John Stillwell: Yearning for the impossible. The surprising truths of mathematics. AK Peters Ltd, sidor. Ca $30.

Storlek: px
Starta visningen från sidan:

Download "John Stillwell: Yearning for the impossible. The surprising truths of mathematics. AK Peters Ltd, 2006. 230 sidor. Ca $30."

Transkript

1 R e c e n s i o n John Stillwell: Yearning for the impossible. The surprising truths of mathematics. AK Peters Ltd, sidor. Ca $ MATEMATIK - DET OMÖJLIGAS KONST John Stillwell (f. 1942) är matematiker ursprungligen från Australien, men numera (sedan 2002) professor i Kalifornien vid San Franciscos jesuit-universitet. Förutom sin forskning i topologi och geometri är Stillwell känd för sitt intresse för matematikhistoria. Han har översatt endel klassiska texter samt skrivit en matematikhistoriebok, Mathematics and its history (Springer 2002, 2.a uppl.), som tillhör mina favoriter. Föreliggande bok om matematiken som "längtan till det omöjliga" vänder sig till en bred men intellektuellt alert publik inkluderande gymnasieelever, lärare, professorer, och dem som är allmänt är intresserad av vad matematik går ut på. Boken kräver inga speciella förkunskaper men ett pensum motsvarande gymnasiematematik borde finnas i bakhuvudet. Bokens idé går tillbaka till en artikel om "matematiken som accepterar det omöjliga" vilken Stillwell skrev redan Kungstanken är att matematikens utveckling ofta drivits fram av försöken att förstå det skenbart omöjliga. Märkliga

2 begrepp såsom "irrationella tal", "imaginära tal", "transcendentala tal", osv, är benämningar vilka visar spår av deras förflutna mystiska status i gränslandet mellan det möjliga och omöjliga. Den tyske matematikern Leopold Kronecker är känd för sitt yttrande att "Die ganzen zahlen hat der liebe Gott gemacht, alles andere ist Menschenwerk" (1886); dvs, Gud har skapat talen medan människan gjort resten. Man kunde egentligen tänka sig att matematiken skulle kunna begränsa sig till användningen av de naturliga talen 0,1, 2,... medan "resten" är onödigt påhitt. Men så fort vi har de hela talen kan vi ställa oss frågan om det exv finns ett tal (x) som multiplicerat med 5 är lika med 2 (5 * x = 2). Detta leder oss till att utvidga de "naturliga" talen till att omfatta bråktal som exv 2/5. Bråktal är användbara då man mäter eller väger eftersom vikter och längder sällan exakt sammanfaller med exakta multiplar av givna längd- och viktenheter. Storyn kunde ha slutat här eftersom bråktal skulle räcka för alla praktiska räknebehov. I antikens Grekland kring 500 före vår tideräkning började man emellertid alltmer betona matematiken som en teoretisk vetenskap där satser skulle härledas logiskt från givna premisser (som senare kom att kallas axiom). Detta ledde till utvecklingen av geometrin där man bl a ställdes inför följande problem: Ifall en kvadrat har sidorna 1 så är dess diagonal ett tal x som multiplicerat med sig självt är lika med 2 (x*x = 2). (Detta följer av att en kvadrat B med en sida av samma längd som en kvadrat A:s diagonal har dubbelt större area än A.) Man kom underfund med att inget bråktal m/n kunde uppfylla detta krav. Detta ledde till en kris inom grekisk matematik och man accepterade motvilligt den något vaga existensen av vad man kallade "alogos" tal som inte kan skrivas på bråkform, vilket på latin kom att heta "irrationella" tal eller "surdus" (besläktat med vårt absurd), en beteckning som förmedlades via arabiskans ord for stum.

3 Det verkar som om då man ger lillfingret åt matematiken så tar den snart hela armen. Har vi således accepterar hela tal kan vi t ex fråga efter ett tal x som adderat med 2 ger 1 (x+2 = 1). Detta är ett naturligt spörsmål då man har att göra med säg debet och kredit men ändå tog det länge innan man accepterade 'negativa' tal och lösningen x = -1. Har vi väl en gång accepterat negativa tal kan vi t ex fråga efter ett tal x som multplicerat med sig självt ger -1 (x*x = -1). Detta verkar ledda till en omöjlig situation eftersom då man multiplicerar ett positivit eller negativt tal med sig självt får vi alltid ett positivt tal som resultat. Detta (x*x = -1) är just den sorts omöjlighet som Stillwell hänvisar till och som driver matematiken framåt. Nämligen man frågar sig, vad händer om vi trots allt ponerar att det finns ett sådant 'imaginärt' tal som vi kan beteckna fast med 'i' och vilket alltså satisfierar i*i = -1? Faktiskt, de imaginära (eller komplexa) talen kom att revolutionera matematiken under 1800-talet. Stillwell tar upp ett flertal exempel på hur denna kreativa dynamik fortsatt (kvaternioner, octoioner, idealtal, oändliga serier, ickeeuklidisk geometri, 4-dimensionella rum, oändlighet, osv). Varje ny utvidning inom matematiken bär således fröet till nya generaliseringar. Det mest märkliga kanske är hur dylika skenbart abstrusa konstruktioner plöstligt kan komma att tillämpas på verkligheten själv så att säga; exempelvis komplexa tal inom kvantfysiken, och icke-euklidisk geometri inom relativitetsteorin. Slutligen är det värt att nämna en kort skoltidsstory som Stillwell berättar under rubriken "If you can read this, thank the english teacher". Engång vikarierades Stillwells matematiklärare av engelskläraren Mrs Burke. Hon lärde ut någonting som hon erinrade från sina egna skolår men som därefter fallit bort ur undervisningen. Nämligen hur man kan räkna ut decimalerna i den oändliga decimalserien

4 för kvadratroten av 2. Vidare berättade hon att ingen egentligen förstod sig på mönstret hos denna decimalutveckling; förekommer t ex 7 i decimalutvecklingen oändligt många gånger eller inte? Det var dessa spörsmål som fick den unge Stillwell att intressera sig för matematiken vilket slutligen ledde via unversitetskarriär till föreliggande bok. En sensmoral är kanske vikten av att även inflika utmanande exempel i skolläroböcker samt skriva ut att det finns olösa frågor. Och som källa till inspirerande material lönar det sig definitivt att ta en titt på Stillwells bok. Ett exempel är construzione legittima inom geometrin som säkert kunde fascinera många elever, och som beskriver hur man ritar perspektiv (projektiv geometri i matematik). I samma veva bör jag också rekommendera en gammal klassiker (som jag nyligen stötte på via ett antikvariat): Lancelot Hogben, Mathematics for the millions (orig. 1937, finns fortfarande i tryck) -- att ge till den som drabbats av matematikbacillen eller som tråkades ut av skolmatematiken och vill ta igen. Hogbens matematikfilosofi (betonar matematkens praktiska rötter) är kanske antipodisk till Stillwell men boken är likväl läsvärd. Stillwell och Hogben alltså obligatoriska böcker för bibilioteken! Frank Borg PS. Algoritm för att beräkna bättre och bättre approximationer för kvadraroten av 2. Starta med x1 = 1, beräkna sedan x2 = 1/2*(x1 + 2/x1); x3 = 1/2*(x2 + 2/x2); osv. Dvs, när man beräknat approximationen x får man den följande approximationen genom att ta medelvärdet av x och 2/x.

5

Lokal studieplan Matematik 3 8 = 24. Centrum för tvåspråkighet Förberedelseklass

Lokal studieplan Matematik 3 8 = 24. Centrum för tvåspråkighet Förberedelseklass Lokal studieplan Matematik 3 8 = 24 Centrum för tvåspråkighet Förberedelseklass 1 Mål att sträva mot Skolan skall i sin undervisning i matematik sträva efter att eleven S11 utvecklar intresse för matematik

Läs mer

Studieplan och bedömningsgrunder i Matematik för åk 7 Moment Bedömningsgrunder för uppnåendemålen Begreppsbildning Tal och räkning

Studieplan och bedömningsgrunder i Matematik för åk 7 Moment Bedömningsgrunder för uppnåendemålen Begreppsbildning Tal och räkning Moment Begreppsbildning Mätningar och enheter Algebra och ekvationer Studieplan och bedömningsgrunder i Matematik för åk 7 Bedömningsgrunder för uppnåendemålen känna igen naturliga tal kunna positiva heltal:

Läs mer

Räknar du med hur barn tänker?

Räknar du med hur barn tänker? Räknar du med hur barn tänker? ULF SÖDERSTRÖM Vid en föreläsning kom tillvalskursen i matematik på M-linjen vid Högskolan i Växjö läsåret 80/81 i kontakt med problemställningen Hur tänker barn när de räknar?

Läs mer

Fira Pi-dagen med Liber!

Fira Pi-dagen med Liber! Fira Pi-dagen med Liber! Specialuppdrag från Uppdrag: Matte o Kul-diagram o Geometri med färg UPPDRAG: MATTE Mattedetektiverna Mattespanarna Hej! Den 14 mars är det Pi-dagen (3.14). Det är värt att uppmärksammas

Läs mer

Tema: Pythagoras sats. Linnéa Utterström & Malin Öberg

Tema: Pythagoras sats. Linnéa Utterström & Malin Öberg Tema: Pythagoras sats Linnéa Utterström & Malin Öberg Innehåll: Introduktion till Pythagoras sats! 3 Pythagoras sats! 4 Variabler! 5 Potenser! 5 Att komma tillbaka till ursprunget! 7 Vi bevisar Pythagoras

Läs mer

Under en forskningscirkel, som vi matematikutvecklare i Göteborg har

Under en forskningscirkel, som vi matematikutvecklare i Göteborg har Britt Holmberg Analysera mera i geometri Inom undervisningen i geometri behöver vi utmana elevernas nyfikenhet med frågeställningar och ge dem tid att undersöka geometriska objekt. Praktiskt arbete där

Läs mer

Kursplanen i matematik 2011 - grundskolan

Kursplanen i matematik 2011 - grundskolan Kursplanen i matematik 2011 - grundskolan MATEMATIK Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet och lust

Läs mer

Eulers polyederformel och de platonska kropparna

Eulers polyederformel och de platonska kropparna Eulers polyederformel och de platonska kropparna En polyeder är en kropp i rummet som begränsas av sidoytor som alla är polygoner. Exempel är tetraedern och kuben, men klotet och konen är inte polyedrar.

Läs mer

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla. Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt

Läs mer

Del ur Lgr 11: kursplan i matematik i grundskolan

Del ur Lgr 11: kursplan i matematik i grundskolan Del ur Lgr 11: kursplan i matematik i grundskolan 3.5 Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet

Läs mer

fredag den 11 april 2014 POOL BYGGE

fredag den 11 april 2014 POOL BYGGE POOL BYGGE KLADD Såhär ser min kladd ut: På min kladd så bestämde jag mig för vilken form poolen skulle ha och ritade ut den. På min kladd har jag även skrivit ut måtten som min pool skulle vara i. Proportionerna

Läs mer

Matematik Betygskriterier i matematik år 9 Ekholmsskolan i Linköping

Matematik Betygskriterier i matematik år 9 Ekholmsskolan i Linköping Enhet 591 Ekholmen Matematik Betygskriterier i matematik år 9 Ekholmsskolan i Linköping Fakta Förståelse Färdighet Förtrogenhet De olika formerna samspelar och utgör varandras förutsättningar. För att

Läs mer

Konkretisering av matematiska begrepp i skolan

Konkretisering av matematiska begrepp i skolan Karin Kairavuo Konkretisering av matematiska begrepp i skolan Den kinesiska författaren och nobelpristagaren i litteratur, Gao Xingjian, använder en spännande metod i sitt arbete. Han talar in sina blivande

Läs mer

Hur lär barn bäst? Mats Ekholm Karlstads universitet

Hur lär barn bäst? Mats Ekholm Karlstads universitet Hur lär barn bäst? Mats Ekholm Karlstads universitet Ståndpunkter som gäller de ungas motivation o För att lära bra behöver de unga belönas för vad de gör. Betyg är den främsta sporren för lärande. o För

Läs mer

Talmönster och algebra. TA

Talmönster och algebra. TA Talmönster och algebra. TA Diagnoserna i området avser att kartlägga om eleverna kan upptäcka talmönster samt på olika sätt bearbeta algebraiska uttryck och ekvationer. Förståelse av koordinatsystem och

Läs mer

Kursplan för Matematik

Kursplan för Matematik Sida 1 av 5 Kursplan för Matematik Inrättad 2000-07 SKOLFS: 2000:135 Ämnets syfte och roll i utbildningen Grundskolan har till uppgift att hos eleven utveckla sådana kunskaper i matematik som behövs för

Läs mer

Matematikens historia (3hp) Vladimir Tkatjev

Matematikens historia (3hp) Vladimir Tkatjev Matematikens historia (3hp) Vladimir Tkatjev Dagens program Introduktion och kursens översikt Talbegreppets utveckling Den äldsta matematiken - EGYPTEN och BABYLON Obligatorisk kurslitteratur Tord Hall

Läs mer

Målet med undervisningen är att eleverna ges förutsättningar att:

Målet med undervisningen är att eleverna ges förutsättningar att: Matematik Målet med undervisningen är att eleverna ges förutsättningar att: formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder, använda och analysera matematiska

Läs mer

Om vi vill fortsätta att spela en roll i framtiden måste vi göra två saker: Bli ännu bättre på det vi är bra på nämligen lärandet.

Om vi vill fortsätta att spela en roll i framtiden måste vi göra två saker: Bli ännu bättre på det vi är bra på nämligen lärandet. Vi i skolan har inte längre monopol på kunskap. Idag går det att lära sig saker mycket bra även utanför skolans värld. Inte minst genom den nya tekniken. Om vi vill fortsätta att spela en roll i framtiden

Läs mer

Matematik Uppnående mål för år 6

Matematik Uppnående mål för år 6 Matematik Uppnående mål för år 6 Allmänt: Eleven ska kunna förstå, lösa samt redovisa problem med konkret innehåll inom varje avsnitt. Ha en grundläggande taluppfattning som omfattar naturliga tal och

Läs mer

Kunskapsmål och betygskriterier för matematik

Kunskapsmål och betygskriterier för matematik 1 (1) 2009-0-12 Kunskapsmål och betygskriterier för matematik För betyget G i matematik skall eleven kunna utföra beräkningar, lösa problem samt se enklare samband utifrån de kunskapsmål som anges under

Läs mer

Öppna frågor (ur Good questions for math teaching)

Öppna frågor (ur Good questions for math teaching) Här är öppna frågor som jag hämtat från boken Good questions for math teaching som jag läste i våras när jag gick Lärarlyftet. Frågorna är sorterade efter ämne/tema och förhoppningsvis kan fler ha nytta

Läs mer

Komplexiologi löser de accelererande problemen med psykisk ohälsa!

Komplexiologi löser de accelererande problemen med psykisk ohälsa! Komplexiologi löser de accelererande problemen med psykisk ohälsa! En psykolog kan inte lösa flertalet av psykets problem eftersom de är komplexa, och då gäller givetvis samma sak för coacher, forskare

Läs mer

Lärarutbildning i matematik - möjligheter och begränsningar

Lärarutbildning i matematik - möjligheter och begränsningar Lärarutbildning i matematik - möjligheter och begränsningar Lisen Häggblom Åbo Akademi, Vasa Lärarutbildningen är en stor utbildning - komplex - har politiskt intresse - många vill vara experter på utbildning

Läs mer

1.1. Numeriskt ordnade listor Numerically ordered lists 1.1.1. Enheter med F3= 10 efter fallande F Units with 10 by descending F

1.1. Numeriskt ordnade listor Numerically ordered lists 1.1.1. Enheter med F3= 10 efter fallande F Units with 10 by descending F 1.1. Numeriskt ordnade listor Numerically ordered lists 1.1.1. Enheter med F3= 10 efter fallande F Units with 10 by descending F 1 DET ÄR 2652 282 71 HAR EN 350 140 141 KAN INTE 228 59 2 FÖR ATT 2276 369

Läs mer

Klara målen i 3:an - undervisa i matematik!

Klara målen i 3:an - undervisa i matematik! Klara målen i 3:an - undervisa i matematik! Att få chans att lyckas i matematik De flesta elever älskar matte under sitt första skolår. Allas vår önskan är att eleverna ska få en fortsatt intressant och

Läs mer

KRAVNIVÅER. Åtvidabergs kommuns grundskolor MATEMATIK

KRAVNIVÅER. Åtvidabergs kommuns grundskolor MATEMATIK KRAVNIVÅER Åtvidabergs kommuns grundskolor MATEMATIK Reviderade april 2009 Förord Välkommen att ta del av Åtvidabergs kommuns kravnivåer och bedömningskriterier för grundskolan. Materialet har tagits fram

Läs mer

Vad menar vi med rika problem och vad är de bra till?

Vad menar vi med rika problem och vad är de bra till? ROLF HEDRÉN, EVA TAFLIN & KERSTIN HAGLAND Vad menar vi med rika problem och vad är de bra till? Den här artikeln ansluter till Problem med stenplattor i Nämnaren nummer 3, 2004. Här diskuterar vi vad vi

Läs mer

Approximation av funktioner

Approximation av funktioner Vetenskapliga beräkningar III 8 Kapitel Approximation av funktioner Vi skall nu övergå till att beskriva, hur man i praktiken numeriskt beräknar funktioner I allmänhet kan inte ens elementära funktioner

Läs mer

MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs

MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs Tolkning Deltagaren skall kunna formulera, analysera och lösa matematiska problem av betydelse för vardagsliv och vald studieinriktning

Läs mer

KLASSISK GREKISKA SPRÅK OCH KULTUR

KLASSISK GREKISKA SPRÅK OCH KULTUR KLASSISK GREKISKA SPRÅK OCH KULTUR Ämnet klassisk grekiska språk och kultur är till sin karaktär ett humanistiskt ämne som förenar språk- och kulturstudier. Grekiska har varit gemensamt språk för befolkningen

Läs mer

Pranayama Yogisk Andning

Pranayama Yogisk Andning Pranayama Yogisk Andning I alla former av traditionell yoga är andningen den rödaste av alla trådar. Den yogiska kunskapen om andningen och dess mekanismer är stor och djup. För dig som går denna utbildning

Läs mer

Ge sitt liv för sina vänner

Ge sitt liv för sina vänner Ge sitt liv för sina vänner Predikan av pastor Göran Appelgren (Läsningar: Joh 15:12-17; Himmel och helvete, nr 272, 278:2, 282. Se sista sidan!) Detta är mitt bud att ni skall älska varandra så som jag

Läs mer

Stokastisk geometri. Lennart Råde. Chalmers Tekniska Högskola och Göteborgs Universitet

Stokastisk geometri. Lennart Råde. Chalmers Tekniska Högskola och Göteborgs Universitet Stokastisk geometri Lennart Råde Chalmers Tekniska Högskola och Göteborgs Universitet Inledning. I geometrin studerar man geometriska objekt och deras inbördes relationer. Exempel på geometriska objekt

Läs mer

Berätta tillsammans. Astrid Frylmark

Berätta tillsammans. Astrid Frylmark Berätta tillsammans Det är nu mer än ett år sedan jag först såg boken The Story Maker av Francis Dickens och Kirstin Lewis. Med fokus på barn med engelska som andra språk inspirerar författarna sina elever

Läs mer

På en dataskärm går det inte att rita

På en dataskärm går det inte att rita gunilla borgefors Räta linjer på dataskärmen En illustration av rekursivitet På en dataskärm är alla linjer prickade eftersom bilden byggs upp av små lysande punkter. Artikeln beskriver problematiken med

Läs mer

Mötesledning i praktiken. Utbildning i två steg byggd på Möteskokboken I och II

Mötesledning i praktiken. Utbildning i två steg byggd på Möteskokboken I och II Mötesledning i praktiken Utbildning i två steg byggd på Möteskokboken I och II Mötesledning i praktiken Ordrum ger utbildning i konsten att leda möten. Mötesledning är en färdighet och precis som med alla

Läs mer

3, 6, 9, 12, 15, 18. 1, 2, 4, 8, 16, 32 Nu är stunden inne, då vill vill summera talen i en talföljd

3, 6, 9, 12, 15, 18. 1, 2, 4, 8, 16, 32 Nu är stunden inne, då vill vill summera talen i en talföljd I föreläsning 18 bekantade vi oss med talföljder, till exempel eller 3, 6, 9, 1, 15, 18 1,, 4, 8, 16, 3 Nu är stunden inne, då vill vill summera talen i en talföljd och 3 + 6 + 9 + 1 + 15 + 18 1 + + 4

Läs mer

Konsten att lösa icke-linjära ekvationssystem

Konsten att lösa icke-linjära ekvationssystem Konsten att lösa icke-linjära ekvationssystem Andreas Axelsson Vi beskriver här de grundläggande teknikerna för att lösa icke-linjära ekvationssystem. Detta är en nödvändig kunskap för att kunna lösa diverse

Läs mer

KARTLÄGGNING I MATEMATIK

KARTLÄGGNING I MATEMATIK KARTLÄGGNING I MATEMATIK Datum Namn Födelseår Uppväxt i (land) Modersmål Antal månader i Sverige Förord För personal som arbetar i grundskolan är behovet av att kunna kartlägga nyanlända elevers ämneskunskaper

Läs mer

CAS-vuxenutbildning för dig

CAS-vuxenutbildning för dig SÄRVUX- värmdö CAS-vuxenutbildning för dig Särskild utbildning för vuxna Särvux Värmdö är kommunens vuxenutbildning för dig som är över 20 år och har inlärningssvårigheter som beror på utvecklingsstörning

Läs mer

Jörgen Lagnebo PLANERING OCH BEDÖMNING MATEMATIK ÅK 8

Jörgen Lagnebo PLANERING OCH BEDÖMNING MATEMATIK ÅK 8 PLANERING OCH BEDÖMNING MATEMATIK ÅK 8 TERMINSPLAN HÖSTTERMINEN ÅK 8: 1 1.1 ANDELEN 2 1.2 HÖJNING OCH SÄNKNING 3 FORTS. 1.2 HÖJNING OCH SÄNKNING 4 1.3 HUR STOR ÄR DELEN 1 5 AKTIVITET + 1.4 HUR STOR ÄR

Läs mer

Uppdaterad 2003-10-14 Allmänt Läroplanens mål för matematik finns att ta del av för elever och målsmän på webbadressen: http://www.skolverket.se.

Uppdaterad 2003-10-14 Allmänt Läroplanens mål för matematik finns att ta del av för elever och målsmän på webbadressen: http://www.skolverket.se. Matematik Uppdaterad 2003-10-14 Allmänt Läroplanens mål för matematik finns att ta del av för elever och målsmän på webbadressen: http://www.skolverket.se. ADDITION, SUBTRAKTION, DIVISION OCH MULTIPLIKATION.

Läs mer

31 tips som gör din text lättare att förstå

31 tips som gör din text lättare att förstå 31 tips som gör din text lättare att förstå Innehållsförteckning Texten 1 Det enkla raka spåret 2 Nyhetsartikeln 3 Skriv rubriker inte överskrifter 3 Glöm inte bildtexten 4 Så börjar du din text 4 Tänk

Läs mer

Stavelsen Det talade ordet Läsa via skrivandet Strukturerad inlärning Vi arbetar i studiegrupper, dvs. ettor och tvåor tillsammans i mindre grupper.

Stavelsen Det talade ordet Läsa via skrivandet Strukturerad inlärning Vi arbetar i studiegrupper, dvs. ettor och tvåor tillsammans i mindre grupper. Stavelsen Det talade ordet Läsa via skrivandet Strukturerad inlärning Vi arbetar i studiegrupper, dvs. ettor och tvåor tillsammans i mindre grupper. Lokala mål Tala och lyssna: Jag kan lyssna och förstå

Läs mer

Alice i Underlandet Skolmaterial

Alice i Underlandet Skolmaterial Alice i Underlandet Skolmaterial Skolmaterialet till denna föreställning är ämnat för att ge lärare tips och tankar för hur de kan arbeta vidare kring föreställningen Alice i underlandet på Helsingborgs

Läs mer

Lokal pedagogisk planering i matematik för årskurs 9

Lokal pedagogisk planering i matematik för årskurs 9 Lokal pedagogisk planering i matematik för årskurs 9 Arbetsområde 1. Procent och statistik Syfte formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder. reflektera

Läs mer

Vad skall en matematiklärare kunna? Översikt. Styrdokument. Styrdokument. Problemlösning

Vad skall en matematiklärare kunna? Översikt. Styrdokument. Styrdokument. Problemlösning Vad skall en matematiklärare kunna? Andreas Ryve Stockholms universitet och Mälardalens Högskola. Översikt 1. Vad skall en elev kunna? 2. Matematik genom problemlösning ett exempel. 3. Skapa matematiska

Läs mer

i frågan»hur bör vi leva?«

i frågan»hur bör vi leva?« i frågan»hur bör vi leva?« 1 Auktoriteterna Platon och Ari stoteles menar båda att filosofin börjar med förundran. Människor förundrades över olika naturfenomen som de fann förvånande. De förbryllades

Läs mer

1850-1900 Matematikens historia

1850-1900 Matematikens historia 1850-1900 Matematikens historia Översikt Icke-euklidisk geometri (Riemann, Klein, m.fl.) Mängdlära (Cantor) Logik (De Morgan, Boole, Frege, m.fl.) Matematikens fundament (Frege, Russel, Peano, m.fl.) Allmänt

Läs mer

Matematikvandring på Millesgården

Matematikvandring på Millesgården Matematikvandring på Millesgården Kort beskrivning Detta är en matematikvandring på Millesgården där läraren går runt tillsammans med klassen och gör gemensamma stopp där eleverna löser olika matematikuppgifter

Läs mer

exakt en exponent x som satisfierar ekvationen. Den okända exponent x i ekvationen = kallas logaritm av b i basen a och betecknas x =log

exakt en exponent x som satisfierar ekvationen. Den okända exponent x i ekvationen = kallas logaritm av b i basen a och betecknas x =log LOGARITMER Definition av begreppet logaritm Betrakta ekvationen =. Om a är ett positivt tal skilt från 1 och b >0 då finns det exakt en exponent x som satisfierar ekvationen. Den okända exponent x i ekvationen

Läs mer

Mei UPPGIFT 8 - PEDAGOGIK. Framförandeteknik. Jimmie Tejne och Jimmy Larsson

Mei UPPGIFT 8 - PEDAGOGIK. Framförandeteknik. Jimmie Tejne och Jimmy Larsson Mei UPPGIFT 8 - PEDAGOGIK Framförandeteknik Jimmie Tejne och Jimmy Larsson Innehåll Inledning... 1 Retorik för lärare... 2 Rätt röst hjälper dig nå fram konsten att tala inför grupp... 3 Analys... 4 Sammanfattning:...

Läs mer

(A B) C = A C B C och (A B) C = A C B C. Bevis: (A B) C = A C B C : (A B) C = A C B C : B C (A B) C A C B C

(A B) C = A C B C och (A B) C = A C B C. Bevis: (A B) C = A C B C : (A B) C = A C B C : B C (A B) C A C B C Sats 1.3 De Morgans lagar för mängder För alla mängder A och B gäller att (A B) C = A C B C och (A B) C = A C B C. (A B) C = A C B C : A B A C (A B) C B C A C B C (A B) C = A C B C : A B A C (A B) C B

Läs mer

Studera till lärare! Lärarprogram vid Umeå universitet. Version 2, 2012. Lärarhögskolan www.use.umu.se

Studera till lärare! Lärarprogram vid Umeå universitet. Version 2, 2012. Lärarhögskolan www.use.umu.se Studera till lärare! Lärarprogram vid Umeå universitet Version 2, 2012 Lärarhögskolan www.use.umu.se 1 Grundlärarprogrammet fritidshem, 180 hp...6 Grundlärarprogrammet förskoleklass och åk 1-3, 240 hp...

Läs mer

Fibonacci. Miniporträttet

Fibonacci. Miniporträttet Miniporträttet ANDREJS DUNKELS Fibonacci I serien berömda matematiker har NÄMNAREN denna gång valt Fibonacci. Frågan är hur våra siffror sett ut idag om inte Fibonacci lagt ner så stor möda på att sprida

Läs mer

Utbildningsplan Benämning Benämning på engelska Poäng Programkod Gäller från Fastställd Programansvar Beslut Utbildningens nivå Inriktningar

Utbildningsplan Benämning Benämning på engelska Poäng Programkod Gäller från Fastställd Programansvar Beslut Utbildningens nivå Inriktningar Utbildningsplan 1 (6) Benämning Magisterprogrammet i politik och krig Benämning på engelska Masters Programme in Politics and War Poäng: 60 hp Programkod: 2PK15 Gäller från: Höstterminen 2015 Fastställd:

Läs mer

18 Eldorado 5 A Lärarbok Undervisning att skapa förutsättningar för elevers lärande

18 Eldorado 5 A Lärarbok Undervisning att skapa förutsättningar för elevers lärande Undervisning att skapa förutsättningar för elevers lärande I Kommentarmaterialets inledning står att läsa: Avsikten med materialet är att ge en bredare och djupare förståelse för de urval och ställningstaganden

Läs mer

Överbryggningskurs i matematik del I. Teknik och Samhälle 2012

Överbryggningskurs i matematik del I. Teknik och Samhälle 2012 Överbryggningskurs i matematik del I Teknik och Samhälle 0 Malmö 0 Förord och studietips Föreliggande kompendium i två delar är en överbryggning mellan gymnasiets och högskolans matematikkurser. Målet

Läs mer

kan använda sig av matematiskt tänkande för vidare studier och i vardagslivet kan lösa problem och omsätta idéer i handling på ett kreativt sätt

kan använda sig av matematiskt tänkande för vidare studier och i vardagslivet kan lösa problem och omsätta idéer i handling på ett kreativt sätt Lokal pedagogisk planering Matematik år 2 Syfte Undervisningen i matematikämnet ska syfta till att eleverna ska utveckla kunskaper om matematik och visa intresse och tilltro till sin förmåga att använda

Läs mer

Matematik 3000 kurs A

Matematik 3000 kurs A Studieanvisning till läroboken Matematik 3000 kurs A Innehåll Kursöversikt...4 Vad skall du kunna efter Matematik kurs A?...5 Så här jobbar du med boken...6 Studieenhet Arbeta med tal...7 Studieenhet Procent...12

Läs mer

Presentationsteknik. EG2205 Föreläsning 4, vårterminen 2015 Mikael Amelin

Presentationsteknik. EG2205 Föreläsning 4, vårterminen 2015 Mikael Amelin Presentationsteknik EG25 Föreläsning 4, vårterminen 15 Mikael Amelin 1 Kursmål Ge en kort muntlig presentation av lösningen till ett problem inom drift och planering av elproduktion. 2 Bakgrund Enligt

Läs mer

Vad varje matematiklärare borde kunna

Vad varje matematiklärare borde kunna Jonas Hall & Thomas Lingefjärd Vad varje matematiklärare borde kunna Geogebra för nybörjare del 2 I en tidigare artikel beskrevs de första stegen på vägen till att använda Geogebra som ett verktyg i matematikundervisningen.

Läs mer

Bengt Drath. Högskolan i Skövde Stöpenskolan i Skövde kommun

Bengt Drath. Högskolan i Skövde Stöpenskolan i Skövde kommun Prata matematik Bengt Drath Högskolan i Skövde Stöpenskolan i Skövde kommun Matematikkunnande tikk Vad ingår i begreppet matematikkunnande? eller som elever skulle tänka: Hur skall en duktig elev i matte

Läs mer

Svenska 1-2-3-4 GRAMMATIK

Svenska 1-2-3-4 GRAMMATIK Svenska 1-2-3-4 GRAMMATIK This is a document containing all the grammar explanations and examples from the website www.svenska.digital ADJEKTIV A - Normal konstruktion: en X ett X + t många X + a den X

Läs mer

MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs

MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs Tolkning Deltagaren skall kunna formulera, analysera och lösa matematiska problem av betydelse för vardagsliv och vald studieinriktning

Läs mer

Tema Förväntat värde. Teori Förväntat värde

Tema Förväntat värde. Teori Förväntat värde Tema Förväntat värde Teori Förväntat värde Begreppet förväntat värde används flitigt i diskussioner om olika pokerstrategier. För att kunna räkna ut det förväntade värdet så tar du alla möjliga resultat,

Läs mer

Lever du ditt liv fullt ut eller väntar du på att livet ska börja?

Lever du ditt liv fullt ut eller väntar du på att livet ska börja? Lever du ditt liv fullt ut eller väntar du på att livet ska börja? Vi lever i en värld där mycket handlar om ägande och prestationer. Definitionen på att ha lyckats i sitt liv är att haft och gjort mycket,

Läs mer

lll#vyazc#cj CHE>G6I>DC IG:C9:G FÖRELÄSNINGAR 2009

lll#vyazc#cj <yg6c 69AwC \dgvc5vyazc#cj >CHE>G6I>DC IG:C9:G FÖRELÄSNINGAR 2009 FÖRELÄSNINGAR 2009 Jag älskar citat, det vet alla som varit på en föreläsning med mig, eller om man läst mina böcker. En av de personer som alltid gett mig något att fundera på är den franske aforismförfattaren

Läs mer

Talområden. Utvidga talområden: - naturliga tal. - hela tal. -100, -5 0, 1, 2 o.s.v. - rationella tal. - reella tal. π, 2 o.s.v.

Talområden. Utvidga talområden: - naturliga tal. - hela tal. -100, -5 0, 1, 2 o.s.v. - rationella tal. - reella tal. π, 2 o.s.v. TALUPPFATTNING Mål som eleven ska ha uppnått i slutet av det nionde skolåret: Eleven skall ha förvärvat sådana kunskaper i matematik som behövs för att kunna beskriva och hantera situationer samt lösa

Läs mer

Precis som var fallet med förra artikeln, Geogebra för de yngre i Nämnaren

Precis som var fallet med förra artikeln, Geogebra för de yngre i Nämnaren Publicerad med tillstånd av Nämnaren Thomas Lingefjärd Geogebra i gymnasieskolan En tilltalande egenskap med Geogebra är att programmet kan användas tvärs över stora delar av utbildningssystemets matematikkurser.

Läs mer

Prata matematik. Bengt Drath. Stöpenskolan i Skövde kommun

Prata matematik. Bengt Drath. Stöpenskolan i Skövde kommun Prata matematik Bengt Drath Högskolan i Skövde Stöpenskolan i Skövde kommun Matematikkunnande Vad ingår i begreppet matematikkunnande? eller som elever skulle tänka: Hur skall en duktig elev i matte vara?

Läs mer

M=matte - Handledning

M=matte - Handledning Fingris Fingerräkning Grunden för matematik är taluppfattning. I detta spel parar du ihop tal med fingrarnas antal. Finns det fler fingrar än talet anger? Eller färre? Lika många? Det finns många frågor

Läs mer

SKOGLIGA TILLÄMPNINGAR

SKOGLIGA TILLÄMPNINGAR STUDIEAVSNITT 3 SKOGLIGA TILLÄMPNINGAR I detta avsnitt ska vi titta på några av de skogliga tillämpningar på geometri som finns. SKOGSKARTAN EN MODELL AV VERKLIGHETEN Arbetar man i skogen klarar man sig

Läs mer

Programmering för alla!

Programmering för alla! Programmering för alla! Inspirationsseminarium för lärare i grundskola och gymnasium Björn Regnell Professor Datavetenskap, LTH, Lunds universitet lth.se/programmera Video http://www.svt.se/nyheter/sverige/krav-pa-att-elever-lar-sig-programmera

Läs mer

Affektiva faktorer, attityder, kön och social bakgrund i högskolans matematikundervisning. Översikt. Matematik väcker känslor

Affektiva faktorer, attityder, kön och social bakgrund i högskolans matematikundervisning. Översikt. Matematik väcker känslor Affektiva faktorer, attityder, kön och social bakgrund i högskolans matematikundervisning Föreläsning i kursen Matematikdidaktik för högskolan Matematikcentrum, Lunds universitet Gerd Brandell Översikt

Läs mer

Studiehandledning. kurs Matematik 1b

Studiehandledning. kurs Matematik 1b Studiehandledning kurs Matematik 1b Innehållsförteckning Inledning och Syfte... 1 Ämnesplan för ämnet matematik... 1 Ämnets syfte... 1 Centralt innehåll... 2 Problemlösning... 2 Taluppfattning, aritmetik

Läs mer

! "# # # $ # " % & # # '(") " " )## (")"#*+*(, ( - " ' # (") #. % % /

! # # # $ #  % & # # '()   )## ()#*+*(, ( -  ' # () #. % % / ! "# # # $ # " % & # # '(") " " )## (")"#*+*(, ( - " ' # (") #. % % / Hageltal Problem ID: hageltal Tänk dig att du skriver upp alla positiva heltal på ett oändligt stort papper. Från varje tal n>1 ritar

Läs mer

Varför ska tjugofem elever ha samma bok?

Varför ska tjugofem elever ha samma bok? 86 Varför ska tjugofem elever ha samma bok? Hon hade dåliga betyg i skolan och var övertygad om att hon var dum. Lärare var det sista hon skulle kunna bli, även om hon i hemlighet alltid drömt om det.

Läs mer

Grekiska gudar och myter

Grekiska gudar och myter Under det här arbetsområdet kommer vi att arbeta med Antikens Grekland och Romarriket. Jag kommer att hålla genomgångar, ni kommer att få ta del av den här presentationen så kommer ni själva att få söka

Läs mer

Bibliotekets personalenkät 2012/13

Bibliotekets personalenkät 2012/13 Bibliotekets personalenkät 2012/13 Högskolebiblioteket vid Mälardalens högskola 1 Innehåll Frågorna... 3 1. Jag är (ange den egenskap i vilken du oftast är i kontakt med biblioteket):... 3 2. Jag har använt

Läs mer

Uppsala Universitet Instutionen för pedagogik, didaktik och utbildningsstudier Matematik 2, Ht 2014 Tilde Henriksson, Hannah Kling, Linn Kristell

Uppsala Universitet Instutionen för pedagogik, didaktik och utbildningsstudier Matematik 2, Ht 2014 Tilde Henriksson, Hannah Kling, Linn Kristell Del 1: Pedagogisk planering a) Vi har gjort två lektionsplaneringar med fokus på tvådimensionella geometriska figurer för årskurs 1-3. Utifrån det centrala innehållet i Lgr11 för årskurs 1-3 ska eleverna

Läs mer

Kvartalets läsare: juli-september 2014 Stina Nilsson

Kvartalets läsare: juli-september 2014 Stina Nilsson Kvartalets läsare: juli-september 2014 Stina Nilsson Jag har alltid älskat att läsa. När jag var yngre läste jag mestadels deckare. Kitty-böckerna av Carolyn Keene och Fem-böckerna av Enid Blyton var några

Läs mer

2012-01-12 FÖRSLAG TILL KURSPLAN INOM KOMMUNAL VUXENUTBILDNING GRUNDLÄGGANDE NIVÅ

2012-01-12 FÖRSLAG TILL KURSPLAN INOM KOMMUNAL VUXENUTBILDNING GRUNDLÄGGANDE NIVÅ Matematik, 600 verksamhetspoäng Ämnet handlar bland annat om mängder, tal och geometriska figurer. Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska

Läs mer

Högskoleprovet Kvantitativ del

Högskoleprovet Kvantitativ del Högskoleprovet Kvantitativ del Här följer anvisningar till de kvantitativa delproven XYZ, KVA, NOG och DTK. Provhäftet innehåller 40 uppgifter och den totala provtiden är 55 minuter. Ägna inte för lång

Läs mer

Repetitionsuppgifter 1

Repetitionsuppgifter 1 Repetitionsuppgifter 1 1 Vilka tal pekar pilarna på? a) b) Skriv talen med siffror 2 a) trehundra sju b) femtontusen fyrtiofem c) tvåhundrafemtusen tre 3 a) fyra tiondelar b) 65 hundradelar c) 15 tiondelar

Läs mer

Har Vi Goda Skäl För Att Tro?

Har Vi Goda Skäl För Att Tro? Har Vi Goda Skäl För Att Tro? Översättning: Hager A. Atta. Varför är universum så som den är? En av de viktigaste frågorna som nästan alla tänkare, filosofer och människor som jag och du ställer är Varför

Läs mer

Boksamtal i gymnasiet

Boksamtal i gymnasiet Sandra Holmgård Sandra.holmgard@helsinki.fi Våren 2014 Boksamtal i gymnasiet Under min studietid har jag reflekterat en del över litteraturundervisningen i skolan. Då jag tänker tillbaka på min egen skoltid

Läs mer

Kommunövergripande Mål i matematik, åk 1-9

Kommunövergripande Mål i matematik, åk 1-9 Kommunövergripande Mål i matematik, åk 1-9 Många skolor har lagt ner mycket tid på att omforma de mål som anges på nationell nivå till undervisningsmål på den egna skolan. Tanken är att vi nu ska kunna

Läs mer

Begrepps- och taluppfattning Du förstår sambandet mellan tal och antal, t.ex. genom att hämta rätt antal föremål till muntligt givna tal.

Begrepps- och taluppfattning Du förstår sambandet mellan tal och antal, t.ex. genom att hämta rätt antal föremål till muntligt givna tal. MATEMATIK ÅR1 MÅL Begrepps- och taluppfattning Kunna talbildsuppfattning, 0-10 EXEMPEL Du förstår sambandet mellan tal och antal, t.ex. genom att hämta rätt antal föremål till muntligt givna tal. Kunna

Läs mer

Matematik. Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret. Mål som eleverna skall ha uppnått i slutet av det femte skolåret

Matematik. Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret. Mål som eleverna skall ha uppnått i slutet av det femte skolåret Balderskolan, Uppsala musikklasser 2009 Matematik Mål som eleverna skall ha uppnått i slutet av det fjärde skolåret läsa och skriva tal inom talområdet 0 10 000 räkna de fyra räknesätten med olika metoder

Läs mer

Matematikplan Förskolan

Matematikplan Förskolan Matematikplan Förskolan Utarbetad 2014 Sammanfattning Ett matematikprojekt har pågått i Munkedals kommun under åren 2013-2014 där grundskolan har deltagit. Som ett led i det arbetet har denna plan för

Läs mer

Kritiskt tänkande HTXF04:3 FTEB05. Irrationella övertalningstekniker och några vanliga informella felslut.

Kritiskt tänkande HTXF04:3 FTEB05. Irrationella övertalningstekniker och några vanliga informella felslut. Kritiskt tänkande HTXF04:3 FTEB05 Irrationella övertalningstekniker och några vanliga informella felslut. Falsk självsäkerhet Folk tenderar att acceptera ett påstående om det presenteras av en person som

Läs mer

Ett enkelt Kalkylexempel - Fruktaffären

Ett enkelt Kalkylexempel - Fruktaffären Ett enkelt Kalkylexempel - Fruktaffären Öppna en ny arbetsbok genom att gå upp i Arkivmenyn och där välja Nytt ange Arbetsbok. Eller klicka på knappen för ny arbetsbok. Du skall nu göra en kalkyl för ett

Läs mer

Kreativ och inspirerande NO NO-biennalerna vt 2015

Kreativ och inspirerande NO NO-biennalerna vt 2015 Kreativ och inspirerande NO NO-biennalerna vt 2015 Hans Persson, lärare, läromedelsförfattare, inspiratör hanper@hanper.se Modellexperiment: Experiment och grafer med gula lappar. Tre små burkar med lock

Läs mer

Kom och tita! Världens enda indiska miniko. 50 cent titen.

Kom och tita! Världens enda indiska miniko. 50 cent titen. En ko i garderoben j! är jag här igen, Malin från Rukubacka. Det har hänt He Det en hel del sedan sist och isynnerhet den här sommaren då vi lärde känna en pianotant. Ingenting av det här skulle ha hänt

Läs mer

Vad Gud säger om Sig Själv

Vad Gud säger om Sig Själv Lektion 3 Vad Gud säger om Sig Själv Treenighetens mysterium uppenbaras endast i Bibeln Guds stora plan är att frälsa genom tron allena på vår Frälsare. Denna plan kan förstås och trodd av det minsta barn

Läs mer

Labora&v matema&k - för en varierad undervisning

Labora&v matema&k - för en varierad undervisning Labora&v matema&k - för en varierad undervisning Per Berggren & Maria Lindroth 2012-02- 23 Lgr11- Matema&ska förmågor Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar

Läs mer

Metoder för beräkningar med potenser med rationella exponenter.

Metoder för beräkningar med potenser med rationella exponenter. Kurskod: MATMAT02a Kursen matematik 2a omfattar punkterna 1 7 under rubriken Ämnets syfte. Centralt innehåll Kommentar Begrepp i kursen matematik 2a Metoder för beräkningar vid budgetering. Budgetering

Läs mer