Sannolikhetslära. 1 Enkel sannolikhet. Grunder i matematik och logik (2015) 1.1 Sannolikhet och relativ frekvens. Marco Kuhlmann

Storlek: px
Starta visningen från sidan:

Download "Sannolikhetslära. 1 Enkel sannolikhet. Grunder i matematik och logik (2015) 1.1 Sannolikhet och relativ frekvens. Marco Kuhlmann"

Transkript

1 Marco Kuhlmann Detta kapitel behandlar grundläggande begrepp i sannolikhetsteori: enkel sannolikhet, betingad sannolikhet, lagen om total sannolikhet och Bayes lag. 1 Enkel sannolikhet Den klassiska sannolikhetsteorin, som började utvecklas på 1600-talet, har sitt ursprung i tillämpningar på hasardspel. De frågor som man ville ha svar på var av typen Är det gynnsamt (skulle man vinna i längden på) att, vid jämna odds, slå vad om att man vid fyra kast med en tärning får minst en sexa? Detta specifika problem kallas även för De Mérés problem. 1 Din tur 1 Hur du skulle intuitivt svara på frågan? Hur skulle du kunna gå tillväga för att lösa problemet? 1.1 Sannolikhet och relativ frekvens Låt oss försöka att lösa detta problem empiriskt. I Figur 1 ser vi utdatan från ett program som kastar fyra tärningar åt oss och håller koll på antalet i sammanhanget gynnsamma utfall, dvs. antalet gånger där man kastat minst en sexa vid fyra kast. Programmet skriver även ut den relativa frekvensen av de gynnsamma utfallen: andelen som de gynnsamma utfallen har bland alla utfall. Som vi ser så ligger denna andel på 60% efter tio försök. Sannolikhetsteorin utvecklades för att man ville kunna förutsäga framtiden baserat på empiriska erfarenheter. Det hela bygger på antagandet att den relativa frekvensen av en given händelse (såsom att kasta minst en sexa vid fyra kast) så småningom stabiliseras kring ett värde. Detta värde kallas för händelsens sannolikhet. Sannolikheten för en händelse A skrivs P(A). Det gäller att 0 P(A) 1. P(A) = 0 innebär att händelse A aldrig inträffar och P(A) = 1 att den alltid inträffar. (Figur 1 visar att sannolikheten för ett gynnsamt utfall ligger någonstans mellan aldrig och alltid.) 1 Efter Antoine Gombaud ( ), som kallades Chevalier de Méré (även om han inte var riddare). 1(9)

2 Försök Tärningskast Gynsamma Rel. frekvens Figur 1: Experiment utifrån De Mérés problem Det är viktigt att förstå att en händelses sanna sannolikhet kan inte observeras; den kan bara skattas. (I det experiment som vi körde i Figur 1 observerade vi relativa frekvenser, inte sannolikheter.) Din tur 2 Är skattningen efter tio försök i Figur 1 pålitlig? 1.2 Utfall, händelser och sannolikhet För att lösa De Mérés problem med hjälp av sannolikhetsteorin börjar vi med en förenklad fråga: Är det gynnsamt att, vid jämna odds, slå vad om att man vid ett kast med en tärning får en sexa? Svaret på denna fråga är lätt. När man kastar en tärning finns det sex möjliga utfall: Tärningen kan visa en etta, en tvåa, en trea, en fyra, en femma eller en sexa. Mängden av alla möjliga utfall vid ett tärningskast eller ett annat experiment kallas för utfallsrum och betecknas med den grekiska bokstaven U. I det här fallet har vi alltså U = {1, 2, 3, 4, 5, 6} Vid jämna odds finns det alltså bara ett gynnsamt utfall (man kastar en sexa), men fem stycken ogynnsamma utfall (man kastar något annat). Det är alltså inte gynnsamt att slå vad om att man får en sexa. Din tur 3 Hur måste man argumentera om man istället är intresserad i frågan om det är gynnsamt att slå vad om att man vid ett kast med en tärning får ett jämt tal? 2(9)

3 Svar: Om man istället är intresserad av händelsen man kastar ett jämt tal så finns det tre gynnsamma utfall: en tvåa, en fyra och en sexa. Det föregående exemplet illustrerar skillnaden mellan begreppen utfall och händelse: Varje kast med tärningen kommer att ge exakt ett tal som utfall; men vissa relevanta händelser, t.ex. talet är jämnt ({2, 4, 6}) och talet är större än 3 ({4, 5, 6}), kan bara beskrivas som kombinationer av sådana utfall. Allmänt definierar man därför en händelse som en mängd utfall. En händelse är därför en delmängd till utfallsrummet. Och hela utfallsrummet utgör den händelse som alltid inträffar. Sannolikheten för en händelse A kan räknas ut på detta sätt, om alla utfall är lika sannolika: P(A) = antal utfall som leder till A antal möjliga utfall = A (Kom ihåg att notationen X betecknar kardinaliteten eller storleken hos X.) T.ex. vid tärningskast (med vanliga typen av tärning): {2, 4, 6} P(talet är jämnt) = P({2, 4, 6}) = = 3/6 = 0,5 {1, 2, 3, 4, 5, 6} {1, 2, 3, 4, 6} P(talet är inte 5) = P({1, 2, 3, 4, 6}) = = 5/6 0,833 {1, 2, 3, 4, 5, 6} P(talet är 7) = P( ) = {1, 2, 3, 4, 5, 6} = 0/6 = 0 P(talet är inte 7) = P({1, 2, 3, 4, 5, 6}) = Din tur 4 Vad för sorts händelser är och U? {1, 2, 3, 4, 5, 6} {1, 2, 3, 4, 5, 6} = 6/6 = 1 Svar: Den tomma mängden representerar omöjlighet : Det finns inget som helst utfall som kan leda till denna händelse; dess sannolikhet är 0. Den fullständiga mängden representerar nödvändighet : Alla möjliga utfall leder till denna händelse; dess sannolikhet är 1. Nu kan vi gå tillbaka till De Mérés problem. Din tur 5 Vilket utfallsrum får man för De Mérés problem? Vilken storlek har detta rum? Vilken händelse är man intresserad av? Hur stor är sannolikheten för den händelsen? Svar: Det nya utfallsrummet består av alla följder (tupler) av fyra tärningskast. Detta utfallsrum har kardinalitet 6 4 = Alltså: = Händelsen som är aktuell i De Mérés fall är den att få en följd som innehåller minst en sexa. Men det är inte så lätt att räkna ut sannolikheten för denna händelse En ganska dum 3(9)

4 U A Figur 2: Diagrammet visar att A c = U A = U A. metod vore att gå igenom alla följder (tupler) av fyra tärningskast och räkna hur många som innehåller minst en sexa, men det skulle vara ganska jobbigt och vi skulle riskera att räkna fel. Vi kan dessbättre tänka på ett smartare sätt för att räkna ut antalet utfall som leder till händelsen minst en sexa! Ett begrepp som är mycket användbart i samband med De Mérés problem är begreppet komplementhändelse. Med komplementhändelsen till en händelse A menas händelsen att A inte inträffar. Eftersom varje händelse är en mängd är komplementhändelsen till A helt enkelt komplementmängden till A, relativt till universum U. Det är inte svårt att se att sannolikheten för komplementhändelsen till en händelse A är P(A c ) = 1 P(A) På samma sätt får man P(A) = 1 P(A c ). Din tur 6 Kan du bevisa detta? Svar: Mängden A c kan skrivas som U A. Enligt definitionen av sannolikhet gäller då att P(A c ) = P(U A) = U A När man ritar ett Venn-diagram som i Figur 2 ser man att U A = U A. Men eftersom A U har man U A = A. Med detta: P(A c ) = U A = U A = A = A = 1 P(A) Det som gör begreppet komplementhändelsen användbart i samband med De Mérés problem är att det är mycket lättare att räkna ut storleken på komplementhändelsen till minst en sexa på fyra kast än händelsen själv. Din tur 7 Vad är komplementhändelsen, hur stor är respektive mängd och hur sannolikt är komplementhändelsen? 4(9)

5 Svar: Komplementhändelsen är ingen sexa på fyra kast ; dess storlek är 5 4 = 625; och sannolikheten för komplementhändelsen är då 625/1296 = 48,2%. Med detta vet vi alltså att sannolikheten att få minst en sexa på fyra kast (vilket är komplementhändelsen till komplementhändelsen, så att säga) är P(A) = 1 P(A c ) = ,8% Detta betyder att man har större chans att vinna än att förlora när man slår vad om att man vid fyra kast med en tärning får minst en sexa. 5(9)

6 A B Figur 3: Illustration av den betingade sannolikheten P(A B). 2 Betingad sannolikhet Definition 1 Låt A, B vara händelser. Den betingade sannolikheten för A givet B är P(A B) = A B B För att se att denna definition är en generalisering av vår tidigare definition av sannolikhet kan man notera att man får den vanliga (enkla) sannolikheten genom att sätta B = U: P(A U) = A U = A = P(A) Sammanhanget mellan enkel sannolikhet och betingad sannolikhet kan beskrivas så att man zoomar in på en delmängd av utfallen, nämligen dem som är förenliga med B. Dessa händelser blir det nya utfallsrummet. Detta illustreras i Figur 3. Om vi antar att sannolikheten för en händelse är proportionerlig till dess andel av arean så har vi P(A) = 4/16. Om vi nu vet att B har inträffat så har sannolikheten för A höjts rejält till P(A B) = A B B = 2 4. Definition 2 Två händelser A och B kallas oberoende om P(A B) = P(A)P(B). Sannolikheten P(A B) beräknas även om vi inte vet att A och B är oberoende: Lemma 1 För alla händelser A, B gäller att P(A B) = P(A B)P(B). Bevis. Vi börjar med produkten P(A B)P(B), tillämpar definition av betingad och enkel sannolikhet och kortar bråktalet: P(A B)P(B) = A B B B A B B A B = = = P(A B) B 6(9)

7 U P(A 1 ) P(A 2 ) A 1 A 2 P(B A 1 ) P(B c A 1 ) P(B A 2 ) P(B c A 2 ) A 1 B A 1 B c A 2 B A 2 B c Figur 4: Träddiagram för problem där A 1 A 2 = U och A 1 A 2 =. Om man kombinerar definition av oberoende händelser med Lemma 1 ser man att P(A B) = P(A) om A och B är oberoende. Den betingade sannolikheten för A givet B inte är större än den enkla sannolikheten för A; händelsen B händer har ingen påverkan på A. 3 Lagen om total sannolikhet Din tur 8 Hur räknar man ut P(A B)? Svar: Genom att använda oss av räknereglerna för kardinalitet får vi P(A B) = A B = A + B A B = P(A) + P(B) P(A B) Definition 3 Två händelser A 1, A 2 kallas disjunkta om A 1 A 2 =. Din tur 9 Hur räknar man ut P(A B)? om A och B är disjunkta? Svar: Då gäller P(A B) = 0 och P(A B) = P(A) + P(B) P(A B) = P(A) + P(B). När man har problem med två disjunkta händelser A 1, A 2 sådana att A 1 A 2 = U och en tredje händelse B (som inte behöver vara disjunkt till A 1 eller A 2 ) kan man visualisera det genom att rita ett träddiagram som i Figur 4. Man tänker sig att man startar i rotnoden (längst upp). Eftersom A 1 A 2 = U så måste antingen A 1 eller A 2 hända. Eftersom A 1 och A 2 är disjunkta kan antingen endast en av dessa hända: antingen A 1 (med sannolikhet P(A 1 )) eller A 2 (med sannolikhet P(A 2 )). Oberoende av vilken händelse som inträffar kan antingen B 7(9)

8 hända eller så händer B c, komplementet till B. Nu finns det fyra olika fall; exakt ett av dessa fall måste inträffa: A 1 B A 1 B c A 2 B A 2 B c Lagen om total sannolikhet säger att man kan beräkna sannolikheten för B genom att plussa ihop sannolikheterna för de två fall som kan leda till B: Lemma 2 (Lagen om total sannolikhet) Låt A 1, A 2 vara händelser sådana att A 1 A 2 = U och A 1 A 2 =. Då gäller följande för alla händelser B: P(B) = P(B A 1 ) + P(B A 2 ) = P(A 1 )P(B A 1 ) + P(A 2 )P(B A 2 ) Bevis. P(B) = P(B U) (eftersom B U) = P(B (A 1 A 2 )) (eftersom A 1 A 2 = U) = P((B A 1 ) (B A 2 )) (de Morgan) = P(B A 1 ) + P(B A 2 ) (eftersom A 1 A 2 = ) = P(A 1 )P(B A 1 ) + P(A 2 )P(B A 2 ) (Lemma 1) 4 Bayes lag Det finns många situationer då vi är intresserade i P(B A) men då vi bara har tillgång till P(A B). Bayes lag låter en vända på en betingad sannolikhet. Lemma 3 (Bayes lag) Låt A, B vara händelser. Då gäller P(B A) = P(A B)P(B) P(A) Bevis. Vi tillämpar Lemma 1 på två sätt: P(A B) = P(B A) P(A) P(A B) = P(A B) P(B) Nu sätter vi de båda termer till höger om likhetstecknet lika med varandra och dela med P(A) respektive P(B). Då får vi: P(B A) = P(A B) P(B) P(A) P(A B) = P(B A) P(A) P(B) 8(9)

9 Din tur 10 Vi har följande information: Meningit orsakar feber i 80% av alla fall. Meningit har en prevalens på 0,15%. 1 av 100 människor lider av feber. En läkare träffar en patient med feber. Hur sannolikt är det att denna patient har meningit? Från Bayes lag får vi: P(meningit feber) = P(feber meningit)p(meningit) P(feber) = 0,8 0,0015 0,01 = 0,12 9(9)

Institutionen för lingvistik och filologi VT 2014 (Marco Kuhlmann 2013, tillägg och redaktion Mats Dahllöf 2014).

Institutionen för lingvistik och filologi VT 2014 (Marco Kuhlmann 2013, tillägg och redaktion Mats Dahllöf 2014). UPPSALA UNIVERSITET Matematik för språkteknologer (5LN445) Institutionen för lingvistik och filologi VT 2014 (Marco Kuhlmann 2013, tillägg och redaktion Mats Dahllöf 2014). 9 Sannolikhet Detta kapitel

Läs mer

händelsen som alltid inträffar. Den tomma mängden representerar händelsen som aldrig inträffar.

händelsen som alltid inträffar. Den tomma mängden representerar händelsen som aldrig inträffar. Marco Kuhlmann Detta är en kompakt sammanfattning av momentet sannolikhetslära som ingår i kurserna Matematik 1b och 1c på gymnasiet. 1 Grundläggande begrepp 1.01 När vi singlar slant eller kastar tärning

Läs mer

Kap 2: Några grundläggande begrepp

Kap 2: Några grundläggande begrepp Kap 2: Några grundläggande begrepp Varför sannolikhetslära är viktigt? Vad menar vi med sannolikhetslära? Träddiagram? Vad är den klassiska, empiriska och subjektiva sannolikheten? Vad menar vi med de

Läs mer

Sannolikhetslära. 1 Grundläggande begrepp. 2 Likformiga sannolikhetsfördelningar. Marco Kuhlmann

Sannolikhetslära. 1 Grundläggande begrepp. 2 Likformiga sannolikhetsfördelningar. Marco Kuhlmann Marco Kuhlmann Detta är en kompakt sammanfattning av momentet sannolikhetslära som ingår i kurserna Matematik 1b och 1c på gymnasiet. I slutet av dokumentet hittar du uppgifter med vilka du kan testa om

Läs mer

Matematisk statistik - Slumpens matematik

Matematisk statistik - Slumpens matematik Matematisk Statistik Matematisk statistik är slumpens matematik. Började som en beskrivning av spel, chansen att få olika utfall. Brevväxling mellan Fermat och Pascal 1654. Modern matematisk statistik

Läs mer

Introduktion till sannolikhetslära. Människor talar om sannolikheter :

Introduktion till sannolikhetslära. Människor talar om sannolikheter : F9 Introduktion till sannolikhetslära Introduktion till sannolikhetslära Människor talar om sannolikheter : Sannolikheten att få sju rätt på Lotto Sannolikheten att få stege på en pokerhand Sannolikheten

Läs mer

F2 SANNOLIKHETSLÄRA (NCT )

F2 SANNOLIKHETSLÄRA (NCT ) Stat. teori gk, ht 2006, JW F2 SANNOLIKHETSLÄRA (NCT 4.1-4.2) Ordlista till NCT Random experiment Outcome Sample space Event Set Subset Union Intersection Complement Mutually exclusive Collectively exhaustive

Läs mer

Föreläsning 1, Matematisk statistik Π + E

Föreläsning 1, Matematisk statistik Π + E Introduktion Sannolikhetsteori Beroende Föreläsning 1, Matematisk statistik Π + E Sören Vang Andersen 4 november 2014 Sören Vang Andersen - sva@maths.lth.se FMS012 F1 1/26 Introduktion Sannolikhetsteori

Läs mer

Utfall, Utfallsrummet, Händelse. Sannolikhet och statistik. Utfall, Utfallsrummet, Händelse. Utfall, Utfallsrummet, Händelse

Utfall, Utfallsrummet, Händelse. Sannolikhet och statistik. Utfall, Utfallsrummet, Händelse. Utfall, Utfallsrummet, Händelse Utfall, Utfallsrummet, Händelse Sannolikhet och statistik Sannolikhetsteorins grunder HT 2008 Uwe.Menzel@math.uu.se http://www.math.uu.se/ uwe/ Denition 2.1 Resultatet av ett slumpmässigt försök kallas

Läs mer

3 Grundläggande sannolikhetsteori

3 Grundläggande sannolikhetsteori 3 Grundläggande sannolikhetsteori Ämnet sannolikhetsteori har sin grund i studier av hasardspel utförda under 1500- och 1600-talen av bland andra Gerolamo Cardano, Pierre de Fermat och Blaise Pascal. Mycket

Läs mer

Reliability analysis in engineering applications

Reliability analysis in engineering applications Reliability analysis in engineering applications Fredrik Carlsson Sannolikhetsteorins grunder Fördelningar och stokastiska variabler Extremvärdesfördelningar Simulering Structural Engineering - Lund University

Läs mer

TMS136. Föreläsning 2

TMS136. Föreläsning 2 TMS136 Föreläsning 2 Sannolikheter För en händelse E skriver vi sannolikheten att E inträffar som P(E) För en händelse E skriver vi sannolikheten att E inte inträffar som P(E ) Exempel Låt E vara händelsen

Läs mer

Föreläsning 1, Matematisk statistik för M

Föreläsning 1, Matematisk statistik för M Föreläsning 1, Matematisk statistik för M Erik Lindström 23 mars 2015 Erik Lindström - erikl@maths.lth.se FMS035 F1 1/30 Tillämpningar Praktiska detaljer Matematisk statistik slumpens matematik Sannolikhetsteori:

Läs mer

Sannolikhetsteori. Måns Thulin. Uppsala universitet Statistik för ingenjörer 23/ /14

Sannolikhetsteori. Måns Thulin. Uppsala universitet Statistik för ingenjörer 23/ /14 1/14 Sannolikhetsteori Måns Thulin Uppsala universitet thulin@math.uu.se Statistik för ingenjörer 23/1 2013 2/14 Dagens föreläsning Relativa frekvenser Matematik för händelser Definition av sannolikhet

Läs mer

Föreläsningsmanus i matematisk statistik för lantmätare, vecka 2 HT07

Föreläsningsmanus i matematisk statistik för lantmätare, vecka 2 HT07 Föreläsningsmanus i matematisk statistik för lantmätare, vecka 2 HT07 Bengt Ringnér August 31, 2007 1 Inledning Detta är preliminärt undervisningsmaterial. Synpunkter är välkomna. 2 Händelser och sannolikheter

Läs mer

S0007M Statistik2: Slumpmodeller och inferens. Inge Söderkvist

S0007M Statistik2: Slumpmodeller och inferens. Inge Söderkvist Föreläsning 1 4.1 Slumpässighet 4.2 Sannolikhetsmodeller Viktiga grundbegrepp Slumpmässig (eng: random) Ett fenomen är slumpmässigt om individuella resultat är osäkra, men resultat alltid förekommer med

Läs mer

Kolmogorovs Axiomsystem Kolmogorovs Axiomsystem Varje händelse A tilldelas ett tal : slh att A inträar Sannolikheten måste uppfylla vissa krav: Kolmog

Kolmogorovs Axiomsystem Kolmogorovs Axiomsystem Varje händelse A tilldelas ett tal : slh att A inträar Sannolikheten måste uppfylla vissa krav: Kolmog Slumpvariabel (Stokastisk variabel) Resultat av ett slumpförsök - utgången kann inte kontrolleras Sannolikhet och statistik Sannolikhetsteorins grunder VT 2009 Resultatet kan inte förutspås, men vi vet

Läs mer

Matematisk statistik 9 hp för I, Pi, C, D och fysiker Föreläsning 1: Introduktion och Sannolikhet

Matematisk statistik 9 hp för I, Pi, C, D och fysiker Föreläsning 1: Introduktion och Sannolikhet Matematisk statistik 9 hp för I, Pi, C, D och fysiker Föreläsning 1: Introduktion och Sannolikhet Anna Lindgren 30+31 augusti 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F1: Sannolikhet 1/27 Praktiska

Läs mer

Statistikens grunder HT, dagtid Statistiska institutionen

Statistikens grunder HT, dagtid Statistiska institutionen Statistikens grunder 1 2013 HT, dagtid Statistiska institutionen Orsak och verkan N Kap 2 forts. Annat ord: kausalitet Något av det viktigaste för varje vetenskap. Varför? Orsakssamband ger oss möjlighet

Läs mer

SF1901: SANNOLIKHETSTEORI OCH STATISTIK GRUNDLÄGGANDE SANNOLIKHETSTEORI, BETINGAD SANNOLIKHETER, OBEROENDE. Tatjana Pavlenko.

SF1901: SANNOLIKHETSTEORI OCH STATISTIK GRUNDLÄGGANDE SANNOLIKHETSTEORI, BETINGAD SANNOLIKHETER, OBEROENDE. Tatjana Pavlenko. SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 2 GRUNDLÄGGANDE SANNOLIKHETSTEORI, BETINGAD SANNOLIKHETER, OBEROENDE HÄNDELSER Tatjana Pavlenko 26 mars, 2015 SANNOLIKHETSGRUNDER (REPETITION) Slumpförsöket

Läs mer

TMS136. Föreläsning 1

TMS136. Föreläsning 1 TMS136 Föreläsning 1 Varför? Om vi gör mätningar vill vi kunna modellera och kvantifiera de osäkerheter som obönhörligen finns Om vi handlar med värdepapper vill kunna modellera och kvantifiera de risker

Läs mer

SF1901: Sannolikhetslära och statistik Föreläsning 2. Betingad sannolikhet & Oberoende

SF1901: Sannolikhetslära och statistik Föreläsning 2. Betingad sannolikhet & Oberoende SF1901: Sannolikhetslära och statistik Föreläsning 2. Betingad sannolikhet & Oberoende Jan Grandell & Timo Koski 14.01.2013 Jan Grandell & Timo Koski () Matematisk statistik 14.01.2013 1 / 25 Repetition:

Läs mer

Sannolikhetsbegreppet

Sannolikhetsbegreppet Kapitel 3 Sannolikhetsbegreppet Betrakta följande försök: Ett symmetriskt mynt kastas 100 gånger och antalet krona observeras. Antal kast 10 20 30 40 50 60 70 80 90 100 Antal krona 6 12 16 21 25 30 34

Läs mer

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 1

Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 1 Finansiell Statistik (GN, 7,5 hp,, HT 2008) Föreläsning 1 Sannolikhetslära (LLL Kap 5) Department of Statistics (Gebrenegus Ghilagaber, PhD, Associate Professor) Financial Statistics (Basic-level course,

Läs mer

SF1901: Sannolikhetslära och statistik

SF1901: Sannolikhetslära och statistik SF1901: Sannolikhetslära och statistik Föreläsning 1. Jan Grandell & Timo Koski 19.01.2016 Jan Grandell & Timo Koski Matematisk statistik 19.01.2016 1 / 65 Många tänker på tabeller 1 när de hör ordet statistik.

Läs mer

Statistik. Det finns tre sorters lögner: lögn, förbannad lögn och statistik

Statistik. Det finns tre sorters lögner: lögn, förbannad lögn och statistik Statistik Statistik betyder ungefär sifferkunskap om staten Statistik är en gren inom tillämpad matematik som sysslar med insamling, utvärdering, analys och presentation av data eller information. Verkligheten

Läs mer

7-1 Sannolikhet. Namn:.

7-1 Sannolikhet. Namn:. 7-1 Sannolikhet. Namn:. Inledning Du har säkert hört ordet sannolikhet förut. Hur sannolikt är det att få 13 rätt på tipset eller 7 rätt på lotto? I detta kapitel skall du lära dig vad sannolikhet är för

Läs mer

TMS136. Föreläsning 1

TMS136. Föreläsning 1 TMS136 Föreläsning 1 Varför? Om vi gör mätningar vill vi modellera och kvantifiera de osäkerheter som obönhörligen finns Om vi handlar med värdepapper vill vi modellera och kvantifiera de risker som finns

Läs mer

Statistisk slutledning (statistisk inferens): Sannolikhetslära: GRUNDLÄGGANDE SANNOLIKHETSLÄRA. Med utgångspunkt från ett stickprov

Statistisk slutledning (statistisk inferens): Sannolikhetslära: GRUNDLÄGGANDE SANNOLIKHETSLÄRA. Med utgångspunkt från ett stickprov OSÄKERHET Sannolikhetslära: Om det i ett område finns 32 % med universitetsexamen, vad är sannolikheten att ett stickprov kommer att innehålla 31-33 % med universitetsexamen? Om medelåldern i en population

Läs mer

Mängder. 1 Mängder. Grunder i matematik och logik (2015) 1.1 Grundläggande begrepp. 1.2 Beskrivningar av mängder. Marco Kuhlmann

Mängder. 1 Mängder. Grunder i matematik och logik (2015) 1.1 Grundläggande begrepp. 1.2 Beskrivningar av mängder. Marco Kuhlmann Marco Kuhlmann 1 Diskret matematik handlar om diskreta strukturer. I denna lektion kommer vi att behandla den mest elementära diskreta strukturen, som alla andra diskreta strukturer bygger på: mängden.

Läs mer

Statistik 1 för biologer, logopeder och psykologer

Statistik 1 för biologer, logopeder och psykologer Innehåll 1 Grunderna i sannolikhetslära 2 Innehåll 1 Grunderna i sannolikhetslära 2 Satistik och sannolikhetslära Statistik handlar om att utvinna information från data. I praktiken inhehåller de data

Läs mer

7-2 Sammansatta händelser.

7-2 Sammansatta händelser. Namn: 7-2 Sammansatta händelser. Inledning Du vet nu vad som menas med sannolikhet. Det lärde du dig i kapitlet om just sannolikhet. Nu skall du tränga lite djupare i sannolikhetens underbara värld och

Läs mer

Föreläsning G70, 732G01 Statistik A

Föreläsning G70, 732G01 Statistik A Föreläsning 3 732G70, 732G01 Statistik A Introduktion till sannolikhetslära Sannolikhetslära: område inom statistiken där vi studerar experiment vars utfall beror av slumpen Sannolikhet: numeriskt värde

Läs mer

SF1901: SANNOLIKHETSTEORI OCH GRUNDLÄGGANDE SANNOLIKHETSTEORI, STATISTIK BETINGADE SANNOLIKHETER, OBEROENDE. Tatjana Pavlenko.

SF1901: SANNOLIKHETSTEORI OCH GRUNDLÄGGANDE SANNOLIKHETSTEORI, STATISTIK BETINGADE SANNOLIKHETER, OBEROENDE. Tatjana Pavlenko. SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 2 GRUNDLÄGGANDE SANNOLIKHETSTEORI, BETINGADE SANNOLIKHETER, OBEROENDE HÄNDELSER Tatjana Pavlenko 30 augusti, 2016 SANNOLIKHETSGRUNDER (REPETITION) Slumpförsöket

Läs mer

Slumpförsök för åk 1-3

Slumpförsök för åk 1-3 Modul: Sannolikhet och statistik Del 3: Att utmana elevers resonemang om slump Slumpförsök för åk 1-3 Cecilia Kilhamn, Göteborgs Universitet Andreas Eckert, Linnéuniversitetet I följande text beskrivs

Läs mer

Kapitel 1. betecknas detta antal med n(a). element i B; bet. A B. Den tomma mängden är enligt överenskommelsen en delmängd. lika; bet. A = B.

Kapitel 1. betecknas detta antal med n(a). element i B; bet. A B. Den tomma mängden är enligt överenskommelsen en delmängd. lika; bet. A = B. Kapitel 1 Mängdlära Begreppet mängd är fundamentalt i vårt tänkande; en mängd är helt allmänt en samling av objekt, vars antal kan vara ändligt eller oändligt. I matematiken kallas dessa objekt mängdens

Läs mer

Anna: Bertil: Cecilia:

Anna: Bertil: Cecilia: Marco Kuhlmann 1 Osäkerhet 1.01 1.02 1.03 1.04 1.05 Intelligenta agenter måste kunna hantera osäkerhet. Världen är endast delvist observerbar och stokastisk. (Jmf. Russell och Norvig, 2014, avsnitt 2.3.2.)

Läs mer

Sannolikhetslära. 19 februari 2009. Vad är sannolikheten att vinna om jag köper en lott?

Sannolikhetslära. 19 februari 2009. Vad är sannolikheten att vinna om jag köper en lott? Sannolikhetslära 19 februari 009 Vad är en sannolikhet? I vardagen: Vad är sannolikheten att vinna om jag köper en lott? Borde jag ta paraply med mig till jobbet idag? Vad är sannolikheten att det kommer

Läs mer

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012

Föreläsning 1. Repetition av sannolikhetsteori. Patrik Zetterberg. 6 december 2012 Föreläsning 1 Repetition av sannolikhetsteori Patrik Zetterberg 6 december 2012 1 / 28 Viktiga statistiska begrepp För att kunna förstå mer avancerade koncept under kursens gång är det viktigt att vi förstår

Läs mer

Sannolikhetslära till pdf.notebook. May 04, 2012. Sannolikhetslära. Kristina.Wallin@kau.se

Sannolikhetslära till pdf.notebook. May 04, 2012. Sannolikhetslära. Kristina.Wallin@kau.se May 0, 0 Sannolikhetslära Kristina.Wallin@kau.se May 0, 0 Centralt innehåll Sannolikhet Åk Slumpmässiga händelser i experiment och spel. Åk 6 Sannolikhet, chans och risk grundat på observationer, experiment

Läs mer

BIOSTATISTISK GRUNDKURS, MASB11, VT-16, VT2 ÖVNING 1, OCH ÖVNING 2, SAMT INFÖR ÖVNING 3

BIOSTATISTISK GRUNDKURS, MASB11, VT-16, VT2 ÖVNING 1, OCH ÖVNING 2, SAMT INFÖR ÖVNING 3 LUNDS UNIVERSITET, MATEMATIKCENTRUM, MATEMATISK STATISTIK BIOSTATISTISK GRUNDKURS, MASB11, VT-16, VT2 ÖVNING 1, 2016-04-01 OCH ÖVNING 2, 2016-04-04 SAMT INFÖR ÖVNING 3 Övningarnas mål: Du ska förstå grundläggande

Läs mer

Matematisk statistik

Matematisk statistik Matematisk statistik för STS vt 2004 2004-03 - 23 Bengt Rosén Matematisk statistik Ämnet matematisk statistik omfattar de två delområdena Sannolikhetsteori Statistikteori Bloms A - bok behandlar sannolikhetsteori,

Läs mer

F2 Introduktion. Sannolikheter Standardavvikelse Normalapproximation Sammanfattning Minitab. F2 Introduktion

F2 Introduktion. Sannolikheter Standardavvikelse Normalapproximation Sammanfattning Minitab. F2 Introduktion Gnuer i skyddade/oskyddade områden, binära utfall och binomialfördelningar Matematik och statistik för biologer, 10 hp Fredrik Jonsson Januari 2012 I vissa områden i Afrika har man observerat att förekomsten

Läs mer

SF1901: Sannolikhetslära och statistik

SF1901: Sannolikhetslära och statistik SF1901: Sannolikhetslära och statistik Föreläsning 1. Jan Grandell & Timo Koski 19.01.2016 Jan Grandell & Timo Koski Matematisk statistik 19.01.2016 1 / 70 Många tänker på tabeller 1 när de hör ordet statistik.

Läs mer

1 Mätdata och statistik

1 Mätdata och statistik Matematikcentrum Matematik NF Mätdata och statistik Betrakta frågeställningen Hur mycket väger en nyfödd bebis?. Frågan verkar naturlig, men samtidigt mycket svår att besvara. För att ge ett fullständigt

Läs mer

Betingad sannolikhet och oberoende händelser

Betingad sannolikhet och oberoende händelser Kapitel 5 Betingad sannolikhet och oberoende händelser Betrakta ett försök med ett ändligt utfallsrum Ω och en händelse A vid detta försök. Definitionsmässigt gäller att A Ω och försökets utfall ligger

Läs mer

Experimentera i sannolikhet från teoretisk sannolikhet till data

Experimentera i sannolikhet från teoretisk sannolikhet till data Modul: Sannolikhet och statistik Del 3. Sannolikhet kopplingen mellan teoretisk modell och data Experimentera i sannolikhet från teoretisk sannolikhet till data Per Nilsson, Örebro universitet Sannolikhet

Läs mer

Satsen om total sannolikhet och Bayes sats

Satsen om total sannolikhet och Bayes sats Satsen om total sannolikhet och Bayes sats Satsen om total sannolikhet Ibland är det svårt att direkt räkna ut en sannolikhet pga att händelsen är komplicerad/komplex. Då kan man ofta använda satsen om

Läs mer

FMS012/MASB03: Matematisk statistik 9.0 hp för F+fysiker Föreläsning 1: Sannolikhet

FMS012/MASB03: Matematisk statistik 9.0 hp för F+fysiker Föreläsning 1: Sannolikhet FMS012/MASB03: Matematisk statistik 9.0 hp för F+fysiker Föreläsning 1: Sannolikhet Anna Lindgren 18 januari 2016 Anna Lindgren anna@maths.lth.se FMS012/MASB03 F1: Sannolikhet 1/27 Tillämpningar Praktiska

Läs mer

Uppsala universitet Institutionen för lingvistik och filologi. Grundbegrepp: Mängder och element Delmängder

Uppsala universitet Institutionen för lingvistik och filologi. Grundbegrepp: Mängder och element Delmängder Mängder Joakim Nivre Uppsala universitet Institutionen för lingvistik och filologi Översikt Grundbegrepp: Mängder och element Delmängder Operationer på mängder: Union och snitt Differens och komplement

Läs mer

Vad kan hända? strävorna

Vad kan hända? strävorna strävorna 4D Vad kan hända? föra, följa och värdera matematiska resonemang sannolikhet Avsikt och matematikinnehåll Innebörden i sannolikhet är en viktig kunskap för alla. Det finns gott om exempel på

Läs mer

SF1901: Övningshäfte

SF1901: Övningshäfte SF1901: Övningshäfte 5 september 2013 Uppgifterna under rubriken Övning kommer att gås igenom under övningstillfällena. Uppgifterna under rubriken Hemtal är starkt rekommenderade och motsvarar nivån på

Läs mer

14.1 Diskret sannolikhetslära

14.1 Diskret sannolikhetslära 14.1 Diskret sannolikhetslära 14.1.1 Utfallsrum och händelser Vi ska här studera slumpmässiga försök med ändligt många utfall, resultat. Mängden av utfall kallas försökets utfallsrum. Varje delmängd av

Läs mer

Föreläsning 1: Tal, mängder och slutledningar

Föreläsning 1: Tal, mängder och slutledningar Föreläsning 1: Tal, mängder och slutledningar Tal Tal är organiserade efter några grundläggande egenskaper: Naturliga tal, N De naturliga talen betecknas med N och innehåller alla positiva heltal, N =

Läs mer

STOKASTIK Sannolikhetsteori och statistikteori med tillämpningar

STOKASTIK Sannolikhetsteori och statistikteori med tillämpningar 2007-10-08 sida 1 # 1 STOKASTIK Sannolikhetsteori och statistikteori med tillämpningar Sven Erick Alm och Tom Britton Typsatt med liber1ab 2007-10-08 1 2007-10-08 sida 2 # 2 2007-10-08 sida i # 3 Innehåll

Läs mer

Kapitel 2. Grundläggande sannolikhetslära

Kapitel 2. Grundläggande sannolikhetslära Sannolikhetslära och inferens II Kapitel 2 Grundläggande sannolikhetslära 1 Att beräkna en sannolikhet I många slumpförsök gäller att alla utfall i S är lika sannolika. Exempel: Tärningskast, slantsingling.

Läs mer

I kursen i endimensionell analys är mängden av reella tal (eng. real number), R, fundamental.

I kursen i endimensionell analys är mängden av reella tal (eng. real number), R, fundamental. Lunds tekniska högskola Datavetenskap Lennart ndersson Föreläsningsanteckningar EDF10 4 Mängder 4.1 Motivering Mängden är den mest grundläggande diskreta strukturen. Nästan alla matematiska begrepp går

Läs mer

MATEMATIK ARBETSOMRÅDET LIKABEHANDLING Kränkande handlingar, nätmobbning, rasism och genus

MATEMATIK ARBETSOMRÅDET LIKABEHANDLING Kränkande handlingar, nätmobbning, rasism och genus MATEMATIK ARBETSOMRÅDET LIKABEHANDLING Kränkande handlingar, nätmobbning, rasism och genus STATISTIK/DIAGRAM VAD ÄR STATISTIK? En titt på youtube http://www.youtube.com/watch?v=7civnkawope Statistik omfattar

Läs mer

Övningshäfte 3: Funktioner och relationer

Övningshäfte 3: Funktioner och relationer GÖTEBORGS UNIVERSITET MATEMATIK 1, MAM100, HT2014 INLEDANDE ALGEBRA Övningshäfte 3: Funktioner och relationer Övning H Syftet är att utforska ett av matematikens viktigaste begrepp: funktionen. Du har

Läs mer

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I G. Gripenberg Aalto-universitetet 28 januari 2014 G. Gripenberg (Aalto-universitetet) MS-A0509 Grundkurs i sannolikhetskalkyl

Läs mer

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I

MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I MS-A0509 Grundkurs i sannolikhetskalkyl och statistik Sammanfattning, del I G. Gripenberg Sannolikheter Slumpvariabler Centrala gränsvärdessatsen Aalto-universitetet 8 januari 04 3 Tvådimensionella slumpvariabler

Läs mer

SF1901: SANNOLIKHETSTEORI OCH. PASSNING AV FÖRDELNING: χ 2 -METODER. STATISTIK. Tatjana Pavlenko. 12 oktober 2015

SF1901: SANNOLIKHETSTEORI OCH. PASSNING AV FÖRDELNING: χ 2 -METODER. STATISTIK. Tatjana Pavlenko. 12 oktober 2015 SF1901: SANNOLIKHETSTEORI OCH STATISTIK FÖRELÄSNING 14 PASSNING AV FÖRDELNING: χ 2 -METODER. Tatjana Pavlenko 12 oktober 2015 PLAN FÖR DAGENS FÖRELÄSNING Icke-parametsriska metoder. (Kap. 13.10) Det grundläggande

Läs mer

Enklare matematiska uppgifter

Enklare matematiska uppgifter Elementa Årgång 49, 966 Årgång 49, 966 Första häftet 2555. Visa att 4 n + n + 8 ej kan vara primtal för något heltal n 0. 2556. Man vill göra en behållare utan lock, som rymmer m 3, i form av en rätvinklig

Läs mer

F5 STOKASTISKA VARIABLER (NCT , samt del av 5.4)

F5 STOKASTISKA VARIABLER (NCT , samt del av 5.4) Stat. teori gk, ht 006, JW F5 STOKASTISKA VARIABLER (NCT 5.1-5.3, samt del av 5.4) Ordlista till NCT Random variable Discrete Continuous Probability distribution Probability distribution function Cumulative

Läs mer

Statistiska metoder för säkerhetsanalys

Statistiska metoder för säkerhetsanalys Anna Lindgren Matematisk statistik 2 september 2013 Formalia Syfte och Mål Om kursen Kursen ger 7.5 hp och är obligatorisk på Riskhantering. Förutsätter en grundläggande kurs i statistik/matematisk statistik.

Läs mer

Vidare får vi S 10 = 8,0 10 4 = 76, Och då är 76

Vidare får vi S 10 = 8,0 10 4 = 76, Och då är 76 Ellips Sannolikhet och statistik lösningar till övningsprov sid. 38 Övningsprov.. i) P(:a äss och :a äss och 3:e äss och 4:e äss ) P(:a äss) P(:a äss :a äss) P(3:e äss :a och :a äss) antal P(4:a äss :a

Läs mer

Föreläsning G70 Statistik A

Föreläsning G70 Statistik A Föreläsning 2 732G70 Statistik A Introduktion till sannolikhetslära Sannolikhetslära: område inom statistiken där vi studerar experiment vars utfall beror av slumpen Sannolikhet: numeriskt värde (mellan

Läs mer

Induktionsprincipen Starka induktionsprincipen Välordningsprincipen Divisionsalgoritmen

Induktionsprincipen Starka induktionsprincipen Välordningsprincipen Divisionsalgoritmen Föreläsning 3 Induktionsprincipen Starka induktionsprincipen Välordningsprincipen Divisionsalgoritmen Mängder Induktion behöver inte börja från 1, Grundsteget kan vara P (n 0 ) för vilket heltal n 0 som

Läs mer

Föreläsning 3: Osäkerhet och sannolikhet

Föreläsning 3: Osäkerhet och sannolikhet Föreläsning 3: Osäkerhet och sannolikhet Litteratur: Hansson, Introduction to Decision Theory, kap 8 (Även kap 6 är relevant) Resnik, Choices, kap 3 *Galavotti, Philosophical Introduction to Probability,

Läs mer

Valfritt läromedel för kurs Matematik B Exempel: Räkna med Vux B, Gleerups förlag. Tag kontakt med examinator om du har frågor

Valfritt läromedel för kurs Matematik B Exempel: Räkna med Vux B, Gleerups förlag. Tag kontakt med examinator om du har frågor Våren 010 PRÖVNINGSANVISNINGAR Prövning i Matematik B Kurskod MA 10 Gymnasiepoäng 50 Läromedel Prov Muntligt prov Valfritt läromedel för kurs Matematik B Exempel: Räkna med Vux B, Gleerups förlag Skriftligt

Läs mer

en femma eller en sexa?

en femma eller en sexa? REPETITION 3 A Du kastar en vanlig tärning en gång. Hur stor är sannolikheten att du får en femma eller en sea? 2 Eleverna i klass C fick ge betyg på en bok som de hade läst. Diagrammet visar resultatet.

Läs mer

Matematik 1A 4 Potenser

Matematik 1A 4 Potenser Matematik 1A 4 Potenser förklara begrepp t ex. potens, bas, exponent och grundpotensform (Nivå E C) tolka, skriva och räkna med tal i grundpotensform (Nivå E A) helst kunna redogöra för räkneregler för

Läs mer

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs B, kapitel 1

Kompletterande lösningsförslag och ledningar, Matematik 3000 kurs B, kapitel 1 Här presenteras förslag på lösningar och tips till många uppgifter i läroboken Matematik 3000 kurs B som vi hoppas kommer att vara till hjälp när du arbetar dig framåt i kursen. Vi har valt att inte göra

Läs mer

5.3 Sannolikhet i flera steg

5.3 Sannolikhet i flera steg 5.3 Sannolikhet i flera steg När man singlar slant kan man få utfallen krona eller klave. Sannolikheten att få klave är - och krona ^. Vad är sannolikheten att fä krona två. kast i rad? Träddlagram För

Läs mer

En typisk medianmorot

En typisk medianmorot Karin Landtblom En typisk medianmorot I artikeln Läget? Tja det beror på variablerna! i Nämnaren 1:1 beskrivs en del av problematiken kring lägesmått och variabler med några vanliga missförstånd som lätt

Läs mer

Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla punktskattningar

Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla punktskattningar LUNDS TEKNISKA HÖGSKOLA MATEMATIKCENTRUM MATEMATISK STATISTIK LABORATION 3 MATEMATISK STATISTIK AK FÖR CDIFYSIKER, FMS012/MASB03, HT12 Laboration 3: Stora talens lag, centrala gränsvärdessatsen och enkla

Läs mer

5Chans och risk. Mål. Grunddel K 5. Ingressen

5Chans och risk. Mål. Grunddel K 5. Ingressen Chans och risk ål När eleverna har studerat det här kapitlet ska de kunna: förklara vad som menas med begreppet sannolikhet räkna ut sannolikheten för att en händelse ska inträffa känna till hur sannolikhet

Läs mer

Föreläsning 2, Matematisk statistik för M

Föreläsning 2, Matematisk statistik för M Repetition Stok. Var. Diskret Kont. Fördelningsfnk. Föreläsning 2, Matematisk statistik för M Erik Lindström 25 mars 2015 Erik Lindström - erikl@maths.lth.se FMS012 F2 1/16 Repetition Stok. Var. Diskret

Läs mer

Artificiell Intelligens

Artificiell Intelligens Omtentamen Artificiell Intelligens Datum: 2014-02-20 Tid: 14.00 18.00 Ansvarig: Resultat: Hjälpmedel: Gränser: Anders Gidenstam Redovisas inom tre veckor Inga G 8p, VG 12p, Max 16p Notera: Skriv läsbart!

Läs mer

Lösningar och lösningsskisser

Lösningar och lösningsskisser Lösningar och lösningsskisser Diskret matematik för gymnasiet, :a upplagan, Liber AB Kapitel, Sannolikhetslära och Kombinatorik 0. a) ( ) ( ) h!! ( )!!! 9!! 9!!! h! ( h)!! h! ( h)!! h! ( h)! Likheten är

Läs mer

Three Monkeys Trading. Tärningar och risk-reward

Three Monkeys Trading. Tärningar och risk-reward Three Monkeys Trading Tärningar och risk-reward I en bok vid namn A random walk down Wall Street tar Burton Malkiel upp det omtalade exemplet på hur en apa som kastar pil på en tavla genererar lika bra

Läs mer

4.1 Grundläggande sannolikhetslära

4.1 Grundläggande sannolikhetslära 4.1 Grundläggande sannolikhetslära När osäkerhet förekommer kan man aldrig uttala sig tvärsäkert. Istället använder vi sannolikheter, väntevärden, standardavvikelser osv. Sannolikhet är ett tal mellan

Läs mer

Stokastisk geometri. Lennart Råde. Chalmers Tekniska Högskola och Göteborgs Universitet

Stokastisk geometri. Lennart Råde. Chalmers Tekniska Högskola och Göteborgs Universitet Stokastisk geometri Lennart Råde Chalmers Tekniska Högskola och Göteborgs Universitet Inledning. I geometrin studerar man geometriska objekt och deras inbördes relationer. Exempel på geometriska objekt

Läs mer

Övningshäfte 1: Logik och matematikens språk

Övningshäfte 1: Logik och matematikens språk GÖTEBORGS UNIVERSITET MATEMATIK 1, MMG200, HT2014 INLEDANDE ALGEBRA Övningshäfte 1: Logik och matematikens språk Övning A Målet är att genom att lösa och diskutera några inledande uppgifter få erfarenheter

Läs mer

Miniprojektuppgift i TSRT04: Femtal i Yatzy

Miniprojektuppgift i TSRT04: Femtal i Yatzy Miniprojektuppgift i TSRT04: Femtal i Yatzy 22 augusti 2016 1 Uppgift I tärningsspelet Yatzy används fem vanliga sexsidiga tärningar. Deltagarna slår tärningarna i tur och ordning och försöker få vissa

Läs mer

Sannolihhet. och statistik. Vad är möjligt och vad är inte möjligt? Kommer tåget fram i tid? Blir det regn imorgon? Vi bedömer ständigt risker eller

Sannolihhet. och statistik. Vad är möjligt och vad är inte möjligt? Kommer tåget fram i tid? Blir det regn imorgon? Vi bedömer ständigt risker eller - ^^s^^^^'^^ Sannolihhet och statistik Vad är möjligt och vad är inte möjligt? Kommer tåget fram i tid? Blir det regn imorgon? Vi bedömer ständigt risker eller chanser för att olika händelser ska inträffa.

Läs mer

5. BERÄKNING AV SANNOLIKHETER

5. BERÄKNING AV SANNOLIKHETER 5. BERÄKNING V SNNOLIKHETER 5.1 dditionssatsen Viharnukommitframtilldetstegdärvikanbörjaatträknapraktisktmed sannolikheter. Vi skall utveckla olika regler och begrepp som är nödvändiga för att praktiskt

Läs mer

Stora talens lag eller det jämnar ut sig

Stora talens lag eller det jämnar ut sig Stora talens lag eller det jämnar ut sig kvensen för krona förändras när vi kastar allt fler gånger. Valda inställningar på räknaren Genom att trycka på så kan man göra ett antal inställningar på sin räknare.

Läs mer

5. BERÄKNING AV SANNOLIKHETER

5. BERÄKNING AV SANNOLIKHETER 5. BERÄKNING AV SANNOLIKHETER 5.1 Additionssatsen Viharnukommitframtilldetstegdärvikanbörjaatträknapraktisktmed sannolikheter. Vi skall utveckla olika regler och begrepp som är nödvändiga för att praktiskt

Läs mer

TATM79: Föreläsning 1 Notation, ekvationer, polynom och olikheter

TATM79: Föreläsning 1 Notation, ekvationer, polynom och olikheter TATM79: Föreläsning 1 Notation, ekvationer, polynom och olikheter Johan Thim 15 augusti 2015 1 Vanliga symboler Lite logik Implikation: P Q. Detta betyder att om P är sant så är Q sant. Utläses P medför

Läs mer

Grafer och grannmatriser

Grafer och grannmatriser Föreläsning 2, Linjär algebra IT VT2008 Som avslutning på kursen ska vi knyta samman linjär algebra med grafteori och sannolikhetsteori från första kursen. Resultatet blir så kallade slumpvandringar på

Läs mer

Fö relä sning 1, Kö system 2015

Fö relä sning 1, Kö system 2015 Fö relä sning 1, Kö system 2015 Här följer en kort sammanfattning av det viktigaste i Föreläsning 1. Kolla kursens hemsida minst en gång per vecka. Övningar kommer att läggas ut där, skriv ut dem och ha

Läs mer

Grafer. 1 Grafer. Grunder i matematik och logik (2015) 1.1 Oriktade grafer. Marco Kuhlmann

Grafer. 1 Grafer. Grunder i matematik och logik (2015) 1.1 Oriktade grafer. Marco Kuhlmann Marco Kuhlmann 1 En graf är en struktur av prickar förbundna med streck. Ett tidsenligt exempel på en sådan struktur är ett social nätverk, där prickarna motsvarar personer och en streck mellan två prickar

Läs mer

Något om sannolikheter, slumpvariabler och slumpmässiga urval

Något om sannolikheter, slumpvariabler och slumpmässiga urval LINKÖPINGS UNIVERSITET Matematiska institutionen Statistik Stig Danielsson 004-0-3 Något om sannolikheter, slumpvariabler och slumpmässiga urval 1. Inledning Observerade data innehåller ofta någon form

Läs mer

Diskret matematik, lektion 2

Diskret matematik, lektion 2 Diskret matematik, lektion Uppgifter med (*) är överkurs, och potentiellt lite klurigare. Ni behöver inte kunna lösa dessa. 1 Uppgifter 1. Låt A = {1,, 3}, B = {a, b}. Vilka element finns med i... a) A

Läs mer

ÄNDLIGT OCH OÄNDLIGT AVSNITT 4

ÄNDLIGT OCH OÄNDLIGT AVSNITT 4 VSNITT ÄNDLIGT OCH OÄNDLIGT Är det möjligt att jämföra storleken av olika talmängder? Har det någon mening om man säger att det finns fler irrationella tal än rationella? Är det överhuvudtaget möjligt

Läs mer

Lutande torn och kluriga konster!

Lutande torn och kluriga konster! Lutande torn och kluriga konster! Aktiviteter för barn under Vetenskapsfestivalens skolprogram 2001 Innehåll 1 Bygga lutande torn som inte faller 2 2 Om konsten att vinna betingat godis i spel 5 3 Den

Läs mer

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson

Uppsala Universitet Matematiska Institutionen Thomas Erlandsson Uppsala Universitet Matematiska Institutionen Thomas Erlandsson LÄSANVISNINGAR VECKA 36 VERSION 1. ARITMETIK FÖR RATIONELLA OCH REELLA TAL, OLIKHETER, ABSOLUTBELOPP ADAMS P.1 Real Numbers and the Real

Läs mer

Lite extra material för deltagarna i kursen MAB 5.1

Lite extra material för deltagarna i kursen MAB 5.1 Lite extra material för deltagarna i kursen MAB 5.1 Detta material ska endast ses som ett stöd till provförberedelserna och inte som en fullständig sammanfattning av kursen. Hela kursens innehåll repeteras

Läs mer

Lösningar till tentamen i Matematisk Statistik, 5p

Lösningar till tentamen i Matematisk Statistik, 5p Lösningar till tentamen i Matematisk Statistik, 5p LGR98 20 juni, 2001 kl. 9.00 13.00 Kursansvarig: Eric Järpe Maxpoäng: 30 Betygsgränser: 12p: G, 22p: VG 1. Efter en provräkning observerar en lärare resultaten

Läs mer