Fira Pi-dagen med Liber!

Storlek: px
Starta visningen från sidan:

Download "Fira Pi-dagen med Liber!"

Transkript

1 Fira Pi-dagen med Liber! Specialuppdrag från Uppdrag: Matte o Kul-diagram o Geometri med färg UPPDRAG: MATTE Mattedetektiverna Mattespanarna

2 Hej! Den 14 mars är det Pi-dagen (3.14). Det är värt att uppmärksammas tycker vi på Liber. Vi föreslår att ni firar årets Pi-dag med lite extra matematik i klassen, varför inte med bifogade Hasse Perssons Specialuppdrag. Specialuppdragen som följer är hämtade ur vår nya matematikserie för F-6, Uppdrag: Matte och är en möjlighet att jobba med matte på riktigt, konkret, laborativt och dessutom riktigt roligt! Visste du att rekordet att komma ihåg de oändliga Pi-decimalerna sattes 2005 av japanen Akira Haraguchi och är på otroliga st, hämtade direkt ur minnet! Hur många klarar ni i klassen? Lycka till! Mats Juhlin, Ämnesrådgivare matematik F-6

3 3, KUL PI-FAKTA: π är förhållandet mellan en cirkels omkrets och dess diameter, dvs π = omkrets/diameter dvs det är π gånger längre runt en cirkel än tvärs över dess mitt. Detta innebär att om vi ritar en cirkel med diametern exakt cm så blir dess omkrets π cm π som symbol är ganska nytt och härstammar från talet Förmodligen valde man denna symbol då de grekiska ordet för omkrets (perimeter) börjar på π π är ett irrationellt tal, dvs går inte att skriva som ett bråk på formen a/b vilket ger att π därför har en oändlig och helt oregelbunden decimalutveckling , ligger på stycken Om du läser en decimal i sekunden så får du rabbla i nästan år! beräkna hela jordens omkrets med en felmarginal mindre än en ynka atombredd så räcker det med ca st decimaler

4 NAMN: DU BEHÖVER: 5. Kul-diagram Större pärlor i olika färger och piprensare, eller flirtkulor och en nålad tråd Vitt papper och färgpennor Nu ska du få göra ett eget diagram. 1 Bestäm vad du ska undersöka, t.ex. favoritfärger och vilka alternativ som finns (gul, blå, röd...). Bestäm också hur många som ska vara med i din undersökning. 2 Fråga dina klasskompisar. Låt dem ta en pärla för det alternativ de väljer. Samla alla pärlor i en burk. 3 Sortera pärlorna efter färg och trä dem sedan på piprensaren. 4 Forma piprensaren till en cirkel. 5 Lägg cirkeln på ett papper och rita av cirkeln. Rita sedan av varje färgs sektor (tårtbit) genom att dra streck från utkanten och in till cirkelns mitt. 6 Lyft bort piprensaren och färglägg de olika sektorerna. 7 Gör egna frågor till ditt cirkeldiagram. Du kan också göra olika påståenden där några är sanna och några är falska.

5 5. Kul-diagram DET HANDLAR OM Att från en egen undersökning förstå hur resultatet bildar ett cirkeldiagram. TIPS VID GENOMFÖRANDET Gör en gemensam undersökning först innan eleverna gör sina egna undersökningar. Att undersöka favoritfilmerna i klassen eller popgrupp brukar vara populärt, så spara dessa ämnen till elevernas egna undersökningar. Att börja undersöka favoritfärger har en pedagogisk vinst. Låt eleverna sitta i en stor ring och välja sin favoritfärg bland de pärlfärger ni har (eller flirtkulor som dock kan vara lite tröga att trä nålen igenom). Be sedan eleverna sätta sig i färgordning. Låt eleverna trä sin pärla på piprensaren och lägg ut den färdiga pärlpiprensaren i en lång rad. Resonera kring resultatet: - Hur många fler röster har den mest populära färgen än den minst populära? - Hur många procent tror vi att en viss färg motsvarar på ett ungefär? Forma piprensaren till en cirkel och lägg den på ett papper. Rita av cirkelns yttre kant och markera var de olika färgerna finns. Visa hur du sedan drar streck in till cirkelns mitt för att markera den sektor som varje färg utgör. Många aha:n brukar höras när kopplingen blir synlig. Lyft sedan bort cirkeln och färglägg ditt cirkeldiagram som nu finns på papperet. Resonera med eleverna, innan de börjar göra sina egna undersökningar, vilka antal personer som är lämpligt för att lättare kunna göra ett cirkeldiagram över resultatet. (12 eller 24 elever är tacksamma antal). FÖRKLARING När man konstruerar ett cirkeldiagram kommer man inte ifrån att hela cirkeln är 360º. Detta kan ibland leda till knepiga uträkningar och halsbrytande gradskivemanövrar. Om dessutom materialet som ska räknas om till delar av de 360º bygger på ett resultat från en klass med t.ex. 23 elever, så blir det många avrundningar och kompromisser på vägen. Med pärlorna och piprensaren slipper vi dessa kalkyler och gör istället direkt en grafisk konstruktion. Relatera gärna resultatet till tal i bråk- och decimalform om det är möjligt. Är det ett jämnt antal elever i klassen, och hälften av eleverna väljer en färg, blir ju detta också 50 %. Visa även en tårtbit, eller sektor, som utgör ungefär ¼ av hela cirkeln. Påpeka att detta är cirka 25 % osv. ARBETA VIDARE Låt eleverna göra egna frågor eller sanna och falska påståenden till sina cirkeldiagram, som sedan klasskompisarna får besvara. Eller gör en fadderövning för en klass i årskurs 3 där femmorna får lära ut sina nyförvärvda kunskaper. Då blir åk 3-läraren glad, eftersom detta numera enligt Lgr 11 även ingår i matematiken för åk 3. Gör ännu en undersökning och skriv resultaten på datorn. Visa gärna samma olika undersökning i olika diagramtyper. FÖRVÄNTAT RESULTAT Resultaten i tabellform som piprensaren först visar är inget nytt för eleverna. Men även om de går i femman är det många som fortfarande undrar hur man vet vilket antal ett cirkeldiagram och dess sektorer ska fyllas med. Låt eleverna själva få göra cirkeldiagram av sina egna undersökningar för att förstå hur de olika andelarna, sektorerna, samspelar.

6 NAMN: 3. Geometri med färg Dessa figurer måste finnas med i din bild: 1 En kvadrat med arean 100 cm 2. 2 En rektangel med omkretsen 60 cm. 3 En fjärdedels ( 1 4 ) cirkel, du bestämmer själv hur stor den ska vara. DU BEHÖVER: 4 En triangel med en trubbig vinkel. 5 Rektangeln nedan är ritad i skala 1:10. Rita rektangeln i verklig storlek på ditt papper. 6 Gör kvadraten dubbelt så stor på ditt papper. 7 Fyll resten av pappret med figurer i valfri form. 8 Måla hela bilden med vattenfärg. 9 Använd en oljekrita och markera linjerna mellan fälten.

7 3. Geometri med färg DET HANDLAR OM: Att befästa och konkretisera ett flertal moment ur det centrala innehållet för matematik, t.ex. geometriska former, storlek, skala, vinklar, grader, enheter, längder, area och omkrets. TIPS VID GENOMFÖRANDET: Inled arbetet med att titta på olika bilder av jordbrukslandskap. Leta efter matematiken i bilden såsom geometriska figurer, vinklar, storlek och olika längder. På så vis sätter du igång elevernas kreativitet innan de börjar skapa på egen hand. På Specialuppdragets elevsida ser du att de första 6 uppgifterna är matematikuppgifter och uppgift 7 9 är bilduppgifter. Idén kommer från läraren Ann-Marie Högberg. Så här berättar hon: Eleverna arbetade intensivt. De gick också runt och tittade på andras lösningar och det blev många givande matematiska diskussioner. Innan de fick börja måla med vattenfärg visade de sina bilder för mig. De flesta kom ihåg att använda färger som passar in i ett jordbrukslandskap. Jag uppmuntrade dem också att välja någon eller några färger som bröt av den grön/brun/beiga färgskalan. Därför kan det finnas fält som t ex är chockrosa eller klarblå. Arbetet pågick under 2 3 matte- och bildlektioner. När allas arbeten var färdiga så lackade vi alla bilderna, vilket gör att de ser ut som oljemålningar. FÖRVÄNTAT RESULTAT: Det här är en aktivitet där eleverna måste använda kreativitet och skapande. Intresset för matematik och förmågan att lära växer då eleverna får egna upplevelser av matematikens ibland mer abstrakta uppgifter. Ann-Marie igen: Några blev inte nöjda med sin första bild utan ville göra om (mycket bra tänkte jag, då får eleverna öva en gång till på alla matematiska begrepp). FÖRKLARING: Själva ordet geometri kommer från grekiskans mäta jord. Ursprunget till denna gren av matematiken står alltså bland annat att finna i ett behov av att mäta jordlotter, beskriva vinklar och former. ARBETA VIDARE: En idé att gå vidare med detta arbete är att titta på abstrakta konstverk som t.ex. Mondrians verk. Kanske hade denna konstnär också jordbrukslandskap som inspiration?

Under en forskningscirkel, som vi matematikutvecklare i Göteborg har

Under en forskningscirkel, som vi matematikutvecklare i Göteborg har Britt Holmberg Analysera mera i geometri Inom undervisningen i geometri behöver vi utmana elevernas nyfikenhet med frågeställningar och ge dem tid att undersöka geometriska objekt. Praktiskt arbete där

Läs mer

Matematikpärmen 4-6. 105 fullmatade arbetsblad i matematik för åk 4-6. Massor med extrauppgifter.

Matematikpärmen 4-6. 105 fullmatade arbetsblad i matematik för åk 4-6. Massor med extrauppgifter. M A T E M A T I K P Ä R M E N - 6 Matematikpärmen -6 Arbetsblad med fri kopieringsrätt! 05 fullmatade arbetsblad i matematik för åk -6. Massor med extrauppgifter. Materialet är indelat i 7 områden per

Läs mer

Talområden. Utvidga talområden: - naturliga tal. - hela tal. -100, -5 0, 1, 2 o.s.v. - rationella tal. - reella tal. π, 2 o.s.v.

Talområden. Utvidga talområden: - naturliga tal. - hela tal. -100, -5 0, 1, 2 o.s.v. - rationella tal. - reella tal. π, 2 o.s.v. TALUPPFATTNING Mål som eleven ska ha uppnått i slutet av det nionde skolåret: Eleven skall ha förvärvat sådana kunskaper i matematik som behövs för att kunna beskriva och hantera situationer samt lösa

Läs mer

Kunskapsmål och betygskriterier för matematik

Kunskapsmål och betygskriterier för matematik 1 (1) 2009-0-12 Kunskapsmål och betygskriterier för matematik För betyget G i matematik skall eleven kunna utföra beräkningar, lösa problem samt se enklare samband utifrån de kunskapsmål som anges under

Läs mer

RÖDA TRÅDEN MATEMATIK F-KLASS ÅK

RÖDA TRÅDEN MATEMATIK F-KLASS ÅK RÖDA TRÅDEN MATEMATIK F-KLASS ÅK 5 F-KLASS TALUPPFATTNING ALGEBRA Hur enkla mönster i talföljder och enkla geometriska mönster kan konstrueras, beskrivas och uttryckas Matematiska likheter och likhetstecknets

Läs mer

M=matte - Handledning

M=matte - Handledning Fingris Fingerräkning Grunden för matematik är taluppfattning. I detta spel parar du ihop tal med fingrarnas antal. Finns det fler fingrar än talet anger? Eller färre? Lika många? Det finns många frågor

Läs mer

ha utvecklat sin taluppfattning till att omfatta hela tal och rationella tal i bråk- och decimalform.

ha utvecklat sin taluppfattning till att omfatta hela tal och rationella tal i bråk- och decimalform. 1 (6) 2005-08-15 Matematik, år 9 Mål för betyget Godkänd Beroende på arbetssätt och arbetsmaterial kan det vara svårt att dela upp dessa uppnående mål mellan skolår 8 och skolår 9. För att uppnå godkänd

Läs mer

Repetitionsuppgifter 1

Repetitionsuppgifter 1 Repetitionsuppgifter 1 Beräkna 1 a) 0,5 + 0,7 b) 0,45 + 1,6 c) 2,76 0,8 2 a) 4,5 10 b) 30,5 10 c) 0,45 1 000 3 Vilka av produkterna är a) större än 6 1,09 6 0,87 6 1 6 4,3 6 0,08 6 b) mindre än 6 4 Skriv

Läs mer

Förord. Innehåll. 1 Tal 4. 4 Algebra 42. 2 Bråk och procent 18. 5 Statistik och sannolikhet 54. 6 Tid, hastighet och skala 60.

Förord. Innehåll. 1 Tal 4. 4 Algebra 42. 2 Bråk och procent 18. 5 Statistik och sannolikhet 54. 6 Tid, hastighet och skala 60. Förord Det här häftet är tänkt som ett komplement till kapitel 5, Genrepet, i läroboken Matte Direkt år 9. Häftet vänder sig främst till de elever som har svårigheter att klara Genrepets nivå i boken och

Läs mer

Mål som eleverna skall ha uppnått i slutet av år 5 enligt nationella kursplanen

Mål som eleverna skall ha uppnått i slutet av år 5 enligt nationella kursplanen MATEMATIK Mål att sträva mot enligt nationella kursplanen Skolan skall i sin undervisning i matematik sträva efter att eleven utvecklar intresse för matematik samt tilltro till det egna tänkandet och den

Läs mer

KARTLÄGGNING I MATEMATIK

KARTLÄGGNING I MATEMATIK KARTLÄGGNING I MATEMATIK Datum Namn Födelseår Uppväxt i (land) Modersmål Antal månader i Sverige Förord För personal som arbetar i grundskolan är behovet av att kunna kartlägga nyanlända elevers ämneskunskaper

Läs mer

MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs

MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs Tolkning Deltagaren skall kunna formulera, analysera och lösa matematiska problem av betydelse för vardagsliv och vald studieinriktning

Läs mer

Sammanfattningar Matematikboken Y

Sammanfattningar Matematikboken Y Sammanfattningar Matematikboken Y KAPitel 1 TAL OCH RÄKNING Numeriska uttryck När man beräknar ett numeriskt uttryck utförs multiplikation och division före addition och subtraktion. Om uttrycket innehåller

Läs mer

MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs

MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs MA1201 Matematik A Mål som deltagarna skall ha uppnått efter avslutad kurs Tolkning Deltagaren skall kunna formulera, analysera och lösa matematiska problem av betydelse för vardagsliv och vald studieinriktning

Läs mer

sex miljoner tre miljarder femton miljoner trehundratusen 6 000 000 520 000 > 50 200 40 000 500 > 40 000 050 5 505 050 < 5 505 500

sex miljoner tre miljarder femton miljoner trehundratusen 6 000 000 520 000 > 50 200 40 000 500 > 40 000 050 5 505 050 < 5 505 500 Namn: Förstå och använda stora tal som miljoner och miljarder Skriv talen med siffror. sex miljoner tre miljarder femton miljoner trehundratusen Läs talen först. Använd sedan > eller > < Vilket tal

Läs mer

Repetitionsuppgifter 1

Repetitionsuppgifter 1 Repetitionsuppgifter 1 1 Vilka tal pekar pilarna på? a) b) Skriv talen med siffror 2 a) trehundra sju b) femtontusen fyrtiofem c) tvåhundrafemtusen tre 3 a) fyra tiondelar b) 65 hundradelar c) 15 tiondelar

Läs mer

PROVUPPGIFTER. Steg 9 10 Bråk och procent. Godkänd 9 10 1 Skriv 0,03 i procentform. 2 Skriv i blandad form.

PROVUPPGIFTER. Steg 9 10 Bråk och procent. Godkänd 9 10 1 Skriv 0,03 i procentform. 2 Skriv i blandad form. Steg 9 10 Bråk och procent Godkänd 9 10 1 Skriv 0,03 i procentform. 16 2 Skriv i blandad form. 5 3 Vilket eller vilka av talen är lika med en åttondel? 0,8 2 8 2 16 0,12 1,8 4 Skriv 7 % i decimalform.

Läs mer

Addera. Skriv mellanled. Subtrahera Skriv mellanled. 532-429 1685-496 1 1 10 10 10

Addera. Skriv mellanled. Subtrahera Skriv mellanled. 532-429 1685-496 1 1 10 10 10 Namn: Hela och halva tusental till 00 000 Addera och subtrahera. 000+ 000= 000 000+ 00 = 00 000-000= 000 000-00 = 00 Skriv talen i fallande ordningsföljd. 000 0 00 0 00 0 00 00 0 000 0 00 0 00 0 00 0 00

Läs mer

Del ur Lgr 11: kursplan i matematik i grundskolan

Del ur Lgr 11: kursplan i matematik i grundskolan Del ur Lgr 11: kursplan i matematik i grundskolan 3.5 Matematik Matematiken har en flertusenårig historia med bidrag från många kulturer. Den utvecklas såväl ur praktiska behov som ur människans nyfikenhet

Läs mer

Stavelsen Det talade ordet Läsa via skrivandet Strukturerad inlärning Vi arbetar i studiegrupper, dvs. ettor och tvåor tillsammans i mindre grupper.

Stavelsen Det talade ordet Läsa via skrivandet Strukturerad inlärning Vi arbetar i studiegrupper, dvs. ettor och tvåor tillsammans i mindre grupper. Stavelsen Det talade ordet Läsa via skrivandet Strukturerad inlärning Vi arbetar i studiegrupper, dvs. ettor och tvåor tillsammans i mindre grupper. Lokala mål Tala och lyssna: Jag kan lyssna och förstå

Läs mer

Matematik A Testa dina kunskaper!

Matematik A Testa dina kunskaper! Testa dina kunskaper! Försök i största möjliga mån att räkna utan hjälp av boken, skriv små noteringar i kanten om ni tycker att ni kan uppgifterna, att ni löste dem med hjälp av boken etc. Facit kommer

Läs mer

SKOGLIGA TILLÄMPNINGAR

SKOGLIGA TILLÄMPNINGAR STUDIEAVSNITT 3 SKOGLIGA TILLÄMPNINGAR I detta avsnitt ska vi titta på några av de skogliga tillämpningar på geometri som finns. SKOGSKARTAN EN MODELL AV VERKLIGHETEN Arbetar man i skogen klarar man sig

Läs mer

Öppna frågor (ur Good questions for math teaching)

Öppna frågor (ur Good questions for math teaching) Här är öppna frågor som jag hämtat från boken Good questions for math teaching som jag läste i våras när jag gick Lärarlyftet. Frågorna är sorterade efter ämne/tema och förhoppningsvis kan fler ha nytta

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS A VÅREN 1998. Tidsbunden del

NATIONELLT KURSPROV I MATEMATIK KURS A VÅREN 1998. Tidsbunden del Nationellt prov i Matematik kurs A vt 1998 Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap. 3 sekretesslagen. För detta material gäller sekretessen till och

Läs mer

Lokal pedagogisk planering i matematik för årskurs 9

Lokal pedagogisk planering i matematik för årskurs 9 Lokal pedagogisk planering i matematik för årskurs 9 Arbetsområde 1. Procent och statistik Syfte formulera och lösa problem med hjälp av matematik samt värdera valda strategier och metoder. reflektera

Läs mer

Algebra - uttryck och ekvationer

Algebra - uttryck och ekvationer Förenkla: Tänk så här: Du går till affären och köper 3 äpplen och 2 bananer och lösgodis för 7 kr. Din kompis köper 1 äpple och 3 bananer och lösgodis för 10 kr. Hur många äpplen och hur många bananer

Läs mer

Labora&v matema&k - för en varierad undervisning

Labora&v matema&k - för en varierad undervisning Labora&v matema&k - för en varierad undervisning Per Berggren & Maria Lindroth 2012-02- 23 Lgr11- Matema&ska förmågor Genom undervisningen i ämnet matematik ska eleverna sammanfattningsvis ges förutsättningar

Läs mer

Barn och matematik. Hallonet. Förskolor Syd Munkedals kommun Annelie Carstensen Maria Herdebrant Elisabeth Söderblom Namn Namn Namn Namn

Barn och matematik. Hallonet. Förskolor Syd Munkedals kommun Annelie Carstensen Maria Herdebrant Elisabeth Söderblom Namn Namn Namn Namn Barn och matematik Hallonet 2014 Förskolor Syd Munkedals kommun Annelie Carstensen Maria Herdebrant Elisabeth Söderblom Namn Namn Namn Namn Innehåll Grundfakta och förutsättningar... 3 Kartläggning av

Läs mer

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla.

Om LGR 11 FÖRMÅGOR CENTRALT INNEHÅLL. De matematiska förmågor som undervisningen i åk 1-9 syftar till att eleverna ska utveckla. Om LGR 11 FÖRMÅGOR FÖRMÅGOR Lgr 11: Genom undervisningen i matematik ska eleverna sammanfattningsvis ges förutsättningar att utveckla sin förmåga att formulera och lösa problem med hjälp av matematik samt

Läs mer

Högskoleprovet Kvantitativ del

Högskoleprovet Kvantitativ del Högskoleprovet Kvantitativ del Här följer anvisningar till de kvantitativa delproven XYZ, KVA, NOG och DTK. Provhäftet innehåller 40 uppgifter och den totala provtiden är 55 minuter. Ägna inte för lång

Läs mer

PEDAGOGISKA SÄTT ATT SYNLIGGÖRA MATEMATIKEN FÖR BARNEN PÅ FÖRSKOLAN. Gläntans förskola Den lilla förskolan med stort hjärta

PEDAGOGISKA SÄTT ATT SYNLIGGÖRA MATEMATIKEN FÖR BARNEN PÅ FÖRSKOLAN. Gläntans förskola Den lilla förskolan med stort hjärta PEDAGOGISKA SÄTT ATT SYNLIGGÖRA MATEMATIKEN FÖR BARNEN PÅ FÖRSKOLAN Gläntans förskola Den lilla förskolan med stort hjärta Om barn tidigt får utmaningar i matematik så påverkar det deras intresse och lust

Läs mer

Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet.

Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. Del I: Digitala verktyg är inte tillåtna. Endast svar krävs. Skriv dina svar direkt i provhäftet. 1) a) Bestäm ekvationen för den räta linjen i figuren. (1/0/0) b) Rita i koordinatsystemet en rät linje

Läs mer

MÄT OCH MÅTTA. Lärarhandledning

MÄT OCH MÅTTA. Lärarhandledning MÄT OCH MÅTTA Lärarhandledning 1 Mätväskan innehåller all tänkbar utrustning för att göra olika matematiska undersökningar på Universeum. Räkna till exempel ut volymer i vår regnskog eller mät längder,

Läs mer

LENNART SKOOGH. B. Låt eleverna ställa upp etappmål. A. Varje lärare är en matematiklärare. C. Kontinuitet i färdighetsträningen

LENNART SKOOGH. B. Låt eleverna ställa upp etappmål. A. Varje lärare är en matematiklärare. C. Kontinuitet i färdighetsträningen LENNART SKOOGH Det finns ingen kungsväg då det gäller att skaffa sig grundläggande färdigheter i matematik. Det behövs hårt och målmedvetet arbete. Men och det är ett viktigt men detta arbete kan göras

Läs mer

Pedagogisk planering för förskoleklassen på Enskede byskola

Pedagogisk planering för förskoleklassen på Enskede byskola Pedagogisk planering för förskoleklassen på Enskede byskola SKOLANS UPPDRAG Skolans uppdrag är att främja lärande där individen stimuleras att inhämta och utveckla kunskaper och värden (LGR11 s9) Syftet

Läs mer

Matematik Åk 3 Tal och räkning

Matematik Åk 3 Tal och räkning FA C I T Lgr 11 Matematik Åk 3 Tal och räkning Catherine Bergman Maria Österlund Kan du använda och beskriva tal? Hur långt kan du räkna framåt? Jag kan räkna till: Hur långt kan du räkna bakåt? Jag kan

Läs mer

Boken om SO 1 3. Provlektion: Om demokrati och hur möten, till exempel klassråd, genomförs och organiseras.

Boken om SO 1 3. Provlektion: Om demokrati och hur möten, till exempel klassråd, genomförs och organiseras. Boken om SO 1 3 Boken om SO 1 3 är elevernas första grundbok i geografi, samhällskunskap, historia och religion. Provlektion: Om demokrati och hur möten, till exempel klassråd, genomförs och organiseras.

Läs mer

Kap 1: Aritmetik - Positiva tal - " - " - " - " - - " - " - " - " -

Kap 1: Aritmetik - Positiva tal -  -  -  -  - -  -  -  -  - År Startvecka Antal veckor 2013 34 18 Planering för ma 1b/c - ma 5000- boken OBS: För de i distansgruppen, meddela lärare innan prov. (justeringar för 1c ännu ej genomförda) Vecka Lektio n (2h) Datum Kapitel

Läs mer

Tal Repetitionsuppgifter

Tal Repetitionsuppgifter epetitionsuppgifter Till varje kapitel finns repetitionsuppgifter i form av Arbetsblad. Uppgifterna är relaterade till innehållet i respektive kapitel och täcker hela kapitlet. De uppgifter som kräver

Läs mer

Känguru 2014 Student sida 1 / 8 (gymnasiet åk 2 och 3)

Känguru 2014 Student sida 1 / 8 (gymnasiet åk 2 och 3) Känguru 2014 Student sida 1 / 8 NAMN GRUPP Poängsumma: Känguruskutt: Lösgör svarsblanketten. Skriv ditt svarsalternativ under uppgiftsnumret. Felaktigt svar ger minus 1/4 poäng av uppgiftens totala poängantal.

Läs mer

Storyline och matematik

Storyline och matematik Storyline och matematik Av Eva Marsh och Ylva Lundin I ett storylinearbete om energi fick eleverna i årskurs åtta vid många tillfällen diskutera och lösa matematiska problem som karaktärerna ställdes inför.

Läs mer

MATEMATIK KURS A Våren 2005

MATEMATIK KURS A Våren 2005 MATEMATIK KURS A Våren 2005 1. Vilket tal pekar pilen på? 51 52 53 Svar: (1/0) 2. Skugga 8 3 av figuren. (1/0) 3. Vad är 20 % av 50 kr? Svar: kr (1/0) 4. Hur mycket vatten ryms ungefär i ett dricksglas?

Läs mer

Sammanfattning: Matematik 1b

Sammanfattning: Matematik 1b Sammanfattning: Matematik 1b Ma1c kräver kompletterande delar om vektorer samt trigonometri 1. Kapitel 1: Aritmetik Centrala delar i kapitlet: - Räkneordning - Tal i bråkform och decimalform - Tal i potensform

Läs mer

Talsystem Teori. Vad är talsystem? Av Johan Johansson

Talsystem Teori. Vad är talsystem? Av Johan Johansson Talsystem Teori Av Johan Johansson Vad är talsystem? Talsystem är det sätt som vi använder oss av när vi läser, räknar och skriver ner tal. Exempelvis hade romarna ett talsystem som var baserat på de romerska

Läs mer

Högskoleprovet. Block 1. Anvisningar. Övningsexempel. Delprovet innehåller 22 uppgifter.

Högskoleprovet. Block 1. Anvisningar. Övningsexempel. Delprovet innehåller 22 uppgifter. Block 1 2010-10-23 Högskoleprovet Svarshäfte nr. DELPROV 1 NOGa Delprovet innehåller 22 uppgifter. Anvisningar Varje uppgift innehåller en fråga markerad med fet stil. Uppgiften kan även innehålla viss

Läs mer

Förstå tal i bråkform

Förstå tal i bråkform Förstå tal i bråkform Förstå tal i bråkform Erfarenheter i förskoleålder och sedan? Kursplan 2008 Skolan ska i sin undervisning sträva efter att eleven inser värdet av och använder matematikens uttrycksformer

Läs mer

Studiehandledning för Matematik 1a

Studiehandledning för Matematik 1a Studiehandledning för Matematik 1a Innehåll Studiehandledning för Matematik 1a... 1 Inledning och Syfte... 2 Ämne - Matematik... 3 Ämnets syfte... 3 Matematik 1a... 4 Centralt innehåll... 4 Kunskapskrav...

Läs mer

Högskoleprovet. Block 5. Anvisningar. Övningsexempel. Delprovet innehåller 22 uppgifter.

Högskoleprovet. Block 5. Anvisningar. Övningsexempel. Delprovet innehåller 22 uppgifter. Block 5 2008-04-05 Högskoleprovet Svarshäfte nr. DELPROV 9 NOGf Delprovet innehåller 22 uppgifter. Anvisningar Varje uppgift innehåller en fråga markerad med fet stil. Uppgiften kan även innehålla viss

Läs mer

Svar och lösningar Benjamin

Svar och lösningar Benjamin Kängurutävlingen 2014 Svar och lösningar Benjamin 1: A 0 Summerar vi entalen ger de 9, hundratalen ger 3 så det är inga minnessiffror att beakta. Summan av tiotalen är 0. 2: A 1 9999 + 1= 10 000. Talet

Läs mer

Problem 1 2 3 4 5 6 7 Svar

Problem 1 2 3 4 5 6 7 Svar Känguru Ecolier, svarsblankett Namn Klass/Grupp Poängsumman Känguruskuttet Ta lös svarsblanketten. Skriv ditt svarsalternativ under numret. Lämna rutan tom om du inte vet svaret. Gissa inte, felaktigt

Läs mer

Läs in Räkna ut A Läs in Räkna ut a

Läs in Räkna ut A Läs in Räkna ut a LÄS IN RÄKNA UT A Innehåll Stryk under, ringa in, kryssa Till höger och till vänster 6 Hitta rätt mönster 8 I ordning 10 Följ ledtrådarna 14 Hemliga språk och koder 18 Tabeller och diagram 0 Tänk logiskt

Läs mer

räkna med vasa övningar att genomföra i vasamuseet

räkna med vasa övningar att genomföra i vasamuseet räkna med vasa övningar att genomföra i vasamuseet lärarhandledning 2 (av 2) övningar att genomföra i vasamuseet Denna handledning riktar sig till läraren som i sin tur muntligt instruerar sina elever.

Läs mer

Matematik och kaffe i Bengtsfors den 11-12 januari 2011

Matematik och kaffe i Bengtsfors den 11-12 januari 2011 Matematik och kaffe i Bengtsfors den 11-12 januari 2011 I Bengtsfors har Sten och Elisabeth förstått vad ett trevligt, vänligt och vackert bemötande betyder för inlärning. Mattesmedjan har verkligen insett

Läs mer

En metod för aktiv redovisning av matematikuppgifter

En metod för aktiv redovisning av matematikuppgifter En metod för aktiv redovisning av matematikuppgifter Magnus Jacobsson och Inger Sigstam Matematiska institutionen 1. Introduktion Matematik på grundnivå är till stor del ett övningsämne, man lär sig matematik

Läs mer

Med Hans Persson som guide, blir de här veckans roligaste ämnen!

Med Hans Persson som guide, blir de här veckans roligaste ämnen! Med Hans Persson som guide, blir de här veckans roligaste ämnen! Boken om-serien Boken om-serien är skriven med den lätthet som blivit ett signum för Hans Persson. Via vardagsnära texter och enkla experiment

Läs mer

Talmönster och algebra. TA

Talmönster och algebra. TA Talmönster och algebra. TA Diagnoserna i området avser att kartlägga om eleverna kan upptäcka talmönster samt på olika sätt bearbeta algebraiska uttryck och ekvationer. Förståelse av koordinatsystem och

Läs mer

Matematik. Bedömningsanvisningar. Vårterminen 2009 ÄMNESPROV. Delprov C ÅRSKURS

Matematik. Bedömningsanvisningar. Vårterminen 2009 ÄMNESPROV. Delprov C ÅRSKURS ÄMNESPROV Matematik ÅRSKURS 9 Prov som ska återanvändas omfattas av sekretess enligt 4 kap. 3 sekretesslagen. Avsikten är att detta prov ska kunna återanvändas t.o.m. 2009-06-30. Vid sekretessbedömning

Läs mer

Högskoleprovet Så presterar du bättre

Högskoleprovet Så presterar du bättre Högskoleprovet Så presterar du bättre I det här lilla häftet kommer du att få information om hur högskoleprovet går till rent praktiskt, vad du skall tänka på under själva provdagen och tips för att du

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS A HÖSTEN 2001. Del II

NATIONELLT KURSPROV I MATEMATIK KURS A HÖSTEN 2001. Del II Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap 3 Sekretesslagen. För detta material gäller sekretessen till och med utgången av 2011. Anvisningar Provtid

Läs mer

Sammanställning av projektet Hållbar utveckling, klass 5 på Rydaholms skola.

Sammanställning av projektet Hållbar utveckling, klass 5 på Rydaholms skola. Sammanställning av projektet Hållbar utveckling, klass 5 på Rydaholms skola. Vi började med att prata om miljön, se på film och fundera över vad Hållbar utveckling kan innebära för oss på skolan. Grupperna

Läs mer

Leonardo da Vinci och människokroppen

Leonardo da Vinci och människokroppen Leonardo da Vinci och människokroppen När vi läser om renässansen, är det självklart att studera Leonardo da Vinci eftersom han behärskade så många områden och kom att prägla mycket av det som vi referar

Läs mer

STRÄVANSMÅL VISÄTTRASKOLAN - FÖRSKOLEKLASS

STRÄVANSMÅL VISÄTTRASKOLAN - FÖRSKOLEKLASS STRÄVANSMÅL VISÄTTRASKOLAN - FÖRSKOLEKLASS Svenska - Språkutvecklande Vi arbetar med slingerpedagogik och Bornholms modellen vägen till läsning. Detta med utgångspunkt från rim, meningar, ord, stavelser

Läs mer

Provet består av Del I, Del II, Del III samt en muntlig del och ger totalt 75 poäng varav 28 E-, 23 C- och 24 A-poäng.

Provet består av Del I, Del II, Del III samt en muntlig del och ger totalt 75 poäng varav 28 E-, 23 C- och 24 A-poäng. Del I Del II Provtid Hjälpmedel Uppgift 1-10. Endast svar krävs. Uppgift 11-15. Fullständiga lösningar krävs. 10 minuter för del I och del II tillsammans. Formelblad och linjal. Kravgränser Provet består

Läs mer

Repetitionsuppgifter 1

Repetitionsuppgifter 1 Repetitionsuppgifter 1 1 Är talet a) 5 ett heltal b) 9 ett naturligt tal c) π ett rationellt tal d) 5 ett reellt tal 6 2 Rita av figuren och placera in talen rätt talmängd. naturliga tal hela tal rationella

Läs mer

Det handlar om att ta fram och utveckla elevers inneboende nyfikenhet, initiativförmåga och självförtroende redan från tidiga åldrar.

Det handlar om att ta fram och utveckla elevers inneboende nyfikenhet, initiativförmåga och självförtroende redan från tidiga åldrar. Ung Företagsamhet Fyrbodal jobbar med att få fler företagsamma barn och ungdomar. I drygt 30 år har vi jobbat med UF-företag på gymnasienivå. Nu gör vi en nysatsning där elever och ni lärare på grundskolan

Läs mer

Nationella prov i verkligheten

Nationella prov i verkligheten Nationella prov i verkligheten: Sida 1 Nationella prov i verkligheten Övningsprov Matte 1C (2012) Vad används matematiken till? Vad gör en matematiker? 2 Räkning med procent förekommer i prisberäkningar

Läs mer

Svenska Engelska Matematik

Svenska Engelska Matematik Minimikunskapskrav Svenska Engelska Matematik för grundskolan i Borlänge En av lärarens viktigaste uppgifter är att bedöma om varje elev uppnått kursplanernas kunskapskrav. Detta ställer stora krav på

Läs mer

Tänk dig att vandra från Afrika i söder till samerna i norr på en och samma dag. Samtidigt får du lösa åtta spännande matematikuppdrag.

Tänk dig att vandra från Afrika i söder till samerna i norr på en och samma dag. Samtidigt får du lösa åtta spännande matematikuppdrag. Tänk dig att vandra från Afrika i söder till samerna i norr på en och samma dag. Samtidigt får du lösa åtta spännande matematikuppdrag. Till läraren Vandringen med de matematiska uppgifterna vävs in av

Läs mer

Polhem 350. Lärarhandledning för årskurs 1-3

Polhem 350. Lärarhandledning för årskurs 1-3 Polhem 350 Lärarhandledning för årskurs 1-3 JÖNKÖPINGS KOMMUN Tfn 036-10 50 00 (vxl) Postadress (om inget annat anges) 551 89 Jönköping www.jonkoping.se UPPTECH Västra Holmgatan 34 A, 553 23 Jönköping

Läs mer

Wiggo Kilborn. Om tal i bråkoch decimalform en röd tråd

Wiggo Kilborn. Om tal i bråkoch decimalform en röd tråd Wiggo Kilborn Om tal i bråkoch decimalform en röd tråd Tal i bråkoch decimalform en röd tråd Wiggo Kilborn Nationellt centrum för matematikutbildning Göteborgs universitet 20 Detta verk är licensierad

Läs mer

Katedralskolan 2004-11-05 Lena Claesson MICROSOFT EXCEL

Katedralskolan 2004-11-05 Lena Claesson MICROSOFT EXCEL Katedralskolan 2004-11-05 MICROSOFT EXCEL Lös varje uppgift på ett separat blad inom samma excelarbetsbok. Bladen döper du till uppg1, uppg2 osv och hela arbetsboken döper du till ditt eget namn. Spara

Läs mer

Alva ordnar loppis Lärarmaterial

Alva ordnar loppis Lärarmaterial SIDAN 1 Författare: Kirsten Ahlburg Vad handlar boken om? Boken handlar om Alva och hennes klasskompisar som ska samla in pengar till en skolresa. De behöver få ihop mycket pengar. De bestämmer sig för

Läs mer

Anvisningar Del I. Namn: Födelsedatum: Komvux/gymnasieprogram: Provtid

Anvisningar Del I. Namn: Födelsedatum: Komvux/gymnasieprogram: Provtid Anvisningar Del I Provtid Hjälpmedel Miniräknarfri del Uppgift 14 Kravgränser 90 minuter för del I. Vi rekommenderar att du använder högst 45 minuter för arbetet med den miniräknarfria delen. Du får inte

Läs mer

Matematik klass 2 Problemlösning nummer 2

Matematik klass 2 Problemlösning nummer 2 Matematik klass 2 Problemlösning nummer 2 Anneli Weiland Matematik åk 2 Problemlösning 1 Tor hade sjutton gamla bilar i sitt rum. Nu fick han tre nya. Hur många har han då? 17+3=20 Tor har 20 bilar nu.

Läs mer

Beräkningsmetoder för superellipsens omkrets

Beräkningsmetoder för superellipsens omkrets Beräkningsmetoder för superellipsens omkrets Frågeställning Svar 1. Vi förväntades ta reda på olika metoder för att beräkna en superellips eller en ellips omkrets. o Givet var ellipsens ekvation:. (Källa

Läs mer

Prov Antal uppgifter Uppgiftsnummer Rekommenderad provtid

Prov Antal uppgifter Uppgiftsnummer Rekommenderad provtid 2012-10-27 Provpass 1 Svarshäfte nr. Högskoleprovet Kvantitativ del b Provet innehåller 40 uppgifter Instruktion etta provhäfte består av fyra olika delprov. essa är XYZ (matematik), KV (kvantitativa jämförelser),

Läs mer

En okänd graf. Förkunskaper Elever behöver ha en grundläggande förståelse för att alla förändringar sker över tid.

En okänd graf. Förkunskaper Elever behöver ha en grundläggande förståelse för att alla förändringar sker över tid. strävorna 6D 9E En okänd graf kreativ verksamhet tolka en situation statistik förändring Avsikt och matematikinnehåll Förr förmedlades information muntligt. När tidningar och senare radio och tv blev allmän

Läs mer

NATIONELLT KURSPROV I MATEMATIK KURS A VÅREN 1999. Tidsbunden Del II

NATIONELLT KURSPROV I MATEMATIK KURS A VÅREN 1999. Tidsbunden Del II Skolverket hänvisar generellt beträffande provmaterial till bestämmelsen om sekretess i 4 kap 3 sekretesslagen. För detta material gäller sekretessen till och med utgången av november 1999. NATIONELLT

Läs mer

Högskoleprovet. Block 1. Anvisningar. Övningsexempel. Delprovet innehåller 22 uppgifter.

Högskoleprovet. Block 1. Anvisningar. Övningsexempel. Delprovet innehåller 22 uppgifter. Block 1 2010-04-10 Högskoleprovet Svarshäfte nr. DELPROV 1 NOGc Delprovet innehåller 22 uppgifter. Anvisningar Varje uppgift innehåller en fråga markerad med fet stil. Uppgiften kan även innehålla viss

Läs mer

En noggrant planerad och organiserad kurs i matematik är ibland alltför lik en fjällvandring som aldrig lämnar den markerade leden.

En noggrant planerad och organiserad kurs i matematik är ibland alltför lik en fjällvandring som aldrig lämnar den markerade leden. En noggrant planerad och organiserad kurs i matematik är ibland alltför lik en fjällvandring som aldrig lämnar den markerade leden. Man ser en jämn ström av uppseendeväckande scenarier. Man undviker nog

Läs mer

Graärgning och kromatiska formler

Graärgning och kromatiska formler Graärgning och kromatiska formler Henrik Bäärnhielm, d98-hba 2 mars 2000 Sammanfattning I denna uppsats beskrivs, för en ickematematiker, färgning av grafer samt kromatiska formler för grafer. Det hela

Läs mer

Innehållsförteckning PEDAGOGISKA TANKAR 1. A LÄGENHET Story: Din familj flyttar in. B FRITIDSHUS Story: Du är 25 år och investerar i ett fritidshus

Innehållsförteckning PEDAGOGISKA TANKAR 1. A LÄGENHET Story: Din familj flyttar in. B FRITIDSHUS Story: Du är 25 år och investerar i ett fritidshus Innehållsförteckning PEDAGOGISKA TANKAR 1 A LÄGENHET Story: Din familj flyttar in Vikning - ritning 2 Tabell - stapeldiagram 3 Mäklaren - Att hyra 4 Problem 1: Mått 5 Problem 2: Renovera 6 Problem 3: Öppna

Läs mer

Grafisk Teknik. Rastrering. Övningar med lösningar/svar. Sasan Gooran (HT 2013)

Grafisk Teknik. Rastrering. Övningar med lösningar/svar. Sasan Gooran (HT 2013) Grafisk Teknik Rastrering Övningar med lösningar/svar Det här lilla häftet innehåller ett antal räkneuppgifter med svar och i vissa fall med fullständiga lösningar. Uppgifterna är för det mesta hämtade

Läs mer

Högskoleprovet. Block 4. Anvisningar. Övningsexempel. Delprovet innehåller 22 uppgifter.

Högskoleprovet. Block 4. Anvisningar. Övningsexempel. Delprovet innehåller 22 uppgifter. Block 4 2009-10-24 Högskoleprovet Svarshäfte nr. DELPROV 7 NOGa Delprovet innehåller 22 uppgifter. Anvisningar Varje uppgift innehåller en fråga markerad med fet stil. Uppgiften kan även innehålla viss

Läs mer

1 mindre än 2 > 3 = Hur stor andel är färgad? Sätt ut < eller > Storlek på bråk. Skriv på två sätt. Skriv i blandad form. Skriv som bråk.

1 mindre än 2 > 3 = Hur stor andel är färgad? Sätt ut < eller > Storlek på bråk. Skriv på två sätt. Skriv i blandad form. Skriv som bråk. täljare bråkstreck ett bråk nämnare Vilket bråk är störst? Ett bråk kan betyda mer än en hel. Olika bråk kan betyda lika mycket. _ 0 två sjundedelar en hel och två femtedelar > 0 > 0 < > > < > Storlek

Läs mer

MATEMATIK - grunderna och lite till - Hans Elvesjö

MATEMATIK - grunderna och lite till - Hans Elvesjö MATEMATIK - grunderna och lite till - Hans Elvesjö 1 Största delen av boken ligger på höstadienivå med en mindre del på gymnasienivå Den har ej för avsikt att följa läroplanen men kan med fördel användas

Läs mer

Mathias Norqvist - Umeå universitet SPELAR DET NÅGON ROLL VILKA UPPGIFTER ELEVERNA TRÄNAR MED?

Mathias Norqvist - Umeå universitet SPELAR DET NÅGON ROLL VILKA UPPGIFTER ELEVERNA TRÄNAR MED? Mathias Norqvist - Umeå universitet SPELAR DET NÅGON ROLL VILKA UPPGIFTER ELEVERNA TRÄNAR MED? 1 En situation från ett klassrum E: Blir x 3 x 5 = 2x 15? L: Nej, x 3 x 5 blir x 8. E: Jaha, då förstår jag!

Läs mer

Blommor och fjärilar. Inspiration med härliga färger!

Blommor och fjärilar. Inspiration med härliga färger! SC-0019 ewww.creativeclub.s Inspiration med härliga färger! Här får du ett härligt paket fyllt med läckra papper som man blir glad av! Fina blommor i chipboard, tyg, papper och nät samt söta fjärilar får

Läs mer

Rika matematiska problem

Rika matematiska problem Rika matematiska problem Författare: Kerstin Hagland, Rolf Hedrén, Eva Taflin Här finner du ett antal matematiska problem hämtade ur boken. Du kan skriva ut sidorna och använda exempelvis i din undervisning.

Läs mer

DD2458-224344 - 2014-12-19

DD2458-224344 - 2014-12-19 KTH / KURSWEBB / PROBLEMLÖSNING OCH PROGRAMMERING UNDER PRESS DD2458-224344 - 2014-12-19 Antal respondenter: 26 Antal svar: 18 Svarsfrekvens: 69,23 % RESPONDENTERNAS PROFIL (Jag är: Man) Det var typ en

Läs mer

Alla elever bör få möta en variation av arbetssätt i matematikundervisningen,

Alla elever bör få möta en variation av arbetssätt i matematikundervisningen, lena trygg Undervisning med laborativa material Att använda laborativa material i matematikundervisningen är på intet sätt något nytt. Det mest väsentliga för att material ska komma till verklig nytta

Läs mer

Undervisningsmål Bild Årskurs 1-9

Undervisningsmål Bild Årskurs 1-9 Undervisningsmål Bild Årskurs 1-9 Årskurs 1 - grundfärgerna samt blanda och experimentera med färger - namn på grundfärgerna samt svart och vit - framställa bilder med hjälp av tekniker, redskap och material

Läs mer

Analysschema i matematik. För åren före årskurs 6

Analysschema i matematik. För åren före årskurs 6 Analysschema i matematik För åren före årskurs 6 Förord I Regeringsbeslut 1999-09-23 fick Skolverket i uppdrag att för det offentliga skolväsendet utveckla ett material rörande matematisk begreppsbildning

Läs mer

Inledande programmering med C# (1DV402) Introduktion till programmering

Inledande programmering med C# (1DV402) Introduktion till programmering Introduktion till programmering Upphovsrätt för detta verk Detta verk är framtaget i anslutning till kursen Inledande programmering med C# vid Linnéuniversitetet. Du får använda detta verk så här: Allt

Läs mer

Steg 8 OpenOffice Presentation

Steg 8 OpenOffice Presentation Steg 8 OpenOffice Presentation Mac OS X Sept -13 Liljedalsdata.se Liljedalsdata Steg 8 Mac Sida 1 Inledning Förkunskaper Steg 1, 2. Datorns funktion OpenOffice Presentation är ett program som du kan använda

Läs mer

Vad gömmer sig det bestämmer du!

Vad gömmer sig det bestämmer du! 1 (5) Vad gömmer sig det bestämmer du! Utifrån en rektangulär låda får eleverna konstruera något som rör sig med hjälp av pneumatik. Kanske blir det ett monster som gömmer sig i en grotta eller en figur

Läs mer

Undervisningsplanering i Matematik KURS A (100 poäng) Kurskod: MA1201

Undervisningsplanering i Matematik KURS A (100 poäng) Kurskod: MA1201 Undervisningsplanering i Matematik KURS A (100 poäng) Kurskod: MA1201 Styrdokument: Kursplan i kärnämnet matematik med betygskriterier. Läromedel: Matematik 3000 N&K. Lån för studerande upp till 20 år

Läs mer

6-1 Datainsamling, tabeller och diagram Namn:

6-1 Datainsamling, tabeller och diagram Namn: 6-1 Datainsamling, tabeller och diagram Namn: Inledning Så fort du bläddrar i en dagstidning kommer du att se en mängd tabeller och diagram över diverse företeelser. I det här kapitlet skall du studera

Läs mer

LEKTION PÅ GRÖNA LUND, GRUPP 1

LEKTION PÅ GRÖNA LUND, GRUPP 1 LEKTION PÅ GRÖNA LUND, GRUPP 1 JETLINE Tåget är 9,2 m långt. Hur lång tid tar det för tåget att passera en stolpe? Hur fort går tåget? Var under turen tror du att känner man sig tyngst? Lättast? Två gånger

Läs mer

Uppgifter för Textil vecka 8, 2015

Uppgifter för Textil vecka 8, 2015 Uppgifter för Textil vecka 8, 2015 Uppgifter till föreläsning 1 Uppgift 1 illustrator: Utföres på en stående A4: - Rita ett en rektangel med måtten 75 mm x 55 mm ljusgrön fyllning och mörkgrön kantlinje

Läs mer