmer och dynamisk programmering Datum: 2007-09-04 Skribent(er): Anders Malm-Nilsson och Niklas Nummelin Föreläsare:

Läs mer

Starta MySQL Query Browser

Starta MySQL Query Browser Starta MySQL Query Browser 1. Starta MySQL Query Browser genom att antingen välja i Startmenyn: 2. eller leta upp ikonen på skrivbordet för start av MySQL Query Browser och dubbelklicka på den. 3. Du bör

Läs mer

Tentamen för 1E1601. Måndag 10 mars 2003, kl 08.00 13.00. Alla hjälpmedel tillåtna

Tentamen för 1E1601. Måndag 10 mars 2003, kl 08.00 13.00. Alla hjälpmedel tillåtna Tentamen för 1E1601 Måndag 10 mars 2003, kl 08.00 13.00 Alla hjälpmedel tillåtna Totalt kan tentan ge 45p + max 10p för gjorda övningsuppgifter 27p ger säkert betyget 3, 35p ger säkert betyget 4 och 43p

Läs mer

Fiktiv tentamen för DD1370 Databasteknik och informationssystem

Fiktiv tentamen för DD1370 Databasteknik och informationssystem Fiktiv tentamen för 1370 atabasteknik och informationssystem Hösten 2011 Hjälpmedel: Allt man kan tänka sig, men ingen kontakt med hjälpsamma kamrater och inga elektroniska hjälpmedel. Tänk på: Skriv högst

Läs mer

Tommy Färnqvist, IDA, Linköpings universitet. 1 ADT Map/Dictionary 1 1.1 Definitioner... 1 1.2 Implementation... 2

Tommy Färnqvist, IDA, Linköpings universitet. 1 ADT Map/Dictionary 1 1.1 Definitioner... 1 1.2 Implementation... 2 Föreläsning 4 ADT Map/Dictionary, hashtabeller, skip-listor TDDC91: DALG Utskriftsversion av föreläsning i Datastrukturer och algoritmer 9 september 2015 Tommy Färnqvist, IDA, Linköpings universitet 4.1

Läs mer

Lösningsförslag till Exempel tentamen

Lösningsförslag till Exempel tentamen Inst. för Data- och Systemvetenskap SU/KTH Maria Bergholtz, Paul Johannesson Lösningsförslag till Exempel tentamen 2I-1033 IT i Organisationer och Databasteknik Tentamenstiden är 5 timmar Skriv bara på

Läs mer

Lär känna MS SQL 2008 / Övning. Observera. Tips. Förberedelse

Lär känna MS SQL 2008 / Övning. Observera. Tips. Förberedelse Lär känna MS SQL 2008 / Övning Observera Övningar som finns tillgängliga är till för att du ska kunna testa dina kunskaper och träna på dem. Det är helt upp till dig när du vill genomföra och om du vill

Läs mer

Tentamen. TDDB38 - Databasteknik

Tentamen. TDDB38 - Databasteknik Tekniska Högskolan i Linköping, Institutionen för datavetenskap Almut Herzog / Olof Johansson / Patrick Lambrix / Cecile Åberg Tentamen TDDB38 - Databasteknik (Svensk version) Datum: Fredag 12:e januari

Läs mer

Tentamen för DD1370 Databasteknik och informationssystem

Tentamen för DD1370 Databasteknik och informationssystem Tentamen för DD1370 Databasteknik och informationssystem 13 Mars 2014 Hjälpmedel: Inga hjälpmedel utom papper och penna Tänk på: Skriv högst en uppgift på varje blad. Använd endast framsidan på varje blad.

Läs mer

Karlstads Universitet, Datavetenskap 1

Karlstads Universitet, Datavetenskap 1 * * * * DAV B04 - Databasteknik! "# $ %'&( ) KaU - Datavetenskap - DAV B04 - MGö 132 Riktlinjer när man vill skapa en databas 1) Designa så att det är lätt att förstå innebörden. Kombinera inte attribut

Läs mer

Laborationer - databaser, EDAA20 Programmering och databaser

Laborationer - databaser, EDAA20 Programmering och databaser LUNDS TEKNISKA HÖGSKOLA EDAA20 Programmering och databaser Institutionen för datavetenskap HT 2015 Laborationer - databaser, EDAA20 Programmering och databaser I kursens databasdel ingår två obligatoriska

Läs mer

Idag. Exempel. Exempel modellen (1) Exempel...

Idag. Exempel. Exempel modellen (1) Exempel... Idag Exempel Knyta ihop säcken Repetition av hela processen från värld till databas Kontroll av resultatet Exempel på frågor mot varuhusdatabasen Man börjar alltid med att bestämma vad man måste hålla

Läs mer

Fiktiv tentamen för DD1370 Databasteknik och informationssystem

Fiktiv tentamen för DD1370 Databasteknik och informationssystem Fiktiv tentamen för DD1370 Databasteknik och informationssystem Torsdag 4 dec 2008 Hjälpmedel: Allt inklusive kursbok, försläsningsanteckningar, gamla tentor och egna anteckningar, men inte tentalösningar

Läs mer

Inlämningsuppgift : Finn. 2D1418 Språkteknologi. Christoffer Sabel E-post: csabel@kth.se 1

Inlämningsuppgift : Finn. 2D1418 Språkteknologi. Christoffer Sabel E-post: csabel@kth.se 1 Inlämningsuppgift : Finn 2D1418 Språkteknologi Christoffer Sabel E-post: csabel@kth.se 1 1. Inledning...3 2. Teori...3 2.1 Termdokumentmatrisen...3 2.2 Finn...4 3. Implementation...4 3.1 Databasen...4

Läs mer

Databasteknik. Vad är. Vad är databaser bra till? data? föreläsare: Kjell Lindqvist. och NADA. databaser? och. vad är de bra för?

Databasteknik. Vad är. Vad är databaser bra till? data? föreläsare: Kjell Lindqvist. och NADA. databaser? och. vad är de bra för? Databasteknik Vad är data? föreläsare: Kjell Lindqvist och NADA databaser? och vad är de bra för? och varför ska ni kunna något om dem? Copyright c NADA, KTH DBT, bild 1 Copyright c NADA, KTH DBT, bild

Läs mer

02/12/14. Databasteknik och informationssystem DD1370. Behövs Föreläsning 8? Dagens föreläsning. Om Lab 1. De 11 Stegen (Kokbok)

02/12/14. Databasteknik och informationssystem DD1370. Behövs Föreläsning 8? Dagens föreläsning. Om Lab 1. De 11 Stegen (Kokbok) 02/2/4 Behövs Föreläsning 8? Databasteknik och informationssystem DD370 Idag F6 ästa vecka: F7 (sista nyheterna & repetition) Föreläsning 6: ER-modellenà Databas (del 2) F8 (?) (repetition, repetition,

Läs mer

Tentamen DATABASTEKNIK - 1DL116, 1MB025

Tentamen DATABASTEKNIK - 1DL116, 1MB025 Uppsala universitet Institutionen för informationsteknologi Kjell Orsborn, Tore Risch Tentamen 2004-08-16 DATABASTEKNIK - 1DL116, 1MB025 Datum...Måndagen den 16 Augusti, 2004 Tid...14:00-19:00 Jourhavande

Läs mer

Lösningsförslag till fiktiv tentamen för DD1370 Databasteknik och informationssystem

Lösningsförslag till fiktiv tentamen för DD1370 Databasteknik och informationssystem Lösningsförslag till fiktiv tentamen för DD1370 Databasteknik och informationssystem Hösten 2011 1. a) Jag följer kokboken (förel 3, bild 34) a. Regeln säger att alla objektklasser med e-termer ska bilda

Läs mer

Tentamen Databasteknik

Tentamen Databasteknik Försättsblad Tentamen Databasteknik 2003 04 29, 8.00 13.00 Inga hjälpmedel. Bedömning (preliminär): uppgifterna ger maximalt 14 + 11 + 11 + 6 + 4 + 4 = 50 poäng. För godkänt krävs 25 poäng (3/25, 4/33,

Läs mer

Databasutveckling Tabeller. tinyint 1 byte (0-255) Upp till 8 bytes

Databasutveckling Tabeller. tinyint 1 byte (0-255) Upp till 8 bytes Databasutveckling Tabeller Copyright Mahmud Al Hakim mahmud@webacademy.se www.webacademy.se Datatyper Heltal bit 0, 1 eller NULL tinyint 1 byte (0-255) smallint int bigint 2 bytes 4 bytes 8 bytes Decimaltal

Läs mer

Structured query language (SQL)

Structured query language (SQL) Structured query language SQL) Varför SQL? SQL är ett standardspråk som är oberoende av databashanteringssystemen som finns på marknaden. Med andra ord kommer du kunna arbeta mot nästan alla sorters relationsdatabaser

Läs mer

Tentamen Datastrukturer D DAT 036/INN960

Tentamen Datastrukturer D DAT 036/INN960 Tentamen Datastrukturer D DAT 036/INN960 18 december 2009 Tid: 8.30-12.30 Ansvarig: Peter Dybjer, tel 7721035 eller 405836 Max poäng på tentamen: 60. Betygsgränser, CTH: 3 = 24 p, 4 = 36 p, 5 = 48 p, GU:

Läs mer

EMPS(NAME, SALARY, DEPT)

EMPS(NAME, SALARY, DEPT) Databaser Design och programmering Relationsalgebra den matematiska grunden för att bearbeta data representerad i relationsmodellen Operationer i relationsalgebra Två typer av operationer: Operationer

Läs mer

Databaser - Design och programmering. Operationer i relationsalgebra. Att söka ut data. Exempel DBschema. Att plocka ut data, forts

Databaser - Design och programmering. Operationer i relationsalgebra. Att söka ut data. Exempel DBschema. Att plocka ut data, forts Databaser Design och programmering Relationsalgebra den matematiska grunden för att bearbeta data representerad i relationsmodellen Operationer i relationsalgebra Två typer av operationer: Operationer

Läs mer

Tentamen Databasmetodik DB:DSK/FK/DVK/ATD/SP/EIT mfl. äldre kurstillfällen 8 augusti 2013 kl. 9-13

Tentamen Databasmetodik DB:DSK/FK/DVK/ATD/SP/EIT mfl. äldre kurstillfällen 8 augusti 2013 kl. 9-13 Institutionen för Data- och Systemvetenskap IT-universitetet Maria Bergholtz Tentamen DB:DSK/FK/DVK/ATD/SP/EIT mfl. äldre kurstillfällen 8 augusti 203 kl. 9-3 Inga hjälpmedel tillåtna (syntaxsammanställning

Läs mer

Grunderna i SQL del 1

Grunderna i SQL del 1 Grunderna i SQL del 1 1. SELECT-frågor 2. SELECT 3. WHERE 4. ORDER BY 5. Inre join 6. Yttre join 7. Andra typer av join 8. Union 9. Aggregatfunktioner 10. Gruppera och summera Kap. 3 Kap. 4 Kap. 5 utom

Läs mer

Tentamen EIT:DB Databastmetodik 11/1 2013 kl. 13 17 + Lösningsförslag

Tentamen EIT:DB Databastmetodik 11/1 2013 kl. 13 17 + Lösningsförslag Tentamen EIT:DB Databastmetodik 11/1 2013 kl. 13 17 + Lösningsförslag Inga hjälpmedel är tillåtna (annat än ordbok). Kort syntaxsamling för delar av SQL samt lista med symboler för relationsalgebraiska

Läs mer

NORMALISERING. Mahmud Al Hakim

NORMALISERING. Mahmud Al Hakim NORMALISERING Mahmud Al Hakim mahmud@webacademy.se 1 SCHEMA Schema eller databasschema är en beskrivning av vilka data som kan finnas i en databas, oberoende av vilka data (innehållet) som råkar finnas

Läs mer

Idag. Hur vet vi att vår databas är tillräckligt bra?

Idag. Hur vet vi att vår databas är tillräckligt bra? Idag Hur vet vi att vår databas är tillräckligt bra? Vad är ett beroende? Vad gör man om det blivit fel? Vad är en normalform? Hur når man de olika normalformerna? DD1370 (Föreläsning 6) Databasteknik

Läs mer

ÖVNING 10 2NF Hästnamn, KursId, StartDatum, SlutDatum KursId NY! 3NF Hästnamn, Art, NY! NY! NY! NY! KursId, StartDatum, SlutDatum KursId NY!

ÖVNING 10 2NF Hästnamn, KursId, StartDatum, SlutDatum KursId NY! 3NF Hästnamn, Art, NY! NY! NY! NY! KursId, StartDatum, SlutDatum KursId NY! ÖVNING 10 2NF HÄST (Hästnamn, Mankhöjd, Favoritmat, Art, Medelvikt, Spiltnummer, Bredd, Höjd) PERSON(Personnummer, Namn, Adress, Telefon) RIDKURS(KursId, StartDatum, SlutDatum, Ledare) KURS(KursId, Svårighetsgrad)

Läs mer

Design och underhåll av databaser

Design och underhåll av databaser Design och underhåll av databaser 1. Modell av verkligheten 2. Normalformer 3. Introduktion till DDL 4. Skapa databaser 5. Skapa tabeller 6. Skapa index 7. Restriktioner 8. Ta bort databaser, tabeller

Läs mer

Tentamen för DD1370 Databasteknik och informationssystem

Tentamen för DD1370 Databasteknik och informationssystem Tentamen för DD1370 Databasteknik och informationssystem 10 April 2015 Hjälpmedel: Inga hjälpmedel utom papper och penna Tänk på: Skriv högst en uppgift på varje blad. Använd endast framsidan på varje

Läs mer

Föreläsning 4 Dagens föreläsning går igenom

Föreläsning 4 Dagens föreläsning går igenom Databasbaserad publicering Föreläsning 4 1 Föreläsning 4 Dagens föreläsning går igenom E/R-modellen, fortsättning Frågor till flera tabeller samtidigt Många-till-många-relationer Läs om E/R-diagram i kapitel

Läs mer

Databaser och. SQL, utsökningar mot en tabell

Databaser och. SQL, utsökningar mot en tabell Databaser och Informationssystem 5 hp IK008 Föreläsning 7 SQL, utsökningar mot en tabell Övningsuppgifter Övningstabell SQL> desc personal Name Null? Type ------------------------------------- --------

Läs mer

Objektorienterad programmering Föreläsning 9. Copyright Mahmud Al Hakim Agenda (halvdag)

Objektorienterad programmering Föreläsning 9. Copyright Mahmud Al Hakim  Agenda (halvdag) Objektorienterad programmering Föreläsning 9 Copyright Mahmud Al Hakim mahmud@webacademy.se www.webacademy.se Agenda (halvdag) Fält Grunderna Fält med komponenter av struct-typ Fält med referenser Standardklassen

Läs mer

Structured Query Language (SQL)

Structured Query Language (SQL) Structured Query Language (SQL) Christer Stuxberg christer.stuxberg@im.uu.se Institutionen för Informatik och Media Översikt Introduktion Enkla frågor (queries) Hämta en specifik kolumn Sök Sammanfattning

Läs mer

Tentamen för DD1370 Databasteknik och informationssystem

Tentamen för DD1370 Databasteknik och informationssystem Tentamen för DD1370 Databasteknik och informationssystem Exempeltenta för kursen ht2013 Hjälpmedel: Inga hjälpmedel utom papper och penna Tänk på: Skriv högst en uppgift på varje blad. Använd endast framsidan

Läs mer

Datalager och datautvinning

Datalager och datautvinning Datalager och datautvinning 1 Datalager och datautvinning! Databaser kan innehålla stora mängder information om ett företags eller en organisations verksamhet" Data kan också användas för att analysera

Läs mer

Algoritmer och effektivitet. Föreläsning 5 Innehåll. Analys av algoritmer. Analys av algoritmer Tidskomplexitet. Algoritmer och effektivitet

Algoritmer och effektivitet. Föreläsning 5 Innehåll. Analys av algoritmer. Analys av algoritmer Tidskomplexitet. Algoritmer och effektivitet Föreläsning 5 Innehåll Algoritmer och effektivitet Algoritmer och effektivitet Att bedöma, mäta och jämföra effektivitet för algoritmer Begreppet tidskomplexitet Undervisningsmoment: föreläsning 5, övningsuppgifter

Läs mer

Labb LIVE. Exempelkod från föreläsningen. Plushögskolan Frågeutveckling inom MSSQL - SU14

Labb LIVE. Exempelkod från föreläsningen. Plushögskolan Frågeutveckling inom MSSQL - SU14 Labb LIVE Exempelkod från föreläsningen Plushögskolan Frågeutveckling inom MSSQL - SU14 Här kommer exempelkoden jag använde under föreläsningen Exemplen Constraints... 2 Transactions... 4 Views... 5 Functions...

Läs mer

Konceptuella datamodeller

Konceptuella datamodeller Databasdesign Relationer, Nycklar och Normalisering Copyright Mahmud Al Hakim mahmud@webacademy.se www.webacademy.se Konceptuella datamodeller Om man ska skapa en databas som beskriver en del av verkligheten

Läs mer

Labb LABB 1. Databassagan och en rundtur i databasers märkliga värld. Plushögskolan Frågeutveckling inom MSSQL - SU14

Labb LABB 1. Databassagan och en rundtur i databasers märkliga värld. Plushögskolan Frågeutveckling inom MSSQL - SU14 Labb LABB 1 Databassagan och en rundtur i databasers märkliga värld Plushögskolan Frågeutveckling inom MSSQL - SU14 I Microsoft SQL-Server Management Studio kan man arbeta på olika sätt. Antingen via användargränssnittet

Läs mer

Databasspråket SQL - online.

Databasspråket SQL - online. Databaser, design och programmering Databasspråket SQL - online. Innehåll: Viktiga kommandon och konstruktioner i SQL, både DDL och DML. Utgångspunkt: en databas om ett varuhus (The Jonson Brothers Company

Läs mer

Tentamen i. Databasteknik II. för D3 m fl. lördag 4 april 2009 kl 08:15-12:15

Tentamen i. Databasteknik II. för D3 m fl. lördag 4 april 2009 kl 08:15-12:15 1 of 6 Örebro universitet Akademin för naturvetenskap och teknik Thomas Padron-McCarthy (Thomas.Padron-McCarthy@oru.se) Tentamen i Databasteknik II för D3 m fl lördag 4 april 2009 kl 08:15-12:15 Gäller

Läs mer

Tentamen plus lösningsförslag

Tentamen plus lösningsförslag Inst. för Data- och Systemvetenskap SU/KTH Maria Bergholtz, Paul Johannesson Tentamen plus lösningsförslag 2I-1100 Informationssystem och databasteknik Skriv bara på en sida av pappret Skriv namn på varje

Läs mer

Del 2: ER-modellering och överföring till Databasstruktur v0.9

Del 2: ER-modellering och överföring till Databasstruktur v0.9 DD1370: Databaser och Informationssystem Hösten 2014 Del 2: ER-modellering och överföring till Databasstruktur v09 Petter Ögren 1:e December Disclaimer: Dessa anteckningar har producerats under viss tidspress,

Läs mer

Steg för Steg Att använda Statistics explorer med data från SKLs databas

Steg för Steg Att använda Statistics explorer med data från SKLs databas Steg för Steg Att använda Statistics explorer med data från SKLs databas Data Wizard (DW): http://www.ncomva.se/flash/projects/dw/ Sveriges Kommun- och Landstingsdatabas: http://www.kolada.se Sveriges

Läs mer

Algoritmer och Komplexitet ht 08. Övning 5. Flöden. Reduktioner. Förändrat flöde

Algoritmer och Komplexitet ht 08. Övning 5. Flöden. Reduktioner. Förändrat flöde Algoritmer och Komplexitet ht 08. Övning 5 Flöden. Reduktioner Förändrat flöde a) Beskriv en effektiv algoritm som hittar ett nytt maximalt flöde om kapaciteten längs en viss kant ökar med en enhet. Algoritmens

Läs mer

Laboration SQL. Kom igång. http://www.tfe.umu.se/courses/systemteknik/webbkurser/d&w/laborationer/sql.ht...

Laboration SQL. Kom igång. http://www.tfe.umu.se/courses/systemteknik/webbkurser/d&w/laborationer/sql.ht... Page 1 of 5 Laboration SQL Syfte: Under denna laboration skall du bekanta dig med SQL. När laborationen är genomförd skall du klara av att själv formulera enklare SQL-frågor för att kunna ta fram information

Läs mer

Datastrukturer. föreläsning 6. Maps 1

Datastrukturer. föreläsning 6. Maps 1 Datastrukturer föreläsning 6 Maps 1 Avbildningar och lexika Maps 2 Vad är ett lexikon? Namn Telefonnummer Peter 031-405937 Peter 0736-341482 Paul 031-405937 Paul 0737-305459 Hannah 031-405937 Hannah 0730-732100

Läs mer

2NF Hästnamn, KursId, StartDatum, SlutDatum KursId NY!, där RIDKURS.KursId = KURS.KursId 3NF Hästnamn, Art, NY! NY! NY! NY!

2NF Hästnamn, KursId, StartDatum, SlutDatum KursId NY!, där RIDKURS.KursId = KURS.KursId 3NF Hästnamn, Art, NY! NY! NY! NY! ÖVNING 9 2NF HÄST (Hästnamn, Mankhöjd, Favoritmat, Art, Medelvikt, Spiltnummer, Bredd, Höjd) PERSON(Personnummer, Namn, Adress, Telefon) RIDKURS(KursId, StartDatum, SlutDatum, Ledare) KURS(KursId, Svårighetsgrad)

Läs mer

Databasteknik för D1 m fl

Databasteknik för D1 m fl 1 of 5 Örebro universitet Institutionen för naturvetenskap och teknik Thomas Padron-McCarthy (thomas.padron-mccarthy@oru.se) Tentamen i Databasteknik för D1 m fl tisdag 10 januari 2017 Gäller som tentamen

Läs mer

TENTAMEN. TDDD12 Databasteknik TDDD46 Databasteknik. 16 augusti 2010, kl 14-18

TENTAMEN. TDDD12 Databasteknik TDDD46 Databasteknik. 16 augusti 2010, kl 14-18 LiTH, Linköpings tekniska högskola IDA, Institutionen för datavetenskap Jose M. Peña 2010-08-10 Lokal TER1 och TERC. Tillåtna hjälpmedel Lexikon, miniräknare. TENTAMEN TDDD12 Databasteknik TDDD46 Databasteknik

Läs mer

Logisk databasdesign

Logisk databasdesign NORMALISERING Peter Bellström Logisk databasdesign 2 Arbetssteget vars syfte är att konstruera en modell (diagram, schema), baserad på en specifik datamodell, över verksamhetens begrepp och samband. Modellen

Läs mer

Databaskunskap 7,5 högskolepoäng Provmoment: Ladokkod: Tentamen ges för:

Databaskunskap 7,5 högskolepoäng Provmoment: Ladokkod: Tentamen ges för: Databaskunskap 7,5 högskolepoäng Provmoment: Ladokkod: Tentamen ges för: Namn: Personnummer: Individuell prövning 41E03B Öppen för alla Tentamensdatum: 2013-08-20 Tid: 09:00-13:00 Hjälpmedel: Inga hjälpmedel

Läs mer

Grunderna för relationsmodellen!

Grunderna för relationsmodellen! Grunderna för relationsmodellen! 1 Varför behöver jag lära mig relationsmodellen?! Relationsmodellen är den totalt dominerande datamodellen i moderna databassystem Beskriver databaser som en mängd tabeller

Läs mer

Idag. Varför modellera? Modellering. Modelleringsverktygets egenskaper. Modelleringsverktyget

Idag. Varför modellera? Modellering. Modelleringsverktygets egenskaper. Modelleringsverktyget Idag Varför modellera? Varför modellera? Konceptuell modell sverktyg Objektklasser Sambandsklasser Knepiga attribut sprocessen I all ingenjörsverksamhet där man hanterar komplicerade system behöver man

Läs mer

An English version of the questions is found at the back of each page.

An English version of the questions is found at the back of each page. Lena Strömbäck Pawel Pietrzak 2004-06-02 Skriftlig tentamen i kursen TDDB48 Databasteknik Datum: 2003-06-02 Tid: 14-18 Lokal: GAR Hjälpmedel: Engelsk ordlista tillåten ej elektronisk iniräknare ej programmerbar

Läs mer

Tentamen i Databasteknik II för D3 m fl

Tentamen i Databasteknik II för D3 m fl 1 of 5 Örebro universitet Akademin för naturvetenskap och teknik Thomas Padron-McCarthy (thomas.padron-mccarthy@oru.se) Tentamen i Databasteknik II för D3 m fl lördag 21 maj 2011 Gäller som tentamen för:

Läs mer

1 Skapa Tabell...2. 2 Skapa Relationer...20. 3 Redigera Relationer...24. 4 Redigera Fält i Tabell...26. 5 Lägga till Poster i Tabell...

1 Skapa Tabell...2. 2 Skapa Relationer...20. 3 Redigera Relationer...24. 4 Redigera Fält i Tabell...26. 5 Lägga till Poster i Tabell... Kapitel 5 Tabell 1 Skapa Tabell...2 1.1 Tabellfönstret... 4 1.2 Fältegenskaper... 8 1.3 Primärnyckel... 11 1.4 Spara Tabell... 12 1.5 Tabellguiden... 12 2 Skapa Relationer...20 3 Redigera Relationer...24

Läs mer

TENTAMEN. För kursen. Databasteknik. Ansvarig för tentamen: Cecilia Sönströd. Förfrågningar: Anslås inom 3 veckor

TENTAMEN. För kursen. Databasteknik. Ansvarig för tentamen: Cecilia Sönströd. Förfrågningar: Anslås inom 3 veckor TENTAMEN För kursen DATUM: 2014-12-18 TID: 9 14 Ansvarig för tentamen: Cecilia Sönströd Förfrågningar: 033-4354424 Resultat: Betygsskala: Hjälpmedel: Anslås inom 3 veckor Godkänt 20 p, Väl godkänt 32 p,

Läs mer

Föreläsning 4 Programmeringsteknik DD1310. Felhantering. Syntax. try och except är reserverade ord som används för hantering av exekverings fel.

Föreläsning 4 Programmeringsteknik DD1310. Felhantering. Syntax. try och except är reserverade ord som används för hantering av exekverings fel. Föreläsning 4 meringsteknik DD1310 Definiering av egna funktioner Parametrar Lokala och globala variabler Retursats None try och except är reserverade ord som används för hantering av exekverings fel.

Läs mer

TENTAMEN. För kursen. Databasteknik. Ansvarig för tentamen: Cecilia Sönströd. Förfrågningar: 033-4354424. Anslås inom 3 veckor

TENTAMEN. För kursen. Databasteknik. Ansvarig för tentamen: Cecilia Sönströd. Förfrågningar: 033-4354424. Anslås inom 3 veckor TENTAMEN För kursen DATUM: 2014-08-20 TID: 9 14 Ansvarig för tentamen: Cecilia Sönströd Förfrågningar: 033-4354424 Resultat: Betygsskala: Hjälpmedel: Anslås inom 3 veckor Godkänt 20 p, Väl godkänt 32 p,

Läs mer

Relationsdatabasdesign 2I-4067 HT99. Relationsalgebra. som resultat!

Relationsdatabasdesign 2I-4067 HT99. Relationsalgebra. som resultat! Relationsalgebra Relationsalgebra Relationsalgebran r ett formellt sprâk fˆr att extrahera data ur relationer. SprÂket r uppbyggt av ett litet antal operatorer. Tar en eller två tabeller De primitiva operatorerna

Läs mer

Frågespråk mot relationsmodellen

Frågespråk mot relationsmodellen HUND Mindy Ossi Frågespråk mot relationsmodellen Relationsalgebra Relationsalgebra Primtiva operatorer projektion π selektion σ union differens - kryssprodukt X Med hjälp av dessa operatorer kan andra

Läs mer

Idag. Modellering. Varför modellera? Konceptuell modell Modelleringsverktyg Objektklasser Sambandsklasser Knepiga attribut Modelleringsprocessen

Idag. Modellering. Varför modellera? Konceptuell modell Modelleringsverktyg Objektklasser Sambandsklasser Knepiga attribut Modelleringsprocessen Idag Modellering Varför modellera? Konceptuell modell Modelleringsverktyg Objektklasser Sambandsklasser Knepiga attribut Modelleringsprocessen DD1370 (Föreläsning 3) Databasteknik och informationssystem

Läs mer

Föreläsning 3 Dagens föreläsning går igenom

Föreläsning 3 Dagens föreläsning går igenom Databasbaserad publicering Föreläsning 3 1 Föreläsning 3 Dagens föreläsning går igenom E/R-modellen & Läs om E/R-diagram i kapitel 2-3 i boken "Databasteknik" eller motsvarande avsnitt på http://www.databasteknik.se/webbkursen/er/index.html

Läs mer

Idag. Modellering. Varför modellera? Konceptuell modell Modelleringsverktyg Objektklasser Sambandsklasser Knepiga attribut Modelleringsprocessen

Idag. Modellering. Varför modellera? Konceptuell modell Modelleringsverktyg Objektklasser Sambandsklasser Knepiga attribut Modelleringsprocessen Idag Modellering Varför modellera? Konceptuell modell Modelleringsverktyg Objektklasser Sambandsklasser Knepiga attribut Modelleringsprocessen DD1370 (Föreläsning 3) Databasteknik och informationssystem

Läs mer

Idag. Varför modellera? Modellering. Modelleringsverktygets egenskaper. Modelleringsverktyget

Idag. Varför modellera? Modellering. Modelleringsverktygets egenskaper. Modelleringsverktyget Idag Varför modellera? Varför modellera? Konceptuell modell sverktyg Objektklasser Sambandsklasser Knepiga attribut sprocessen I all ingenjörsverksamhet där man hanterar komplicerade system behöver man

Läs mer

08/11/13. Databasteknik och informationssystem DD1370 F3. Ett urval ur databasen bestäms av en SQL-fråga. Påminnelse: Deadline på tisdag

08/11/13. Databasteknik och informationssystem DD1370 F3. Ett urval ur databasen bestäms av en SQL-fråga. Påminnelse: Deadline på tisdag Påminnelse: Deadline på tisdag Databasteknik och informationssystem DD1370 F3 Petter Ögren Inlämningsuppgift 1 - Skall mailas in senast 23:59 på tisdag. - Redovisas på övningen på onsdag - Inspireras av

Läs mer

Tentamen i Databasteknik

Tentamen i Databasteknik Tentmen i Dtsteknik lördgen den 22 oktoer 2005 Tillåtn hjälpmedel: Allt upptänkligt mteril Använd r frmsidn på vrje ld. Skriv mx en uppgift per ld. Motiver llt, dokumenter egn ntgnden. Oläslig/oegriplig

Läs mer

Datorsystemteknik DAVA14 Föreläsning 10

Datorsystemteknik DAVA14 Föreläsning 10 Datorsystemteknik DAVA14 Föreläsning 10 Från källkod till bitar Samspelet mellan program och hårdvara Med bilder från Mats Brorsson, Datorsystem: Program och maskinvara, studentlitteratur 1999 Assemblatorn

Läs mer

Föreläsning Datastrukturer (DAT037)

Föreläsning Datastrukturer (DAT037) Föreläsning Datastrukturer (DAT037) Nils Anders Danielsson 2015-12-14 Idag Frågor? Är något oklart inför tentan? Sammanfattning Exempel från föreläsning 1 Dåligt val av datastruktur public class Bits {

Läs mer

Föreläsning 13 Datastrukturer (DAT037)

Föreläsning 13 Datastrukturer (DAT037) Föreläsning 13 Datastrukturer (DAT037) Fredrik Lindblad 1 2016-12-14 1 Slides skapade av Nils Anders Danielsson har använts som utgångspunkt. Se http://www.cse.chalmers.se/edu/year/2015/course/dat037 Sammanfattning

Läs mer

SQL, nästlade delfrågor 3-19. Nästlade delfrågor. En nästlda delfråga är ett select-from-where uttryck inom where-klausulen i en annan fråga.

SQL, nästlade delfrågor 3-19. Nästlade delfrågor. En nästlda delfråga är ett select-from-where uttryck inom where-klausulen i en annan fråga. SQL, nästlade delfrågor 3-19 Nästlade delfrågor SQL har en mekanism för nästling av delfrågor: En nästlda delfråga är ett select-from-where uttryck inom where-klausulen i en annan fråga. Delfrågor används

Läs mer

Hashing Bakom kulisserna på Pythons dictionary. Leta i listor Osorterade listor. Leta i listor Sorterade listor

Hashing Bakom kulisserna på Pythons dictionary. Leta i listor Osorterade listor. Leta i listor Sorterade listor Hashing Bakom kulisserna på Pythons dictionary Några förenklingar I början av den här diskussionen kommer jag titta enbart på listor som innehåller numeriska värden. Innehåll Några förenklingar Olika ideer

Läs mer